The present invention relates to a recombinant yeast producing 3-hydroxypropionic acid (3-HP) and a method for producing 3-HP using the same, and more particularly, to a recombinant yeast producing 3-HP, comprising an exogenous gene encoding AADH; an endo- or exo-genous gene encoding ACC; an exogenous gene encoding MCR; and an exogenous gene encoding HPDH, and producing 3-HP through the [Pyruvate Acetaldehyde→Acetyl-CoA Malonyl-CoA Malonate semialdehyde 3-HP] biosynthesis pathway, and a method for producing 3-HP using the same.
3-HP (3-hydroxypropionic acid, C3) is an isomer of lactic acid (2-hydroxypropionic acid) and it has a carboxylic acid group and a hydroxyl group at both ends thereof, and thereby it is a useful material capable of being converted into various chemicals such as 1,3-propanediol, acrylic acid, acrylamide, a polymer, and the like. Actually, due to the above mentioned reason, 3-HP was selected as one of the promising chemicals that can be produced from biomass by the U.S. Department of Energy in 2004. Particularly, acrylic acid could be a major applied form of 3-HP, as highly marketable material used in a coating material, an adhesive, an additive, a diaper, or the like. 3-HP may be theoretically produced from various biomass such as glucose through fermentation at a yield of 100%, and a fermentation process using microorganisms is suitable for satisfying the demand for an eco-friendly and renewable material.
There is yet no case of commercial production of 3-HP using biomass, but research into various methods has been conducted, and the securing of an economical 3-HP producing strain is emerging as a major obstacle. Bacteria are known as representative microorganisms producing organic acids and widely used in industry such as a food industry, or the like. However, there are disadvantages for applying production of organic acid using industrial bacteria such as E. coli to large-scale chemical industry such as 3-HP production. As the production amount of organic acid is increased, a hydrogenated form of acid is increased and acidity is increased (pH is decreased), and thereby activity of most of the E. coli is decreased. In the case of producing an organic acid at a high concentration, bacteria require a base such as sodium hydroxide (NaOH) and ammonium hydroxide (NH4OH) for maintaining a neutral pH. This causes an increase in the cost of the fermentation process depending on an injected base, makes an extraction and separation process difficult, or significantly increases the cost.
In a recent case of application of producing organic acid to chemical industry, an organic acid is produced from glucose using yeast. Yeast has high resistance against an organic acid as compared to bacteria, thus the activity of the yeast is not significantly inhibited even at a high acidity (low pH) making yeast as more suitable host for producing the organic acid. Particularly, yeast has been conventionally widely used as an industrial biocatalyst for producing spirits, industrial ethanol, or the like, and may be mass-cultured and may not be contaminated with bacteriophages, such that applicability of the yeast in the chemical industry is more excellent as compared to bacteria. Yeast has advantages for producing an organic acid, but there are several disadvantages for using the yeast to produce an organic acid such as 3-HP. First, it is more difficult to genetically modify yeast as compared to bacteria, and in order to express a specific metabolic enzyme, the sub-cellular location for expression of the metabolic pathway along with the specific metabolic enzyme should be identified due to the shape of the cells divided into intracellular structural bodies such as mitochondria, peroxisomes, or the like, unlike bacteria. For example, a representative metabolic intermediate such as acetyl-CoA is mainly produced in the mitochondria in yeasts. However, if a target product is produced in the cytosol, a method for producing acetyl-CoA in the cytosol is also required. In addition, since there is large number of different yeast in the fungal kingdom and all of the yeast do not satisfy requirements for high productivity, resistance against an organic acid and massive cultivation, a host suitable for producing the organic acid should be effectively selected.
It is known that some yeast effectively produce ethanol from glucose, which is a hexose, and some yeast species also produce an organic acid. At the time of modification for producing a target product using microorganisms, it is important to maintain an entire balance of oxidation and reduction for a metabolic reaction, and also, a metabolic reaction of fermenting ethanol from glucose is a suitably maintained reaction. Even in the case of genetically modifying yeast to produce an organic acid, the balance as described above should be appropriately maintained, and in a case of producing lactic acid through modification of yeast, balanced introduction of lactic acid dehydrogenase (LDH) of another reduction reaction for complementing a reduction reaction of producing ethanol from acetaldehyde is important.
It is known that a small amount of 3-HP is produced in a small number of microorganisms such as Chloroflexus aurantiacus, and 3-HP is partially formed from a decomposition process of dimethylsulfoniopropionate in microorganisms such as Alcaligenes faecalis or a decomposition process of uracil in yeast. Research for 3-HP metabolic pathways and the corresponding enzymes have been conducted through discovery of 3-HP present in nature as described above, and based on the research, recently, research for a technology of producing 3-HP or a PHA, which is a polymer form of 3-HP, by introducing a gene required for 3-HP biosynthesis in E. coli has been conducted. In addition, in order to maximize productivity and production yield of 3-HP which is only present as a metabolic intermediate or produced only at a small amount in nature, technologies such as a metabolic engineering technology, a systems biology technology, a synthetic biology technology, or the like, have to be utilized.
According to the development of the metabolic engineering technology, it becomes possible to predict production pathways of various materials using microorganisms, and a pathway for producing 3-HP from glucose may be roughly divided into an acryloyl-CoA pathway, a β-alanine pathway, a malonyl-CoA pathway, and a glycerol pathway depending on metabolic intermediates.
The acryloyl-CoA pathway means a metabolic pathway of converting pyruvate or phosphoenol pyruvate (PEP) obtained from the glycolysis of glucose into acryloyl-CoA via lactate or β-alanine and then converting the acryloyl-CoA into 3-HP through a hydration reaction and a reduction reaction (pyruvate or PEP>lactate or β-alanine→acryloyl-CoA>3-HP). Acryloyl-CoA is a metabolite observed during the decomposition process of propionic acid, and since the Gibb's free energy value for formation of the metabolite is positive, a forward reaction is an unfavourable reaction. In addition, substrate specificity of acryloyl-CoA thioesterases is low, such that the acryloyl-CoA pathway is not suitable as the metabolic pathway for mass-producing 3-HP.
The β-alanine pathway means a metabolic pathway of converting pyruvate or oxaloacetate into amino acid by a transamination reaction and finally conversion into 3-HP via β-alanine by a transamination reaction (pyruvate or oxaloacetate>amino acid→β-alanine 3-HP; US 2012/0135481A1). Since the transamination reaction of β-alanine to 3-HP proceeds via malonate semialdehyde which is highly toxic to microorganisms, a 3-HP dehydrogenase having a high activity is required. In addition, generally, since the transamination reaction forms a radical form of an amino acid molecular structure in a steady-state, an enzyme of this reaction has a structure for alleviating reactivity of the radical. Since this radical has strong reactivity with oxygen, for a smooth transamination reaction, anaerobic conditions or a coenzyme for stabilizing radical molecules are essentially required.
The malonyl-CoA pathway is a metabolic pathway of converting acetyl-CoA into malonyl-CoA by carboxylation and then converting malonyl-CoA into 3-HP by a reduction reaction (acetyl-CoA malonyl-CoA→3-HP), and the glycerol pathway is a metabolic pathway of converting glucose into glycerol, converting glycerol into 3-hydroxypropionaldehyde by a dehydration reaction, and then converting 3-hydroxypropionaldehyde into 3-HP (glucose glycerol 3-hydroxypropionaldehyde 3-HP). Since the malonyl-CoA pathway and the glycerol pathway proceed through an intermediate generally produced by microorganisms such as E. coli, or the like, these pathways have been mainly studied as the 3-HP production pathway (US 2013/0071893 A1). Since malonyl-CoA may be converted into 3-HP by malonate reductase and 3-HP dehydrogenase, and glycerol may be converted into 3-HP by glycerol dehydratase and aldehyde dehydrogenase, a method for converting glucose or glycerol into 3-HP using modified E. coli has been well known. A dehydration reaction of glycerol, which is a reaction accompanied with radicals similarly to the transamination reaction, essentially requires coenzyme B12 for performing the reaction in the presence of oxygen.
In view of industrial fermentation, since it is difficult to use a coenzyme such as coenzyme B12 as a material of a culture medium due to its cost, and microorganisms such as yeast may not biosynthesize or absorb the corresponding material in cells, the β-alanine pathway or glycerol pathway is not suitable as the metabolic pathway for producing 3-HP using yeast. Recently, research modifying the key enzymes for overcoming this problem has been reported. [U.S. Pat. No. 7,655,451 B2]
Malonyl-CoA is synthesized from acetyl-CoA in the cytosol, and can thereby be reduced to 3-HP. In the case of bacteria such as E. coli, acetyl-CoA is formed from pyruvate in the cytosol, and can thereby be used as a substrate of the TCA cycle or other metabolic reaction. However, as described above, in yeast having independent sub-cellular compartments, generally, acetyl-CoA is synthesized in the mitochondria and is used as a substrate of the TCA cycle, and acetyl-CoA in the cytosol is produced via acetate producing reaction, which is a side-reaction of an ethanol production reaction, or a citric acid circulation reaction. All of the reactions of producing acetyl-CoA from acetate or citric acid are reactions consuming ATP, and since yeast further consumes energy in order to obtain acetyl-CoA in cytosol as compared to bacteria, yeast may be disadvantageous in view of energetics.
In yeast, environments such as the reduction state of the cytosol, folding after protein synthesis, codon usage, and the like, are different from those in bacteria, such that at the time of expressing an exogenous enzyme derived from bacteria, an activity thereof may not be exhibited or the activity may be significantly decreased. In addition, since the activity may be significantly changed by the presence or absence of oxygen or other metal ions, even in the case of exogenous enzymes having the same functions, expression results thereof in yeast may be different according to the origins of the enzymes. Actually, in the case of xylose isomerase (XI), which is an important enzyme of xylose metabolism, at the time of expressing XI derived from bacteria in yeast, mostly, an activity thereof was significantly low, but it was shown that yeast was successfully modified so as to perform xylose metabolism at a relatively high activity by introducing XI derived from anaerobic fungus. Thus, in the case of introducing a metabolic pathway derived from bacteria or Archaea such as the malonyl-CoA pathway in yeast, a gene having a high activity should be secured through genes performing the same functions with various origins.
There are various papers and patents associated with a method of genetically modifying Saccharomyces cerevisiae among various yeast strains to produce 3-HP, but in the case of Saccharomyces cerevisiae, since 3-HP is produced by the [pyruvic acid acetaldehyde→acetic acid acetyl-CoA malonyl-CoA malonate semialdehyde 3-HP] pathway, there are problems that this metabolic pathway to produce 3-HP is complicated, and productivity of 3-HP is relatively low (US 2010/0248233A1; Y. Chen et al., Metabolic Engineering, 22:104-109, 2014).
Accordingly, as a result of an effort to solve the above-mentioned problems, in order to overcome the disadvantage of yeast where ATP is consumed in a process of obtaining acetyl-CoA in cytosol, the present inventors conceived a shorter metabolic pathway of [Pyruvate Acetaldehyde→Acetyl-CoA Malonyl-CoA Malonate semialdehyde 3-HP], which is directly converting acetaldehyde into acetyl-CoA without passing through an acetate intermediate, and confirmed that in the case of using a recombinant yeast comprising this pathway, unlike the case of using E. coli, not only the use of pH adjusting materials is decreased, and thereby production of salts is decreased, but also 3-HP may be produced from biomass at a high concentration and a high yield even at a low pH, thereby completing the present invention.
An object of the present invention is to provide a recombinant yeast comprising an active 3-HP biosynthetic pathway of [Pyruvate Acetaldehyde→Acetyl-CoA Malonyl-CoA Malonate semialdehyde 3-HP], converting acetaldehyde directly to acetyl-CoA and not via acetate.
Another object of the present invention is to provide a method for producing 3-HP using the recombinant yeast.
In order to achieve the foregoing objects, the present invention provides a recombinant yeast comprising an active 3-HP biosynthetic pathway of [Pyruvate Acetaldehyde→Acetyl-CoA Malonyl-CoA Malonate semialdehyde 3-HP], wherein the yeast comprises: an exogenous gene encoding AADH; an endo- or exo-genous gene encoding ACC; an exogenous gene encoding MCR; and an exogenous gene encoding HPDH.
In the present invention, said yeast is acid-resistant and selected from the group consisting of for example the genera Saccharomyces, Kazachstania and Candida. Yeast species of particular interest include Saccharomyces cerevisiae, Kazachstania exigua, Kazachstania bulderi, and Candida humilis where species are not limited only by those.
In addition, the present invention provides a method of preparing 3-HP comprising: (a) culturing the recombinant yeast of any one of claims 1-10 in a medium including at least one carbon source, thereby producing 3-HP; and (b) isolating 3-HP from the culture.
Unless defined otherwise, all the technical and scientific terms used herein have the same meanings as those generally understood by persons skilled in the art to which the present invention pertains. Generally, the nomenclature used herein are well known and commonly employed in the art.
Generally, in yeast, since acetyl-CoA is prepared by the pathway of [acetaldehyde acetate→acetyl-CoA], and acetate is produced in cytosol of yeast, ATP is consumed by converting into AMP in the process of producing acetyl-CoA (
However, in the present invention, a pathway where disadvantages of yeast consuming ATP is overcome and improved by directly preparing acetyl-CoA from acetaldehyde, not via acetate, in the process of producing acetyl-CoA in cytosol (
Therefore, in one aspect, the present invention is directed to a recombinant yeast comprising an active 3-HP biosynthetic pathway of [Pyruvate Acetaldehyde→Acetyl-CoA Malonyl-CoA Malonate semialdehyde 3-HP], wherein the yeast comprises: an exogenous gene encoding AADH; an endo- or exo-genous gene encoding ACC; an exogenous gene encoding MCR; and an exogenous gene encoding HPDH.
The 3-HP biosynthetic pathway of [Pyruvate Acetaldehyde→Acetyl-CoA Malonyl-CoA Malonate semialdehyde 3-HP] is a pathway of producing 3-HP from a carbon source such as glucose, etc. (i) “Pyruvate Acetaldehyde” means a pathway of producing acetaldehyde from pyruvate using pyruvate decarboxylase (PDC) without producing an intermediate; (ii) “Acetaldehyde Acetyl-CoA” means a pathway of producing acetyl-CoA from acetaldehyde using acetylating acetaldehyde dehydrogenase (AADH) without producing an intermediate such as acetate; (iii) “Acetyl-CoA Malonyl-CoA” means a pathway of producing malonyl-CoA from acetyl-CoA using acetyl-CoA carboxylase (ACC) without producing an intermediate; (iv) “Malonyl-CoA3-HP or Malonyl-CoA Malonate semialdehyde 3-HP” means a pathway of producing 3-HP from malonyl-CoA using bi-functional Malonyl-CoA reductase (MCR) without producing an intermediate or a pathway of producing 3-HP from malonate semialdehyde by biosynthesizing malonate semialdehyde using a mono-functional malonyl-CoA reductase (
In the present invention, the PDC gene is not engineered, but engineering the PDC gene to increase the 3-HP production rate, for example, by amplifying the PDC gene present in yeast, by applying well-known prior art in the technical field, can be done.
In an exemplary embodiment of the present invention, genes encoding pathway enzymes which have specific function were extracted through bioinformatics genome mining of pathway enzyme candidates.
The present invention comprises an exogenous gene encoding AADH. In an embodiment, the gene encoding AADH is a nucleic acid encoding AADH having an amino acid sequence of at least 60%, preferably at least 70%, 80%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 99% or 100% sequence identity to a AADH amino acid sequence selected from the group consisting of amino acid sequences represented in Tables 1-3 below, but not limited thereto as long as having function of biosynthesizing acetyl-CoA from acetaldehyde.
Escherichia coli K-12 substr.
Piromyces sp. E2
Staphylococcus aureus subsp.
aureus Mu50
Sporolactobacillus laevolacticus
Togninia minima UCRPA7
Endozoicomonas elysicola
Rhodococcus wratislaviensis
Escherichia coli HS
Dickeya zeae Ech1591
Listeria innocua Clip11262
Morganella morganii SC01
Thauera linaloolentis DSM
Marinobacter aquaeolei VT8
Clostridium cf.
saccharolyticum K10
Planctomyces brasiliensis
Shuttleworthia satelles
Tolumonas auensis DSM 9187
Pediococcus acidilactici 7_4
Blautia sp. CAG: 237
Bilophila wadsworthia 3_1_6
Mahella australiensis 50-1 BON
Acetonema longum DSM 6540
Veillonella sp. oral taxon
Vibrio sp. EJY3
Halanaerobium saccharolyticum
Haliangium ochraceum DSM
Porphyromonas endodontalis
Azospirillum brasilense Sp245
Terriglobus roseus DSM 18391
The present invention comprises an gene encoding ACC. In an embodiment, the gene encoding ACC is a nucleic acid encoding ACC having an amino acid sequence of at least 60%, preferably at least 70%, 80%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 99% or 100% sequence identity to a ACC amino acid sequence selected from the group consisting of amino acid sequences represented in Table 4 below, but not limited thereto as long as having function of biosynthesizing malonyl-CoA from acetyl-CoA.
Saccharomyces cerevisiae
Yarrowia lipolytica CLIB122
Mucor circinelloidesf.
circinelloides 1006PhL
Kazachstania exigua
Candida humilis
Cryptococcus gattii WM276
Agaricus bisporus var.
burnettii JB137-S8
Batrachochytrium dendrobatidis
Rhodosporidium toruloides
Phytophthora infestans T30-4
Theobroma cacao
Ostreococcus tauri
Nannochloropsis gaditana
Dictyostelium discoideum AX4
Musca domestica
Sus scrofa
Ciona savignyi
The present invention comprises a gene encoding MCR. In an embodiment, an MCR could be bi-functional in that it has a function of converting malonyl-CoA to malonate semialdehyde and a function of converting malonate semialdehyde to 3-HP; or mono-functional in that it has a function of converting malonyl-CoA to malonate semialdehyde.
In the present invention, gene encoding said bi-functional is a nucleic acid encoding MCR having an amino acid sequence of at least 60%, preferably at least 70%, 80%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 99% or 100% sequence identity to a MCR amino acid sequence selected from the group consisting of amino acid sequences represented in Table 5 below, but not limited thereto as long as simultaneously having the function of converting malonyl-CoA to malonate semialdehyde and the function of converting malonate semialdehyde to 3-HP.
Chloroflexus aurantiacus
Chloroflexus aggregans
Oscillochloris trichoides
Roseiflexus castenholzii
Chloracidobacterium
thermophilum B
Sandarakinorhabdus
limnophila
Blastomonas sp.
In another embodiment, said MCR gene could be mono-functional having function of converting malonyl-CoA to malonate semialdehyde, a gene encoding an enzyme which can convert malonate semialdehyde to 3-HP could be further comprised.
In the present invention, said gene encoding mono-functional MCR is a nucleic acid encoding MCR having an amino acid sequence of at least 60%, preferably at least 70%, 80%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 99% or 100% sequence identity to a MCR amino acid sequences selected from the group consisting of amino acid sequences represented in Table 6 below, but not limited thereto as long as having function of converting malonyl-CoA to malonate semialdehyde.
Metallosphaera sedula DSM
Sulfolobus tokodaii DSM
Sulfolobales archaeon Acd1
Sulfolobus acidocaldarius
Sulfolobus acidocaldarius
Candidatus Caldiarchaeum
subterraneum
Metallosphaera
yellowstonensis MK1
Treponema azotonutricium
In the present invention, said gene encoding enzyme which can convert malonate semialdehyde to 3-HP is a nucleic acid encoding an enzyme having an amino acid sequence of at least 60%, preferably at least 70%, 80%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 99% or 100% sequence identity to a HPDH, HIBADH, HBDH or BDH amino acid sequence selected from the group consisting of amino acid sequences represented in Tables 7-10 below, but not limited thereto as long as the protein encoding gene has the function of biosynthesizing 3-HP from malonate semialdehyde.
HPDH amino acid sequences represented in Table 7 below, HIBADH amino acid sequences represented in Table 8 below, HBDH amino acid sequences represented in Table 9 below, and BDH-amino acid sequences represented in Table 10 below are amino acid sequences of protein that function of biosynthesizing 3-HP from malonate semialdehyde.
Escherichia coli 3431
Saccharomyces cerevisiae S288c
Metallosphaera sedula DSM 5348
Sulfolobus tokodaii str. 7
Escherichia coli BW2952
Aspergillus terreus NIH2624
Pelobacter propionicus DSM 2379
Starkeya novella DSM 506
Pseudoxanthomonas suwonensis
Simonsiella muelleri
Helicobacter winghamensis
Enhydrobacter aerosaccus
Streptococcus didelphis
Roseomonas sp. B5
Pichia stipitis CBS 6054
Kazachstania africana CBS 2517
Haemophilus parainfluenzae ATCC
Burkholderia caribensis MBA4
Amycolatopsis mediterranei U32
Collimonas fungivorans Ter331
Rahnella aquatilis ATCC 33071
Sulfolobus islandicus L.S.2.15
Xanthomonas translucens
Cronobacter dublinensis
Pantoea dispersa
Klebsiella oxytoca 10-5245
Enterobacter cloacae BWH 31
Pseudomonas putida BIRD-1
Pseudomonas aeruginosa PAO1
Bacillus cereus ATCC 14579
Alcaligenes faecalis NCIB 8687
Lytechinus variegatus
Chyphotes mellipes
Populus trichocarpa
Clostridiales sp.
Robiginitomaculum antarcticum
Thiomonas sp. FB-6
Lactobacillus shenzhenensis
Azospirillum brasilense
Anoxybacillus sp. DT3-1
Brevibacillus panacihumi W25
Xanthomonas campestris pv.
campestris
Burkholderia cenocepacia MC0-3
Haliangium ochraceum DSM 14365
Marinobacter adhaerens HP15
Shewanella oneidensis MR-1
Cupriavidus necator
Clostridium kluyveri DSM 555
Anaeroglobus geminatus F0357
Dorea sp. CAG: 317
Fusobacterium sp. CAG: 815
Odoribacter splanchnicus
Polaromonas sp. JS666
Chromohalobacter salexigens
Burkholderia sp. RPE64
Pseudomonas aeruginosa
Brevundimonas subvibrioides
Rhodopseudomonas palustris
Bradyrhizobium sp. STM 3809
Thalassobium sp. R2A62
Kaistia granuli
Ralstonia eutropha H16
Klebsiella pneumoniae KP-7
Azospirillum brasilense Sp245
Cupriavidus metallidurans CH34
In a specific embodiment of the present invention, the recombinant yeast comprising an active 3-HP biosynthetic pathway could have genes listed in Table 11, such as an exogenous gene encoding AADH having an amino acid sequence selected from the group consisting of SEQ ID NOs: 74 to 98, an endo- or exo-genous gene encoding ACC having an amino acid sequence selected from the group consisting of SEQ ID NOs: 99 to 106, an exogenous gene encoding MCR having an amino acid sequence selected from the group consisting of SEQ ID NOs: 107 to 116, and an exogenous gene encoding HPDH having an amino acid sequence selected from the group consisting of SEQ ID NOs: 117 to 144.
In the present invention, the yeast could be acid-resistant, and said acid-resistant yeast could be selected from the group consisting of for example the genera Saccharomyces, Kazachstania and Candida. Yeast species of particular interest include Saccharomyces cerevisiae, Kazachstania exigua, Kazachstania bulderi, and Candida humilis, but is not limited thereto.
According to the present invention, the recombinant yeast might be acid-resistant, and in order to prepare acid-resistant recombinant yeast, it is preferable to use yeast host having acid-resistant against organic acid (especially 3-HP and/or organic acid produced as a side product when preparing 3-HP).
The acid-resistant yeast might be selected from the group consisting of Saccharomyces cerevisiae, Kazachstania exigua, Kazachstania bulderi and Candida humilis, but not limited thereto.
The term “acid-resistant yeast” used in the specification refers to yeast having acid-resistant against organic acids such as 3-HP or the like, and acid-resistance could be evaluated by confirming the growth on medium containing various concentrations of organic acid. In this case, “acid-resistant yeast” might be yeast showing high growth rate and rate of consuming biomass when grown in medium containing high concentration of organic acid, compared to general yeast.
Acid-resistant yeast, according to the present invention, might be yeast that could maintain at least 10% of rate of consuming glucose (or the like) or at least 10% of specific growth rate in the medium containing more than 1M or more organic acid (particularly 3-HP) under pH less than pKa value of organic acid (particularly 3-HP), compared to yeast grown in the medium not containing organic acid. Acid-resistant yeast, according to the present invention, might be yeast that could maintain at least 10% of rate of consuming glucose (or the like) or at least 10% of specific growth rate under pH 2-4, compared to pH 7.
The genetically modified microorganism according to the present invention could be prepared by inserting a gene to a chromosome of a microorganism or introducing a modified vector into a microorganism.
A host where introduction efficiency of DNA is high and expression efficiency of introduced DNA is high is commonly used as said modified microorganism, and in one exemplary embodiment of the present invention, yeast is used, but is not limited thereto, any kind of microorganism could be used as long as sufficiently expressing targeted DNA.
Said modified microorganism could be prepared by any transformation method. “Transformation” means introducing DNA into a host; thereby DNA is able to be replicated, as a factor of chromosome or by integrating chromosome, which is a phenomenon artificially causing a genetic change. In common transformation methods, there are electroporation, acetic acid lithium-PEG method, and the like.
In addition, in the present invention, any generally well-known genetic engineering method could be used as a method for introducing a gene into a chromosome of a host microbe, and as an example, there is a method which uses retrovirus vector, adenovirus vector, adeno-associated virus vector, herpes simplex virus vector, poxvirus vector, lentivirus vector, non-viral vector, etc. “Vector” means a DNA construct comprising a DNA sequence to be operably linked to a suitable control sequence that can express DNA inside a host. A vector may be a plasmid, a phage particle, or simply a latent genomic insert. When a vector is transformed into a suitable host, it may be replicated or functional regardless of a host genome, or in some cases, it may be integrated into a genome itself. A plasmid is the type that is most generally used as a vector.
A typical plasmid vector that can be used for the object has a structure comprising (a) a replication origin that allows a replication to be effectively performed to include plasmid vectors per host cell, (b) an antibiotic-resistance gene or an auxotrophic marker gene that allows a host cell transformed with a plasmid vector to be selected, and (c) a restriction site of restriction enzyme that can be inserted with a foreign DNA fragment. Even if there is no suitable restriction site of a restriction enzyme, a vector and foreign DNA may be easily ligated when using the linker or the synthetic oligonucleotide adaptor according to a general method.
Nucleic acid is “operably linked” when it is arranged with a functional relationship with other nucleic acid sequences. It may be a gene and control sequence(s) that is linked in a process that enables the gene expression when a proper molecule (for example, transcriptional activation protein) is linked to the control sequence(s). For example, DNA for a pre-sequence or a secretion leader is operably linked to DNA for a polypeptide when expressing a pre-protein participating in secretion of a polypeptide; a promoter or an enhancer is operably linked to a coding sequence when affecting transcription of a sequence; a ribosome binding domain is operably linked to a coding sequence when affecting transcription of a sequence; or a ribosome binding domain is operably linked to a coding sequence when it is arranged to be easily translated.
Generally, “operably linked” refers to a contact of a linked DNA sequence, or that the secretion leader is contacted and presented in the leading frame. However, the enhancer is not required to contact. Linkage of enhancer sequence is performed by ligation at a convenient restriction enzyme site. When the domain is not presented, a synthetic oligonucleotide adaptor or linker according to a general method is used.
Of course, it should be understood that all the vectors do not function equally to express the DNA sequences according to the present invention. Likewise, all the host cells do not function equally for the same expression system. However, those skilled in the art may properly select a vector, expression control sequence and host cell without departing from the scope of the present invention and without undue experimentation. For example, in selection of a vector, a host cell must be considered. This is because the vector should be replicated therein. Also, the replication number and the ability to control the replication number of a vector and expression of other proteins encoded by the vector, for example, antibiotic marker, should be considered.
In another aspect, the present invention is directed to a method of preparing 3-HP comprising: (a) culturing the recombinant yeast of any one of claims 1 to 10 in a medium including at least one carbon source, thereby producing 3-HP; and (b) isolating the 3-HP from the culture.
In the present invention, the carbon source could be one or more selected from the group consisting of glucose, xylose, arabinose, sucrose, fructose, cellulose, glucose oligomers and glycerol, but is not limited thereto.
In the present invention, culturing is performed preferably under a condition that microbes such as E. coli does not work (e.g. producing metabolite etc.) anymore. In an embodiment, culturing is performed at pH 1.0 to 6.5, preferably at pH 1.0 to 6.0, more preferably at pH 2.6 to 4.0, but is not limited thereto.
Hereinafter, the present invention will be described in more detail with reference to the following Examples. However, the following Examples are provided by way of example so as to easily explain description and scope of the technical spirit of the present invention. Accordingly, the scope of the present invention is not restricted thereby or changed therefrom. In addition, various modifications and changes may be made by those skilled in the art to which the present invention pertains from this description.
An essential feature of a 3-HP production organism is good tolerance to high concentrations of 3-HP, which enables product accumulation during fermentation with minimal loss of strain performance. A large, diverse set of 718 wild-type yeast strains were screened to identify those strains that can tolerate high concentrations of 3-HP at low pH and that can grow and metabolize glucose under these conditions (Table 12).
A number of agar plate and liquid medium microtitre plate based growth assays were initially used to screen the entire set of strains for acid tolerance. Afterwards, a subset of strains were evaluated for their ability to tolerate high amounts of 3-HP at low pH in shake flask cultivations. In isolation, none of these screening approaches is a perfect indicator of 3-HP tolerance in an industrial setting, but a combination of numerous approaches provides a thorough and robust means of establishing promising 3-HP producing yeast strains.
Initially, the growth of the 718 yeast strains was evaluated on solid YPD-based agar medium containing varying amounts of 3-HP: 0 g/L 3-HP (pH 6.62), 50 g/L 3-HP (pH 3.44), 75 g/L 3-HP (pH 3.28), 100 g/L 3-HP (pH 3.17) and 125 g/L 3-HP (pH 3.08). The strains were then scored based on their ability to tolerate the varying amounts of 3-HP in this screening assay.
Growth of the 718 yeast strains was then evaluated in the absence (SCD-based medium, 0 g/L 3-HP, pH 6.0) or presence (SCD-based medium, 70 g/L 3-HP, pH 3.5) of 3-HP in microtitre plate liquid cultures using Bioscreen C machines which can automatically incubate, shake and measure the turbidity of the cultures. Existing software for modeling microbial growth curves was then adapted to establish the lag phase, maximal growth rate and final cell density for each strain at each of the experimental conditions. For this screening assay, each strain was scored based on its maximum growth rate in the absence of 3-HP, its maximum growth rate in the presence of 3-HP and the relative difference between these two maximum growth rate values.
Using a liquid handling robot, the growth and glucose utilization rates of the 718 yeast strains were evaluated in YPD-based liquid medium containing 85 g/L 3-HP (pH 3.5) in microtitre plates. An automated work-flow was used to inoculate growth plates, to dilute samples for OD measurement at designated time-points and to centrifuge and collect supernatants for HPLC analysis which was used to measure the residual glucose amounts at designated time-points. In contrast to the Bioscreen C growth assays, the robotic microtitre plate growth assay allowed for more aeration and higher maximum cell densities to be achieved while also allowing for glucose utilization rates to be evaluated instead of just evaluating growth rate like the previous two assays. For this screening assay, each strain was scored based on their maximum cell density obtained in the presence of 3-HP and their ability to consume glucose in the presence of 3-HP at low pH.
The individual scores from the various evaluative 3-HP tolerance assays were averaged together to obtain the final 3-HP tolerance score for each of the strains (Table 12). These screens indicated that the yeast species Candida apicola, Candida humilis, Issatchenkia orientalis, Kazachstania bulderi, Kazachstania exigua, Pichia membranifaciens, Saccharomyces cerevisiae and Yarrowia lipolytica had good general tolerance to 3-HP at low pH under varying conditions.
These eight 3-HP tolerant yeast species were then further analyzed for their tolerance to 3-HP at low pH in shake flask cultivations. For these cultivations (defined SCD-based medium, high initial biomass, low aeration), the strain's ability to grow, consume glucose and produce ethanol was evaluated in the presence of varying levels of 3-HP at varying pHs: 100 g/L 3-HP (pH 4.0), 100 g/L 3-HP (pH 3.5), 100 g/L 3-HP (pH 3.0) and 80 g/L 3-HP (pH 2.6). These shake flask cultivations revealed that certain C. humilis, K. bulderi, K. exigua and S. cerevisiae yeast strains have very robust tolerance to high levels of 3-HP at low pH as they had the fastest glucose utilization rates, biomass production rates and ethanol production rates amongst the various yeast strains under these harsh conditions. On the other hand, the C. apicola, I. orientalis, P. membranifaciens and Y. lipolytica yeast strains were unable to perform well under these very restrictive growth conditions. These detailed follow-up analyses using various shake flask cultivations confirmed that certain C. humilis, K. bulderi, K. exigua and S. cerevisiae yeast strains show great potential as 3-HP production hosts as they exhibit a high natural tolerance to 3-HP under industrially relevant conditions.
Saccharomyces pastorianus
Saccharomyces cerevisiae
Saccharomyces cerevisiae
Saccharomyces cerevisiae
Saccharomyces cerevisiae
Saccharomyces pastorianus
Saccharomyces pastorianus
Saccharomyces pastorianus
Saccharomyces pastorianus
Saccharomyces pastorianus
Saccharomyces pastorianus
Saccharomyces pastorianus
Saccharomyces pastorianus
Saccharomyces pastorianus
Saccharomyces pastorianus
Saccharomyces pastorianus
Saccharomyces pastorianus
Saccharomyces pastorianus
Saccharomyces pastorianus
Saccharomyces pastorianus
Saccharomyces pastorianus
Saccharomyces pastorianus
Saccharomyces cerevisiae
Saccharomyces cerevisiae
Saccharomyces pastorianus
Saccharomyces pastorianus
Saccharomyces pastorianus
Saccharomyces pastorianus
Saccharomyces pastorianus
Saccharomyces pastorianus
Saccharomyces pastorianus
Saccharomyces pastorianus
Saccharomyces pastorianus
Saccharomyces pastorianus
Saccharomyces pastorianus
Saccharomyces pastorianus
Saccharomyces pastorianus
Saccharomyces cerevisiae
Saccharomyces pastorianus
Saccharomyces pastorianus
Saccharomyces pastorianus
Saccharomyces pastorianus
Saccharomyces pastorianus
Saccharomyces pastorianus
Saccharomyces pastorianus
Saccharomyces pastorianus
Saccharomyces pastorianus
Saccharomyces pastorianus
Saccharomyces pastorianus
Saccharomyces cerevisiae
Saccharomyces pastorianus
Saccharomyces pastorianus
Saccharomyces pastorianus
Saccharomyces pastorianus
Saccharomyces pastorianus
Saccharomyces pastorianus
Saccharomyces pastorianus
Saccharomyces pastorianus
Saccharomyces pastorianus
Saccharomyces pastorianus
Saccharomyces pastorianus
Saccharomyces pastorianus
Saccharomyces pastorianus
Saccharomyces cerevisiae
Saccharomyces cerevisiae
Saccharomyces pastorianus
Saccharomyces cerevisiae
Saccharomyces pastorianus
Saccharomyces pastorianus
Saccharomyces pastorianus
Saccharomyces pastorianus
Saccharomyces pastorianus
Saccharomyces pastorianus
Saccharomyces cerevisiae
Saccharomyces pastorianus
Saccharomyces pastorianus
Saccharomyces pastorianus
Saccharomyces cerevisiae
Saccharomyces cerevisiae
Saccharomyces cerevisiae
Saccharomyces cerevisiae
Saccharomyces cerevisiae
Saccharomyces cerevisiae
Saccharomyces cerevisiae
Saccharomyces cerevisiae
Saccharomyces cerevisiae
Saccharomyces cerevisiae
Saccharomyces cerevisiae
Saccharomyces pastorianus
Saccharomyces pastorianus
Saccharomyces pastorianus
Saccharomyces pastorianus
Saccharomyces pastorianus
Saccharomyces cerevisiae
Saccharomyces cerevisiae
Saccharomyces cerevisiae
Saccharomyces cerevisiae
Saccharomyces cerevisiae
Saccharomyces cerevisiae
Saccharomyces cerevisiae
Saccharomyces cerevisiae
Saccharomyces cerevisiae
Saccharomyces cerevisiae
Saccharomyces pastorianus
Saccharomyces cerevisiae
Saccharomyces pastorianus
Saccharomyces pastorianus
Saccharomyces pastorianus
Saccharomyces pastorianus
Saccharomyces pastorianus
Saccharomyces pastorianus
Saccharomyces cerevisiae
Saccharomyces cerevisiae
Saccharomyces cerevisiae
Saccharomyces pastorianus
Saccharomyces cerevisiae
Saccharomyces cerevisiae
Saccharomyces bayanus
Saccharomyces cerevisiae
Saccharomyces cerevisiae
Saccharomyces cerevisiae
Saccharomyces cerevisiae
Saccharomyces cerevisiae
Saccharomyces cerevisiae
Saccharomyces cerevisiae
Saccharomyces cerevisiae
Saccharomyces cerevisiae
Saccharomyces cerevisiae
Saccharomyces kudriavzevii
Saccharomyces cerevisiae
Saccharomyces cerevisiae
Saccharomyces cerevisiae
Saccharomyces cerevisiae
Saccharomyces cerevisiae
Saccharomyces cerevisiae
Saccharomyces cerevisiae
Saccharomyces cerevisiae
Saccharomyces bayanus
Saccharomyces cerevisiae
Saccharomyces cerevisiae
Saccharomyces cerevisiae
Saccharomyces cerevisiae
Saccharomyces bayanus
Saccharomyces sp.
Saccharomyces sp.
Saccharomyces sp.
Saccharomyces cerevisiae
Saccharomyces cerevisiae
Saccharomyces bayanus
Saccharomyces cerevisiae
Saccharomyces cerevisiae
Saccharomyces cerevisiae
Saccharomyces cerevisiae
Saccharomyces cerevisiae
Saccharomyces cerevisiae
Saccharomyces cerevisiae
Saccharomyces cerevisiae
Saccharomyces pastorianus
Saccharomyces cerevisiae
Saccharomyces cerevisiae
Saccharomyces bayanus
Saccharomyces cerevisiae
Saccharomyces cerevisiae
Saccharomyces cerevisiae
Saccharomyces bayanus
Saccharomyces cerevisiae
Saccharomyces cerevisiae
Saccharomyces cerevisiae
Saccharomyces cerevisiae
Saccharomyces cerevisiae
Saccharomyces cerevisiae
Saccharomyces cerevisiae
Saccharomyces cerevisiae
Saccharomyces cerevisiae
Saccharomyces cerevisiae
Saccharomyces cerevisiae
Saccharomyces cerevisiae
Saccharomyces cerevisiae
Saccharomyces cerevisiae
Saccharomyces cerevisiae
Saccharomyces cerevisiae
Saccharomyces cerevisiae
Saccharomyces cerevisiae
Saccharomyces cerevisiae
Saccharomyces cerevisiae
Saccharomyces cerevisiae
Saccharomyces cerevisiae
Saccharomyces cerevisiae
Saccharomyces cerevisiae
Saccharomyces cerevisiae
Saccharomyces pastorianus
Saccharomyces cerevisiae
Saccharomyces cerevisiae
Saccharomyces cerevisiae
Saccharomyces cerevisiae
Saccharomyces cerevisiae
Saccharomyces cerevisiae
Saccharomyces cerevisiae
Saccharomyces cerevisiae
Saccharomyces cerevisiae
Saccharomyces cerevisiae
Saccharomyces cerevisiae
Saccharomyces cerevisiae
Saccharomyces cerevisiae
Saccharomyces cerevisiae
Saccharomyces cerevisiae
Saccharomyces cerevisiae
Saccharomyces cerevisiae
Saccharomyces cerevisiae
Issatchenkia orientalis
Issatchenkia orientalis
Issatchenkia orientalis
Issatchenkia orientalis
Issatchenkia orientalis
Issatchenkia orientalis
Issatchenkia orientalis
Zygosaccharomyces kombuchaensis
Candida glabrata
Candida glabrata
Kazachstania exigua
Kazachstania exigua
Issatchenkia orientalis
Issatchenkia orientalis
Issatchenkia orientalis
Kazachstania exigua
Pichia membranifaciens
Pichia membranifaciens
Pichia membranifaciens
Pichia membranifaciens
Pichia membranifaciens
Pichia membranifaciens
Pichia membranifaciens
Pichia membranifaciens
Pichia membranifaciens
Kazachstania exigua
Saccharomycodes ludwigii
Zygosaccharomyces kombuchaensis
Zygosaccharomyces kombuchaensis
Candida glabrata
Candida glabrata
Issatchenkia orientalis
Kazachstania bulderi
Kazachstania bulderi
Candida magnoliae
Issatchenkia orientalis
Kazachstania bulderi
Issatchenkia orientalis
Issatchenkia orientalis
Issatchenkia orientalis
Kazachstania exigua
Candida glabrata
Issatchenkia orientalis
Kazachstania exigua
Saccharomycodes ludwigii
Issatchenkia orientalis
Kazachstania exigua
Kazachstania exigua
Issatchenkia orientalis
Issatchenkia orientalis
Issatchenkia orientalis
Pichia burtonii
Candida boidinii
Pichia kluyveri
Torulaspora delbrueckii
Kazachstania servazzii
Zygosaccharomyces rouxii
Pichia fermentans
Yarrowia lipolytica
Candida boidinii
Candida intermedia
Candida parapsilosis
Yarrowia lipolytica
Candida parapsilosis
Debaryomyces hansenii
Pichia guilliermondii
Kazachstania servazzii
Rhodotorula glutinis
Cryptococcus albidus
Rhodosporidium toruloides
Debaryomyces occidentalis
Rhodotorula mucilaginosa
Candida auringiensis
Candida succiphila
Ambrosiozyma monospora
Candida arabinofermentans
Kluyveromyces marxianus
Lachancea thermotolerans
Cryptococcus albidus
Debaryomyces occidentalis
Rhodotorula mucilaginosa
Rhodotorula glutinis
Zygosaccharomyces lentus
Rhodosporidium toruloides
Cryptococcus albidus
Torulaspora globosa
Candida stellata
Cryptococcus laurentii
Williopsis saturnus
Cystofilobasidium bisporidii
Cryptococcus curvatus
Sporidiobolus salmonicolor
Pichia jadinii
Geotrichum klebahnii
Cryptococcus laurentii
Debaryomyces hansenii
Yarrowia lipolytica
Candida rugosa
Candida pararugosa
Debaryomyces occidentalis
Arxula adeninivorans
Pichia stipitis
Cryptococcus albidus
Candida haemulonii
Debaryomyces hansenii
Pichia angusta
Rhodotorula minuta
Pichia mandshurica
Zygosaccharornyces bailii
Cryptococcus albidosimilis
Cryptococcus wieringae
Filobasidium globisporum
Filobasidium globisporum
Bulleromyces albus
Candida anglica
Candida anglica
Candida fermentati
Candida natalensis
Candida pararugosa
Candida picinguabensis
Candida silvae
Candida solani
Candida cylindracea
Cryptococcus curvatus
Cryptococcus macerans
Cryptococcus macerans
Cryptococcus magnus
Cryptococcus magnus
Cryptococcus victoriae
Cryptococcus victoriae
Cryptococcus wieringae
Cryptococcus mycelialis
Dioszegia hungarica
Hanseniaspora sp.
Hanseniaspora uvarum
Pichia fabianii
Rhodotorula pinicola
Rhodotorula pinicola
Sporobolomyces ruberrimus
Sporobolomyces roseus
Williopsis californica
Pichia pastoris
Pichia pastoris
Pichia pastoris
Pichia mandshurica
Pichia heedii
Pichia punctispora
Kazachstania unispora
Schizosaccharomyces pombe
Torulaspora delbrueckii
Yarrowia lipolytica
Yarrowia lipolytica
Zygosaccharomyees bailii
Zygosaccharomyces bailii
Zygosaccharomyces bisporus
Candida fluviatilis
Saccharomycopsis capsularis
Zygosaccharomyces rouxii
Candida fluviatilis
Candida humilis
Candida catenulata
Debaryomyces hansenii
Pichia guilliermondii
Candida intermedia
Candida lactis-condensi
Pichia fermentans
Candida pignaliae
Candida pseudolambica
Candida rugosa
Candida sorboxylosa
Kregervanrija fluxuum
Citeromyces matritensis
Debaryomyces polymorphus
Debaryomyces sp.
Dekkera anomala
Dekkera bruxellensis
Dekkera bruxellensis
Pichia burtonii
Pichia burtonii
Kluyveromyces yarrowii
Kodamaea ohmeri
Metschnikowia pulcherrima
Eromothecium coryli
Pichia anomala
Kluyveromyces marxianus
Saturnispora mendoncae
Pichia minuta
Pichia nakasei
Pichia silvicola
Pichia stipitis
Pichia tannicola
Pichia toletana
Schizosaccharomyces japonicus
Pichia haplophila
Zygosaccharomyces bailii
Zygosaccharomyces bisporus
Bulleromyces albus
Pseudozyma antarctica
Pichia stipitis
Cryptococcus wieringae
Sporobolomyces ruberrimus
Cryptococcus diffluens
Cryptococcus curvatus
Lipomyces tetrasporus
Candida shehatae
Lipomyces lipofer
Lipomyces starkeyi
Candida apis
Candida sorbophila
Candida oleophila
Sporidiobolus salmonicolor
Candida apicola
Zygosaccharomyces lentus
Candida saitoana
Pichia guilliermondii
Kluyveromyces lactis
Pichia jadinii
Metschnikowia pulcherrima
Rhodosporidium toruloides
Schizosaccharomyces japonicus
Lachancea thermotolerans
Candida saitoana
Dekkera anomala
Kluyveromyces marxianus
Kluyveromyces marxianus
Candida maltosa
Pichia fabianii
Candida viswanathii
Candida catenulata
Schizosaccharomyces pombe
Kluyveromyces lactis
Kazachstania unispora
Kazachstania unispora
Pachysolen tannophilus
Pachysolen tannophilus
Pichia subpelliculosa
Trigonopsis variabilis
Candida versatilis
Pichia farinosa
Pichia farinosa
Kodamaea ohmeri
Pichia triangularis
Candida diddensiae
Pichia quercuum
Sporidiobolus johnsonii
Debaryomyces coudertii
Candida apicola
Candida humilis
Rhodotorula mucilaginosa
Dekkera anomala
Zygosaccharomyces bailii
Rhodotorula glutinis
Sporobolomyces roseus
Pichia anomala
Candida zeylanoides
Zygosaccharomyces rouxii
Pichia anomala
Zygosaccharomyces bisporus
Lachancea fermentati
Zygosaccharomyces rouxii
Torulaspora microellipsoides
Zygotorulaspora florentinus
Zygosaccharomyces mellis
Lachancea cidri
Zygotorulaspora mrakii
Candida sake
Candida silvae
Sporopachydermia lactativora
Sporopachydermia lactativora
Clavispora lusitaniae
Cryptococcus laurentii
Clavispora lusitaniae
Naumovia dairenensis
Candida membranifaciens
Candida tenuis
Candida membranifaciens
Cystofilobasidium infirmo-miniatum
Candida oleophila
Rhodotorula minuta
Pichia farinosa
Candida solani
Candida sake
Hanseniaspora uvarum
Pichia angusta
Candida entomophila
Candida methanosorbosa
Candida diddensiae
Candida sonorensis
Saccharomyces cerevisiae
Zygosaccharomyces kombuchaensis
Candida mesenterica
Pichia punctispora
Pichia sp.
Pichia sp.
Saccharomyces paradoxus
Pichia fermentans
Kregervanrija fluxuum
Zygosaccharomyces mellis
Lachancea fermentati
Cryptococcus liquefaciens
Filobasidium capsuligenum
Wickerhamomyces anomalus
Dipodascus ingens
Candida santamariae
Filobasidium capsuligenum
Dipodascus ingens
Filobasidium capsuligenum
Candida anatomiae
Lindnera fabianii
Pichia mexicana
Sporopachydermia cereana
Sporopachydermia cereana
Candida sonorensis
Pichia cactophila
Pichia cactophila
Saccharomyces pastorianus
Saccharomyces cerevisiae
Saccharomyces cerevisiae
Saccharomyces cerevisiae
Saccharomyces cerevisiae
Saccharomyces cerevisiae
Saccharomyces cerevisiae
Saccharomyces cerevisiae
Saccharomyces cerevisiae
Saccharomyces cerevisiae
Saccharomyces cerevisiae
Saccharomyces cerevisiae
Saccharomyces cerevisiae
Saccharomyces cerevisiae
Saccharomyces cerevisiae
Saccharomyces cerevisiae
Saccharomyces cerevisiae
Saccharomyces cerevisiae
Saccharomyces cerevisiae
Saccharomyces cerevisiae
Saccharomyces cerevisiae
Saccharomyces cerevisiae
Saccharomyces cerevisiae
Saccharomyces cerevisiae
Saccharomyces cerevisiae
Saccharomyces cerevisiae
Saccharomyces cerevisiae
Saccharomyces cerevisiae
Saccharomyces cerevisiae
Saccharomyces cerevisiae
Saccharomyces cerevisiae
Saccharomyces cerevisiae
Saccharomyces cerevisiae
Saccharomyces cerevisiae
Saccharomyces cerevisiae
Saccharomyces cerevisiae
Saccharomyces cerevisiae
Saccharomyces cerevisiae
Saccharomyces cerevisiae
Saccharomyces cerevisiae
Saccharomyces cerevisiae
Saccharomyces cerevisiae
Saccharomyces cerevisiae
Saccharomyces cerevisiae
Saccharomyces cerevisiae
Saccharomyces cerevisiae
Saccharomyces cerevisiae
Saccharomyces cerevisiae
Saccharomyces cerevisiae
Saccharomyces cerevisiae
Saccharomyces cerevisiae
Saccharomyces cerevisiae
Saccharomyces cerevisiae
Saccharomyces cerevisiae
Saccharomyces cerevisiae
Saccharomyces cerevisiae
Saccharomyces cerevisiae
Saccharomyces cerevisiae
Saccharomyces cerevisiae
Saccharomyces cerevisiae
Saccharomyces cerevisiae
Saccharomyces cerevisiae
Saccharomyces cerevisiae
Saccharomyces cerevisiae
Saccharomyces cerevisiae
Saccharomyces cerevisiae
Saccharomyces cerevisiae
Saccharomyces cerevisiae
Saccharomyces cerevisiae
Saccharomyces cerevisiae
Saccharomyces cerevisiae
Saccharomyces cerevisiae
Saccharomyces cerevisiae
Saccharomyces cerevisiae
Saccharomyces cerevisiae
Saccharomyces cerevisiae
Saccharomyces cerevisiae
Saccharomyces cerevisiae
Saccharomyces cerevisiae
Saccharomyces cerevisiae
Saccharomyces cerevisiae
Saccharomyces cerevisiae
Saccharomyces cerevisiae
Saccharomyces cerevisiae
Saccharomyces cerevisiae
Saccharomyces cerevisiae
Saccharomyces cerevisiae
Saccharomyces cerevisiae
Saccharomyces cerevisiae
Saccharomyces cerevisiae
Saccharomyces cerevisiae
Saccharomyces cerevisiae
Kluyveromyces marxianus
Kluyveromyces marxianus
Kluyveromyces marxianus
Kluyveromyces marxianus
Kluyveromyces marxianus
Kluyveromyces marxianus
Kluyveromyces marxianus
Kluyveromyces marxianus
Kluyveromyces marxianus
Kluyveromyces marxianus
Kluyveromyces marxianus
Kluyveromyces marxianus
Kluyveromyces marxianus
Kluyveromyces marxianus
Kluyveromyces marxianus
Kluyveromyces marxianus
Kluyveromyces marxianus
Kluyveromyces marxianus
Pichia fermentans
Pichia fermentans
Pichia fermentans
Pichia fermentans
Pichia fermentans
Pichia fermentans
Pichia fermentans
Debaryomyces hansenii
Debaryomyces hansenii
Debaryomyces hansenii
Debaryomyces hansenii
Debaryomyces hansenii
Debaryomyces hansenii
Debaryomyces hansenii
Debaryomyces hansenii
Debaryomyces hansenii
Debaryomyces hansenii
Debaryomyces hansenii
Debaryomyces hansenii
Debaryomyces hansenii
Debaryomyces hansenii
Saccharomyces pastorianus
Saccharomyces pastorianus
Saccharomyces pastorianus
Saccharomyces pastorianus
Trichosporon pullulans
Candida sake
Candida sake
Cryptococcus tephrensis
Cryptococcus tephrensis
Trichosporon brassicae
Candida sp.
Yarrowia lipolytica
Candida zeylanoides
Torulopsis sp.
Meyerozyma guilliermondii
Wickerhamomyces anomalus
Yarrowia lipolytica
Candida boidinii
Pichia membranifaciens
Pichia membranifaciens
Candida sp.
Magnusiomyces ingens
Trichosporon dulcitum
Scheffersomyces stipitis
Yarrowia lipolytica
Hanseniaspora uvarum
Hanseniaspora sp.
Priceomyces carsonii
Trichomonascus ciferrii
Trichosporon veenhuisii
Sugiyamaella smithiae
Trichosporon aquatile
Schwanniomyces polymorphus
Priceomyces haplophilus
Debaryomyces robertsiae
Candida rhagii
Metschnikowia reukaufii
Metschnikowia agaves
Komagataella pastoris
Lodderomyces elongisporus
Saccharomyces eubayanus
Candida parapsilosis
Torulaspora delbrueckii
Torulaspora delbrueckii
Hanseniaspora uvarum
Hanseniaspora osmophila
Zygosaccharomyces rouxii
Cryptococcus flavescens
Torulaspora delbrueckii
Wickerhamomyces anomalus
Rhodosporidium toruloides
Candida sp.
Pichia jadinii
Pichia jadinii
Candida humilis
Pichia membranifaciens
Rhodosporidium toruloides
Candida zeylanoides
Candida diddensiae
Pichia membranifaciens
Saccharomyces cerevisiae
Candida mesenterica
Saccharomyces cerevisiae
Homology-based database searches were conducted to identify candidate enzymes for a particular functionality. In each case, the databases were searched with a number of query sequences. Additionally, members of the relevant protein family were retrieved from Uniprot/SwissProt based on the InterPro domain annotations. The homology-based searches were conducted against Uniprot (SwissProt and TrEMBL) and GenBank protein databases (nr, pat and env_nr) using blastp, and against GenBank nucleotide databases (tsa_nt, env_nt and pat) using tblastn. Sequences with an E-value smaller than 1e-30 were extracted; however, in some cases, additional analysis was conducted on sequences with an E-value smaller than 1e-80. Nucleotide hits were translated to protein sequences with GeneWise using the query sequence as a guide in the translation. The task of translating the long ACC sequences was too difficult for GeneWise, so instead the protein sequence (portion matching to the query sequence) was extracted from the blast-xml output. To remove redundant sequences, the retrieved sequences were clustered, using BLASTCLUST or CD-HIT, to clusters containing sequences above 80% identical to each other. Only one representative sequence was kept from each cluster. The non-redundant set of sequences was aligned, either to the PFAM domain of the protein family or by using MAFFT. Global alignment by MAFFT was created in cases where the protein family was not associated with any PFAM or if the protein's sequence was split to several PFAM domains. A phylogenetic tree was created based on the multiple sequence alignment using PHYLIP or FASTTREE. The tree was annotated with E.C. numbers, organism name, blast E-values, and visualized using the Geneious software.
2-1: Acetylating Acetaldehyde Dehydrogenase
The reduction of acetaldehyde to acetyl-CoA can be accomplished by an acetylating acetaldehyde dehydrogenase (AADH, E.C. 1.2.1.10). AADHs can be divided into three groups of functional homologues (Wei et al., Nat. Commun. 4:2580, 2013), including 1) bifunctional proteins having AADH and alcohol dehydrogenase activities (E. coli adhE type genes, GenBank No: NP_415757, query sequence), 2) proteins involved in ethanolamine catabolism (E. coli eutE type genes, GenBank No: AAG57564, query sequence) and 3) bifunctional proteins that are part of an aldolase-dehydrogenase complex involved in 4-hydroxy-2-ketovalerate catabolism (E. coli mphF type genes, GenBank No: NP_414885). Of particular interest are the group 1 (adhE type) and group 2 (eutE type) enzymes.
The N-terminal domain of the AdhE protein is highly homologous to aldehyde:NAD+ oxidoreductases, whereas the C-terminal region is homologous to a family of Fe2+-dependent ethanol:NAD+ oxidoreductases (Membrillo-Hernandez et al., J. Biol. Chem. 275:33869-33875, 2000). Acetylating acetaldehyde dehydrogenase activity can also be introduced to the cell by truncating the bifunctional AdhE protein to only possess the N-terminal aldehyde reductase domain by removing the alcohol dehydrogenase domain. Additional genes having this bifunctional AADH activity were inferred based on bioinformatic analyses and sequence homology. The various genes are summarized in Table 1.
Many enterobacteria can utilize ethanolamine as a carbon and nitrogen source (Stojiljkovic et al., J. Bacteriol. 177:1357-1366, 1995). This catabolic pathway involves a step where acetaldehyde is converted by acetylating acetaldehyde dehydrogenase, EutE, to acetyl-CoA. Novel genes having this AADH activity were inferred based on bioinformatic analyses and sequence homology. The various genes are summarized in Table 2.
In addition, based on bioinformatic analyses and sequence homology to the adhE and eutE type genes, there is a group of genes annotated as aldehyde dehydrogenases which can be inferred to have AADH activity. The various genes are summarized in Table 3.
2-2: Eukaryotic Acetyl-CoA Carboxylase
Acetyl-CoA carboxylase (ACC, EC 6.4.1.2) is a multifunctional biotin-dependent carboxylase that is a key enzyme of fatty acid biosynthesis. It uses the cofactors ATP and biotin to catalyse the conversion of acetyl-CoA to malonyl-CoA. The reaction proceeds in two steps. First, the biotin carboxylase catalyses the ATP-dependent carboxylation of biotin with bicarbonate. Second, the carboxyl transferase transfers the carboxyl group from biotin to acetyl-CoA to form malonyl-CoA. Eukaryotic enzymes are large multidomain enzymes whereas corresponding prokaryotic enzymes consist of multiple subunits encoded by distinct genes.
The activity of ACC is controlled at the transcriptional level and also at the post-transcriptional level (e.g. by phosphorylation and aggregation) in order to sustain acetyl-CoA homeostasis. ACC engineering in different yeast species has resulted in increased ACC activity and increased production of malonyl-CoA derived products. Genes encoding for enzymes having ACC activity have been demonstrated or postulated in Saccharomyces cerevisiae (GenBank No: CAA96294.1, query sequence), Yarrowia lipolytica (GenBank No: XP_501721.1, query sequence) and Mucor circinelloides (GenBank No: EPB82652.1, query sequence). Candidate acetyl-CoA carboxylase genes were identified in the newly sequenced genomes of Kazachstania exigua (SEQ ID NO: 1) and Candida humilis (SEQ ID NO: 2) and cloned into our yeast expression plasmid. Additional genes having ACC activity were inferred based on bioinformatic analyses and sequence homology. The various eukaryotic multidomain ACC genes are summarized in Table 4.
2-3: Bifunctional Malonyl-CoA Reductase
The reduction of malonyl-CoA to 3-HP (via a malonate semialdehyde intermediate) can be accomplished by a large bifunctional malonyl-CoA reductase which possesses both functionalities of C-terminal aldehyde dehydrogenase domain and N-terminal alcohol dehydrogenase domain. A highly substrate-specific and NADPH-dependent enzyme with this activity was characterized in the phototrophic green nonsulfur bacterium Chloroflexus aurantiacus (GenBank No: AAS20429.1; query sequence) which participates in an autotrophic CO2 fixation pathway termed the 3-hydroxypropionate cycle (Hugler et al., J. Bacteriol. 184:2404-2410, 2002). Additional genes having this bifunctional malonyl-CoA reductase activity were inferred based on bioinformatic analyses and sequence homology. The various genes are summarized in Table 5.
2-4: Malonyl-CoA Reductase
In contrast to the bifunctional malonyl-CoA reductases discussed above, malonyl-CoA can also be catalyzed to 3-HP by two separate enzymes. By this route, malonyl-CoA is first reduced to malonate semialdehyde by malonyl-CoA reductase (MCR; EC 1.2.1.75) or a CoA-acylating malonate semialdehyde dehydrogenase and then subsequently reduced to 3-HP by a 3-hydroxypropionate dehydrogenase (3-HPDH; EC 1.1.1.59 or EC 1.1.1.298). MCR is an NADPH-dependent enzyme used by some thermoacidophilic archaea to autotrophically fix carbon into organic material via a 3-hydroxypropionate/4-hydroxybutyrate cycle (Berg et al., Science, 318:1782-1786, 2007). Genes encoding for enzymes having this MCR activity are characterized in Metallosphaera sedula (GenBank No: ABP94884.1, query sequence) and Sulfolobus tokodaii (GenBank No: BAB67276.1, query sequence). Although these MCRs share a similar aldehyde dehydrogenase activity to the Chloroflexus aurantiacus bifunctional malonyl-CoA reductase enzymes, they do not exhibit any significant sequence similarity suggesting that the autotrophic pathways in Chloroflexus and Sulfolobaceae evolved convergently and that different genes were recruited to execute similar metabolic processes in these taxonomic groups (Alber et al., J. Bacteriol. 188:8551-8559, 2006). In particular, the archaeal MCRs show high sequence similarity to aspartate-semialdehyde dehydrogenases. Additional genes having this MCR activity were inferred based on bioinformatic analyses and sequence homology. The various genes are summarized in Table 6.
2-5: 3-Hydroxypropionate Dehydrogenase
Malonate semialdehyde can be reduced to 3-HP by a reversible 3-hydroxypropionate dehydrogenase (HPDH; EC 1.1.1.59, NADH-dependent) or a malonate semialdehyde reductase (EC 1.1.1.298, NADPH-dependent). These enzymes naturally participate in beta-alanine metabolism, propanoate metabolism or uracil degradation in bacteria and plants. In addition, these enzymes are required by some thermoacidophilic archaea for fixing carbon via the 3-hydroxypropionate/4-hydroxybutyrate cycle (Kockelkorn and Fuchs, J. Bacteriol. 191:6352-6362, 2009). Genes encoding for enzymes having 3-hydroxypropionate dehydrogenase or malonate semialdehyde reductase activity have been demonstrated or postulated in Escherichia coli (GenBank No: EFV00080.1, query sequence), Saccharomyces cerevisiae (GenBank No: DAA10125.1, query sequence), Metallosphaera sedula (GenBank No: ABP96133.1, query sequence), Sulfolobus tokodaii (GenBank No: BAK54608.1, query sequence) and Escherichia coli (GenBank No: ACR64730.1, query sequence). Additional genes having 3-hydroxypropionate dehydrogenase or malonate semialdehyde reductase activity were inferred based on bioinformatic analyses and sequence homology. The various genes are summarized in Table 7.
2-6: 3-Hydroxyisobutyrate Dehydrogenase
3-Hydroxyisobutyrate dehydrogenase (HIBADH; EC 1.1.1.31) is a key enzyme involved in the metabolism of valine and the other branched-chain amino acids. HIBADH catalyzes the NADH- or NADPH-dependent reversible conversion of 3-hydroxyisobutyrate to methylmalonate semialdehyde. However, as a result of its wide substrate specificity, HIBADH has also been shown to exhibit 3-hydroxypropionate dehydrogenase activity (i.e. EC 1.1.1.59) by converting malonate semialdehyde to 3-HP (Yao et al., Appl. Biochem. Biotechnol. 160:694-703, 2010). Enzymes with HIBADH activity have been identified in Pseudomonas putida (GenBank No: ADR61938.1, query sequence), Pseudomonas aeruginosa (GenBank No: AAG06957.1, query sequence), Bacillus cereus (GenBank No: AAP10961.1, query sequence) and Alcaligenes faecalis (GenBank No: EJC65559.1, query sequence). Additional genes having this HIBADH activity were inferred based on bioinformatic analyses and sequence homology. The various genes are summarized in Table 8.
2-7: 4-Hydroxybutyrate Dehydrogenase
4-Hydroxybutyrate dehydrogenase (HBDH; EC 1.1.1.61) is an enzyme naturally involved in butanoate metabolism. HBDH catalyzes the reversible NAD+-dependent conversion of 4-hydroxybutanoate to succinate semialdehyde. However, HBDH can also convert malonate semialdehyde to 3-HP as the enzymatic reaction is similar. Enzymes with HBDH activity have been identified in Cupriavidus necator (GenBank No: AAC41425.1, query sequence) and Clostridium kluyveri (GenBank No: EDK35022.1, query sequence). Additional genes having this HBDH activity were inferred based on bioinformatic analyses and sequence homology. The various genes are summarized in Table 9.
2-8: 3-Hydroxybutyrate Dehydrogenase
3-Hydroxybutyrate dehydrogenase (BDH; EC 1.1.1.30) is an enzyme that is naturally involved in butanoate metabolism. BDH catalyzes the reversible NAD+-dependent conversion of 3-hydroxybutyrate to acetoacetate but it can also oxidize other 3-hydroxymonocarboxylic acids. For example, BDH can convert malonate semialdehyde to 3-HP as the enzymatic reaction is similar. An enzyme with BDH activity has been identified in Pseudomonas aeruginosa (GenBank No: GAA17557.1, query sequence). Additional genes having this BDH activity were inferred based on bioinformatic analyses and sequence homology. The various genes are summarized in Table 10.
ACC Spectrophotometric Enzyme Assays
Spectrophotometric ACC assays are coupled assays where a product produced by the ACC reaction is further consumed in a reaction which requires the cofactor NAD(P)H whose oxidation can be monitored with a spectrophotometer.
Kroeger et al. (2011, Anal. Biochem. 411:100-105) described a coupled assay where malonyl-CoA produced by ACC1 is converted further to malonate semialdehyde by purified malonyl-CoA reductase (MCR) in a reaction that requires NADPH as a cofactor. ACC activity was measured by following NADPH oxidation.
Diacovich et al. (2002, J. Biol. Chem. 277:31228-31236) combined the conversion of ADP, a hydrolysis product of ATP which is used as a cofactor in the ACC reaction, to an ADP-requiring pyruvate kinase reaction which was further coupled to the formation of pyruvate using lactate dehydrogenase. The latter enzyme requires NADH as a cofactor whose oxidation was followed.
ACC Radioactive Enzyme Assays
The most commonly used in vitro ACC assay is based on the usage of radioactive 14C carbonate. The incorporation of radioactive carbonate into an acid and a non-volatile material (i.e. malonyl-CoA) is followed. The 14C-labelled sodium bicarbonate which has not been converted to malonyl-CoA is removed by an acid and heat treatment which converts the remaining NaH14CO3 and the possible side products of the reaction into 14C-labelled CO2.
This assay described by Diacovich et al. (2002, J. Biol. Chem. 277:31228-31236) has been used to detect ACC activity from yeast lysates (Shi et al. 2014, mBIO 5:3 e01130-14) with slight modifications. The cell lysates were prepared from yeast cells harvested during late exponential or stationary phase. The cells were washed and then resuspended in lysis buffer containing 100 mM potassium phosphate pH 7.5, 2 mM MgCl2, 1 mM dithiothreitol and 1×EDTA free Complete protease inhibitor (Roche). The cells were disrupted by glass beads and the supernatant was collected after centrifugation at 4° C.
The ACC enzyme assay reaction mixture included 100 mM potassium phosphate (pH 8.0), 300 μg of BSA, 3 mM ATP, 5 mM MgCl2, 10 mM NaH14CO3 [specific activity 200 μCi mmol−1 (7400 kBq mmol)] and 0.5 mM acetyl-CoA. Total volume of the reaction was 100 μL which included 20 μL of cell extract.
The reaction was incubated at 30° C. for 15 min, and stopped by adding 50 μL of 5 M HCl. The contents of the tubes were evaporated to dryness at 95° C. and the residue was resuspended in 100 μL of water and mixed with 3 mL of scintillation cocktail (Ultima Gold AB, PerkinElmer). The 14C content of the samples was determined using a liquid scintillation counter (PerkinElmer Tri-Carb 2810TR).
AADH Enzyme Assay
AADH activity was measured as described by Kozak et al. (2014, Metab. Eng. 21:46-59) by monitoring the reduction of NAD+ at 340 nm at 30° C. The yeast cells for the cell lysates were collected, washed with water, and then resuspended into lysis buffer containing 100 mM Tris-HCl buffer (pH 7.5) and 1×EDTA free protease inhibitor cocktail (Roche). The cells were lysed with glass beads in a Precellys 24 homogenizer at 5500 rpm for 3×40 seconds and kept on ice between rounds. Lysates were centrifuged at 16 000 g for 20 min at 4° C. and supernatants were collected. The total protein concentration was determined using the Bradford method.
The enzyme assay reaction mixture contained 0.1 mM Coenzyme A, 50 mM CHES buffer (pH 9.5), 0.8 mM NAD+, 0.2 mM DTT and 10 μL of cell extract in a total reaction volume of 200 μL. The reaction was started by adding 10 mM of freshly prepared acetaldehyde solution and reduction of NAD+ was followed with a Thermo Konelab 20XT analyser.
MCR Enzyme Assay from Yeast Cell Lysates
The MCR enzyme activity was measured according to the method described by Chen et al. (2014, Metab. Eng. 22:104-109) with slight modifications. The method is based on monitoring the oxidation of NAD(P)H at 340 nm.
Cells were collected and washed with cold wash buffer containing 20 mM Tris-HCl (pH 7.5), 20 mM NaN3 and then resuspended in 1 mL of breaking buffer containing 50 mM HEPES (pH 7.5), 150 mM KCl, 1 mM DTT, 1 mM EDTA, 0.5% Triton X-100 and 1×EDTA free protease inhibitor cocktail (Roche). The cells were lysed with glass beads in a Precellys 24 homogenizer at 5500 rpm for 3×40 seconds and kept on ice between rounds. Lysates were centrifuged at 16 000 g for 20 min at 4° C. and supernatants were collected. The total protein concentration was determined using the Bradford method.
The MCR assay mixture contained 50 mM Tris-HCl buffer (pH 8.0), 5 mM MgCl2 and 0.3 mM NADPH or NADH. After adding 20 ?L of cell lysate into a total reaction volume of 200 μL, the reaction was pre-incubated for five minutes at 30° C. after which the reaction was started by addition of 0.15 mM malonyl-CoA. The assay was monitored at 340 nm with a Thermo Konelab 20XT analyser.
Generation of Yeast Expression Vectors
A series of yeast expression plasmids were generated in order to evaluate the candidate genes for their expression and activity capabilities in yeast. First, a new pBlueScript-based multiple cloning site (MCS) was designed so that all possible restriction enzyme (RE) site combinations could be utilized. This modified MCS was then placed into the pRS-based series of yeast centromeric and multicopy plasmids. Afterwards, using a set of 10 unique RE sites, nine different sets of promoters and terminators were cloned into these pRS-based yeast expression vectors. Thus, this plasmid system could be utilized to constitutively express up to 9 genes simultaneously at either a low or high copy number in a suitable yeast strain in order to evaluate a variety of pathway enzyme combinations for the production of 3-HP.
Cloning of the ACC Genes
ACCT genes which have been transformed into the industrial S. cerevisiae VSK-128 strain with and without a SNF1 deletion are presented in Table 13. ACC genes were expressed from a multicopy plasmid where they were under control of the PDC1 promoter. Mutated ACC1sc genes described in a publication by Shi et al. (2014) were constructed with a QuikChange II Site Directed Mutagenesis Kit (Agilent Technologies).
S. cerevisiae wild-type ACC1
S. cerevisiae S659A mutant ACC1
S. cerevisiae S1157A mutant ACC1
S. cerevisiae S659A/S1157A mutant ACC1
C. humilis wild-type ACC
K. exigua wild-type ACC
M. circinelloides wild-type ACC
Y. lipolytica wild-type ACC
ACC Enzyme Assays
In the literature spectrophotometric assays have been used to detect ACC enzyme activity with purified or partially purified ACC enzymes. Spectrophotometric assays were tested with yeast cell lysates where ACC had been overexpressed but no absorbance change was detected compared to the controls.
The radioactive ACC enzyme assay is very sensitive, even pmol/mg/min activities can be detected. The method was first tested with purified human ACC enzyme which is commercially available. As clear activity was detected the method was further optimised to detect ACC activity from yeast cell lysates. The strains listed in the Table 13 were assayed for their ACC1 activity and based on the results; a list describing the relative ranking of the ACC1s was made (
S. cerevisiae
S. cerevisiae
AADH In Vitro Enzyme Activity Assays
Five AADH genes were originally chosen (i.e. ADHEpm, ADHEec, EUTec, EUTdz and LIN11291i) and transformed into the CEN.PK lab strain. These AADHs were expressed from a multicopy plasmid where they were under control of the TEF1 promoter. All five AADH genes showed AADH activity, but the three eutE-type AADH genes (i.e. EUTec, EUTdz and LIN11291i) gave much higher AADH activity in yeast compared to the adhE-type AADHs (i.e. ADHEpm and ADHEec).
Twenty additional novel AADH genes were chosen from the genome mining analyses to be evaluated for expression and enzyme activity in yeast. These twenty novel AADH genes were tested for in vitro enzyme activity and four of them (i.e. AADHmm, AADHab, AADHbw and AADHvs) were shown to have AADH activity.
AADH In Vivo Growth Assays
All copies of the ACS2 gene were deleted from the industrial S. cerevisiae VSK-128 strain in order to generate a strain with a defective PDH-bypass that was incapable of growth on glucose-based medium. Expression vectors carrying the 25 different AADH variants were then transformed into this ACS2 deletion strain to evaluate their ability to recover the growth of this strain on glucose.
Twelve different AADH variants (i.e. EUTEec, EUTEdz, LIN11291i, AADHmm, AADHtl, AADHab, AADHta, AADHbs, AADHbw, AADHvs, AADHhs and ADHEec) were capable of recovering the growth deficiency of the ACS2-deletion strain based on their capability to grow on glucose-based agar plates. There was a good correlation between the in vitro AADH enzyme activity assays and the in vivo growth recovery analyses.
The growth rate of the first nine AADH variant strains which were found to be capable of recovering growth of the ACS2 deletion strain were then evaluated in liquid shake flask cultivations and compared to the wild-type strain containing the intact PDH-bypass. All nine of these AADH variants were able to maintain>50% of the S. cerevisiae VSK-128 strain's aerobic growth rate when grown on glucose and six of these AADH variants were able to maintain ≧80% of the S. cerevisiae VSK-128 strain's aerobic growth rate.
MCR Enzyme Assays in Yeasts
The eight full-length Chloroflexus MCR homologues were truncated into their two functional domains and the MCR-specific domains were assayed for enzyme activity in yeast along with the six archaeal MCRs. These MCRs were expressed from a multicopy plasmid where they were under control of the TEF1 promoter and transformed into the CEN.PK lab strain.
MCRca (Chloroflexus aurantiacus) and its homologue MCRrc (Roseiflexus castenholzii) were the only two Chloroflexus MCR homologues that gave MCR enzyme activities higher than the wild-type strain when utilizing NADPH as a cofactor. No enzyme activity was observed from these eight Chloroflexus MCR homologues when utilizing NADH as a cofactor.
Three of the archaeal MCRs [Sulfolobales archaeon, Sulfolobus acidocaldarius (×2)], gave MCR enzyme activities higher than the wild-type strain when utilizing NADPH as a cofactor and all six of the archaeal MCRs gave MCR enzyme activities higher than the wild-type strain when utilizing NADH as a cofactor.
Heterologous Expression and Characterization of Archaeal MCRs
pBAT T7 promoter based expression constructs were made for four different archaeal MCRs, Metallosphaera sedula (MCRms), Sulfolobus tokodai (MCRst), Candidatus caldiarchaeum (MCRcc), and Sulfolobales archaeon (MCRsa1). These constructs do not contain a purification tag and were E. coli codon optimized and expressed under the conditions described earlier in this report (Table 15).
Their activity was analyzed using the following assay conditions: 0.4 mM NAD(P)H; 0.15 mM Malonyl-CoA; Tris-HCl pH 7; 2 mM MgCl2. Assays on 20 times diluted lysates were performed in microtitre plate (MTP) format at RT. The oxidation of NADPH or NADH at A365 in time was followed. Among the four archaeal genes tested, MCRsa1 and MCRst showed the highest MCR activity. However, the MCR activities were smaller than that measured for the tagged MCRca. No activity on NADPH or NADH could be measured (in the E. coli cell lysate) for the Candidatus caldiarchaeum MCR (MCRcc).
When analysing these constructs using SDS-PAGE gels, MCRsa1 showed the highest expression levels in the E. coli lysate, while MCRcc could not be expressed in a soluble form; see the gel (sa1>ca>st>ms>cc) (
Shake Flask Cultivations for S. cerevisiae
A small loop of cells was taken from strains freshly grown on selective agar-based plates and used to inoculate 20 mL of selective SC-based medium (20 g/L of glucose) in a 250 mL flask and grown for 2 days (30° C., 250 rpm) until all glucose and ethanol had been consumed. The final cell density was measured and the cultures were centrifuged for 5 min at 4000 rpm. The supernatants were then analysed by HPLC or GC/MS to determine the accumulation of 3-HP and other major metabolites in the culture supernatants. However, other cultivation conditions were also tested depending on the particular strain and objective (e.g. starting amount of glucose, amount of aeration, type of medium and addition of additional substances to the medium, etc.).
Cultures were carried out in Multifors bioreactors (maximum working volume 500 mL, 2 4-bladed Rusthon turbine impellors, Infors HT, Switzerland) containing 250 500 mL medium. Cultures were maintained at 30° C., 300 or 900-950 rpm, with 1.2, 2.4 or 3.6 volume gas (volume culture)−1 min−1 (vvm) initially. Culture pH was kept constant at pH 5.5±0.2 by the addition of sterile 2 M NaOH or 2 M H3PO4. Clerol FBA 3107 antifoam (Cognis France, Ponthierry Paris; 0.03% v/v) was added to control foam production. Gas concentration (CO2, O2, N2 and Ar) was analysed continuously in a Prima Pro Process mass spectrometer (Thermo Scientific, UK) calibrated with 3% CO2 in Ar, 5% CO2 with 0.99% Ar and 15% O2 in N2, 20% O2 plus 20% Ar in N2, and 0.04% ethanol in N2.
Strains were pre-grown overnight in shaken flasks in SCD-based selective medium and used to inoculate the bioreactors. The batch phase of the cultures (20 g/L initial glucose) was allowed to continue for 14 to 20 h and the glucose feed was started only after glucose had been consumed, but either after or before ethanol had been consumed (depending on the cultivation objective). The glucose feed rate was maintained at 0.38-0.65 g L−1 h−1 (depending on the cultivation objective). Supernatant samples were then analysed by HPLC to determine the accumulation of 3-HP and other major metabolites in the cultures.
The culture supernatant samples were analysed with Waters Alliance e2695 HPLC system (Waters, Milford, USA) where the injection volume was 10 μl. An Aminex HPX-87H Organic Acid Column (300 mm×7.8 mm) (Bio-Rad, USA) linked to a Fast Acid Analysis Column (100 mm×7.8 mm) (Bio-Rad, USA) was used as a stationary phase in the HPLC. Columns were maintained at +55° C. and 5.0 mM H2SO4 (Merck KgaA, Germany) was used as an eluent with the flow rate of 0.3 or 0.5 ml min−1. Waters 2489 dual wavelength UV (210 nm) detector (Waters, Milford, USA) and Waters 2414 differential refractometer (Waters, Milford, USA) were used for the detection of 3-hydroxypropionic acid, glucose, acetate, succinate, pyruvate, glycerol and ethanol.
The test samples and standard curve were prepared in the following way: Supernatant (0.5 ml) was acidified with 50 μl of HCl (6N) and spiked with 3-HPA (TCI) standard (in ethylacetate). 5 μl of the lactic acid internal standard solution (Sigma Aldrich (ISOTEC) sodium L-lactate-3,3,3-d3 98 atom %; 5.5 g/1) and approximately 0.2 g of NaCl were added. Since labelled 3-HP is not commercially available, this lactic acid stable isotope product was chosen as the internal standard since it was the most structurally/chemically similar compound to 3-HP that was available which is not present in the sample matrix. The mixture was shaken for approximately 3 min in a vortex mixer. The sample was then extracted two times with 0.5 ml of ethyl acetate by mixing for approximately 3 min in a vortex mixer. The layers were separated by centrifuging at 10 000 rpm for 5 min. The upper layers were collected into a GC vial and evaporated. The dried residues were derivatized with MSTFA (50 μl) containing 1% of TMCS by incubating at 60° C. for 1 h. The standards for the calibration curve were extracted in the same way as the samples in order to minimize errors.
The samples were run on an Agilent 6890 gas chromatograph (GC) combined with Agilent 5973 mass selective detector (MSD). The injector (injection volume 1 μl with split ratio 20:1) and MSD interface temperatures were 280° C., and the oven temperature program was from 50° C. to 280° C. at a rate of 20° C./min. The analyses were performed on an Agilent HP-5MS capillary column (30 m, ID 200 μm, film thickness 0.25 μm; Agilent 19091S-433). The identifications of the compounds were based on a spectral search from the NIST library. 3-HP was detected by monitoring m/z 147 and m/z 219 and 3-HP dimer was detected by monitoring m/z 177. Five point calibration curves (c=1-400 mg/1) were constructed by using the 3-HP responses and an internal standard was used for normalization. The quantification proved to be linear at this concentration range. Blank samples were analysed together with the samples.
The 3-HP plasmid expression strains simultaneously expressed one, two or three 3-HP pathway enzymes (i.e. AADH, ACC1, MCR and HPDH) from two different expression plasmids (i.e. pSK-084 and/or pSK-085) (
Twenty-five AADHs, 8 ACC1s, 10 bifunctional HPDH-MCRs, 6 Archaeal MCRs and 28 HPDHs in Table 16 were analyzed for their ability to produce 3-HP in various S. cerevisiae strains which were also expressing additional 3-HP pathway enzymes if needed. Many novel 3-HP pathway enzymes (obtained from the genome mining analyses) were shown to be active in yeast and many of them were shown to possess superior properties (i.e. higher activities, better cofactor preference) when compared to previously published 3-HP pathway enzymes.
Cultivation Conditions
Various different cultivation conditions were evaluated on a couple early testing strains to see how the various culture conditions affected the strain's ability to produce 3-HP. The S. cerevisiae VSK-128 (Δura3, Δhis3) strain expressed two plasmids where one of the plasmids contained either the HIBADHpa or the HPDHec gene and the second plasmid contained the MCRsa2 gene. Both strains behaved similarly during the cultivations and had very similar metabolite profiles.
Six different shake flask cultivation conditions were tested:
1. Aerobic, batch process, high initial glucose (120 g/L). Another 100 g/L of glucose was added on Day 3.
2. Anaerobic, batch process, high initial glucose (100 g/L). The flasks were sealed and the shaking was slower at 100 rpms.
3. Aerobic, batch process, repeated glucose spiking. Initial glucose was 20 g/L, then 40 g/L was added every subsequent day.
4. Aerobic, simulated fed-batch process, many initial glucose tablets. 5 tablets were initially added, another 5 tablets were added on Day 3. Varying amounts of Enzyme A solution (50-150 μl per day) were added each day.
5. Aerobic, simulated fed-batch process, repeated spiking of glucose tablets. 1 tablet was initially added, 2 tablets were added on Days 1 and 2, 3 tablets were added on Days 3 and 4. Varying amounts of an Enzyme A solution (50-150 μl per day) were added each day.
6. Aerobic, batch process, repeated galactose spiking. Initial galactose was 20 g/L, then 40 g/L was added every subsequent day.
For the simulated fed-batch cultivations, each tablet is thought to release 0.5 g of glucose (which equates to 20 g/L of glucose for our 25-mL culture volumes). The tablets essentially consist of glucose (i.e. starch) and an Enzyme A solution (i.e. amylase) allowing for the controlled slow release of glucose into the medium during the shake flask cultivations. It was hypothesized that glucose-limited fed-batch conditions may promote flux towards growth and subsequently to 3-HP production.
Cell Growth
All of the regular glucose based cultivations grew similarly and the galactose fed cultivation grew more slowly. On the other hand, the fed-batch conditions promoted more cell growth compared to the other cultivation conditions. In particular, the fed-batch (tablet spiking) conditions really promoted a lot of growth early in the cultivation.
3-HP Production
For these cultivations, the majority of the growth had generally occurred by the end of Day 2 and the vast majority of 3-HP had also been produced by Day 2, thus indicating that growth and 3-HP production are linked to each other. The fed-batch (tablet spiking) cultivation condition produced the most 3-HP (˜0.85 g/L) and the galactose fed cultivations produced the least amount of 3-HP (˜0.12 g/L) and the other cultivation conditions all produced about 0.3 to 0.4 g/L of 3-HP. These results demonstrate that cultivation conditions can have a large effect on the 3-HP production levels (
Glucose Consumption
Glucose was quickly consumed in all of the cultivation trials up until Days 2-3, then the glucose consumption rates decreased significantly (during days 4-5) along with growth and 3-HP production. For the fed-batch cultivations, glucose seems to have been consumed as quickly as it was being released from the tablets, suggesting that these cultivations were performed under glucose-limited conditions.
Glycerol, Acetate and Ethanol Accumulation
Glycerol accumulation was quite high for the glucose fed cultivations and was much lower for the galactose fed cultivations. Acetate accumulation was fairly similar amongst the different cultivation conditions but the fed-batch (many tablets) conditions produced much more acetate.
High amounts of ethanol accumulated for most of these shake flask cultivations, especially for the glucose batch cultivations and the glucose spiking cultivations. The fed-batch cultivations aimed to represent glucose limited conditions to reduce excess overflow metabolism to ethanol and this approach seems to have succeeded since ethanol accumulation was significantly lower in the fed-batch cultivations.
Cultivation of a More Established 3-HP Production Strain
An additional 3-HP production strain [(EutEec, HPDH-MCRca, ACC1sc_S1157A) and (HIBADHpa, MCRsa2)] was cultivated according to the most promising fed-batch (tablet spiking) cultivation conditions to check its performance.
Again, most of the growth had occurred by Day 3 and most of the 3-HP production had occurred by Day 3. 3-HP production exceeded 1.2 g/L with this strain under this cultivation condition, (
Although specific embodiments of the present invention are described in detail, it will be apparent to those skilled in the art that the specific description is merely desirable exemplary embodiment and should not be construed as limiting the scope of the present invention. Therefore, the substantial scope of the present invention is defined by the accompanying claims and equivalent thereof.
The use of the recombinant yeast and the method for preparing 3-HP of the present invention enables 3-HP production in a high concentration and a high yield at a low pH from a useful sugar such as glucose, thereby greatly contributing to economical production of 3-HP from biomass and its applied products.
Attached electronic file.
Number | Date | Country | Kind |
---|---|---|---|
10-2014-0114505 | Aug 2014 | KR | national |
Filing Document | Filing Date | Country | Kind |
---|---|---|---|
PCT/KR2015/009061 | 8/28/2015 | WO | 00 |