Recombinase Polymerase Amplification for Point-of-Care Diagnosis of Infant HIV-1

Information

  • Research Project
  • 8488405
  • ApplicationId
    8488405
  • Core Project Number
    R01AI097038
  • Full Project Number
    5R01AI097038-03
  • Serial Number
    097038
  • FOA Number
    PA-10-067
  • Sub Project Id
  • Project Start Date
    7/1/2011 - 13 years ago
  • Project End Date
    12/31/2015 - 9 years ago
  • Program Officer Name
    FITZGIBBON, JOSEPH E.
  • Budget Start Date
    7/1/2013 - 11 years ago
  • Budget End Date
    12/31/2015 - 9 years ago
  • Fiscal Year
    2013
  • Support Year
    03
  • Suffix
  • Award Notice Date
    7/10/2013 - 11 years ago
Organizations

Recombinase Polymerase Amplification for Point-of-Care Diagnosis of Infant HIV-1

DESCRIPTION (provided by applicant): Over 50% of infants in sub-Saharan Africa who are infected with human immunodeficiency virus type 1 (HIV-1) die before 2 years of age. Fortunately, early diagnosis and treatment of infected infants significantly slows disease progression and improves survival. While access to treatment is improving, currently available infant HIV-1 diagnostics are expensive and require complex equipment and sample processing. Therefore, infant HIV-1 testing is restricted to centralized laboratories, which delays the timely reporting of test results to rural areas. A rapid and easy-to-use infant HIV diagnostic that can be performed at the point of care or in rural clinics closer to the user will reduce turn-around time for testing so treatment can start sooner and significantly improve AIDS-specific child mortality rates in rural areas. The goal of this proposed project is to create an infant HIV-1 diagnostic that can detect the strains of HIV that are circulating worldwide and that requires minimal infrastructure to perform. We have identified a combination of technologies that can meet this goal. An isothermal amplification method, recombinase polymerase amplification (RPA), uses sequence-specific primers and probes to amplify DNA at a constant temperature of ~380C. Amplicons can be detected by either fluorescence, using a simple low-cost reader, or by a lateral flow strip (LFS), reducing the need for any complex equipment. It is the primary aim of this proposal to design a single RPA HIV-1 assay that can diagnose all common HIV-1 subtypes. The same primer and probe(s) sequences may be utilized in either the fluorescence or LFS format adding greater utility for assay use. Because HIV-1 is extraordinarily diverse, conserved regions of the genome will be identified and RPA primers and probes will be designed and tested against a panel of diverse viral templates. The HIV-1 RPA assay will be optimized to tolerate diversity across HIV subtypes with high sensitivity and specificity. Whole blood is routinely utilized to detect HIV-1 DNA. Typically, whole blood dried on filter paper is used to stabilize blood collected for infant diagnostics. This project will determine whether whole blood or dried blood spots (DBS) are compatible with the RPA assay or whether membranes that capture lymphocytes increase assay sensitivity. Existing and novel rapid DNA extraction methods using DBS will be assessed in conjunction with the RPA assay to establish a test protocol that gives optimal sensitivity. In order to remove the requirement for powered incubation equipment, an exothermal compound that heats within the optimal incubation range of RPA has been identified for use with the LFS RPA format. The overall goal of the proposed project is to create an HIV-1 diagnostic based on RPA that can be minimally or entirely non- instrumented; requires minimal sample processing, with amplicon detection via fluorescence or LFS; and can be used at the point of care in a variety of resource-limited settings.

IC Name
NATIONAL INSTITUTE OF ALLERGY AND INFECTIOUS DISEASES
  • Activity
    R01
  • Administering IC
    AI
  • Application Type
    5
  • Direct Cost Amount
    318855
  • Indirect Cost Amount
    59769
  • Total Cost
    378624
  • Sub Project Total Cost
  • ARRA Funded
    False
  • CFDA Code
    855
  • Ed Inst. Type
  • Funding ICs
    NIAID:378624\
  • Funding Mechanism
    Non-SBIR/STTR RPGs
  • Study Section
    ZRG1
  • Study Section Name
    Special Emphasis Panel
  • Organization Name
    PATH
  • Organization Department
  • Organization DUNS
    103713624
  • Organization City
    SEATTLE
  • Organization State
    WA
  • Organization Country
    UNITED STATES
  • Organization Zip Code
    981212767
  • Organization District
    UNITED STATES