The present invention relates generally to high-speed attack and reconnaissance vessels.
When maneuvering in restricted conditions, moored, or at anchor, Navy vessels are particularly vulnerable to attack from a group of small, fast boats. Due to their size, speed, and maneuverability, these small boats can attack and then run and hide from larger navy vessels. To make matters worse, the hostiles will often be operating in their own waters where they will typically enjoy a significant numerical advantage and superior knowledge of the waterways. This type of attack, which is referred to as a “small-boat-swarm,” is the tactic of choice for terrorists.
Small-boat-swarm is best countered by similarly-sized, stealthy, fast, heavily-armed craft. An appropriately outfitted Zodiac-type raft has been used for this service. But even highly-trained navy personnel have a limited capability to withstand the repeated shock to their bodies that occurs when traveling in such craft at high speed in moderately high sea states.
Another type of craft that could be used for this type of engagement is an attack helicopter. The primary attributes of the attack helicopter include its tactical agility (e.g., speed, horizon masking, and engagement geometry), assortment of weaponry, and its ability to engage multiple targets. Its primary limitations are its signatures (e.g., radar, infrared, visual and audible) and a sortie time that is limited to only about two hours.
There is a need, therefore, for a vessel that is fast, maneuverable, and suitably equipped to engage and counter a small-boat-swarm or reconnoiter undetected in littoral waters.
The present invention provides a relatively small, stable, low-signature, fast, heavily-armed marine vessel that can sortie from a larger ship and conduct surface warfare functions in shallow littoral environments.
A marine vessel in accordance with the illustrative embodiment of the present invention includes an upper hull, two lower hulls that contain propulsion units, and articulating struts that couple the lower hulls to the upper hull. The articulating struts enable the marine vessel to reconfigure, even while its underway.
In addition to its ability to reconfigure, the marine vessel incorporates other features that, like its ability to reconfigure, are unique among naval vessels and provide it with a significant tactical advantage in military engagements.
One of these features is a removable mission module. The mission module is intended to carry mission-specific payloads. Such payloads are not used for most missions and, as such, are not part of the core systems of the marine vessel. Examples of mission-specific payloads include, without limitation, certain types of weapons, specialized sensors, expendables, and even personnel.
The mission module resides in a mission-module bay, which is disposed toward the aft end of the upper hull. The mission module is inserted into and removed from the bay through an opening at the stern of marine vessel. This process can be performed, for example, while the marine vessel is aboard a mother ship (using a crane, etc.).
The use of the mission module enables a single marine vessel to conduct many different types of missions. In other words, there is no need to provide multiple marine vessels, each outfitted differently, to support different missions.
In the illustrative embodiment, when the mission module is disposed in the mission-module bay, the exterior of the mission module forms a portion of the upper hull of the marine vessel. The mission module is configured with standard mechanical, electrical, and data interfaces that couple to appropriate interfaces within the upper hull.
Marine vessel 100 includes four additional mission bays. Two such bays are disposed near the bow of each of the lower hulls. These lower mission bays can be used to transport various mission payloads, such as extra fuel, underwater sensors, swimmer equipment, sonobuoys, and underwater weapons such as torpedos or mine countermeasures.
Another useful feature of a marine vessel in accordance with the illustrative embodiment of the invention is the inclusion of four sets of wheels, two of which sets are housed in each of the lower hulls. The wheels enable the marine vessel to move about the operations decks of its mother ship without additional handling equipment. When the marine vessel is in its launch/recovery configuration, the wheels deploy from the lower hulls. When the articulated struts are unfolded for operation, the wheels retract. The wheels are driven, so that the vessel can move under its own power.
On board the mother ship, it is normally necessary to move small vessels laterally to clear the vessel-recovery area. But there is often little room to maneuver. In accordance with the illustrative embodiment, the wheels of the marine vessel are capable of rotating 90 degrees so that the vessel can move laterally rather than having to “turn.”
The illustrative embodiment of the present invention provides a reconfigurable marine vessel. In the illustrative embodiment, the marine vessel is manned. There are, however, alternative embodiments in which the marine vessel is unmanned. The unmanned vessel, which is not depicted herein, has substantially the same form as the manned vessel and includes, with the exception of a manned cockpit, the same features as the manned vessel. The unmanned vessel, which can be smaller than the manned version, is typically operated by a remote, airborne operator (in a helicopter, etc.).
The Ability to Reconfigure
A key feature of the illustrative marine vessel is its ability to reconfigure. This feature is described in detail in U.S. patent application Ser. No. 11/119,187 entitled “Reconfigurable Attack and Reconnaissance Vessel I,” which is incorporated by reference herein. To provide context for the features of the marine vessel that are disclosed herein, a brief summary of its ability to reconfigure is provided below.
A marine vessel in accordance with the illustrative embodiment of the invention is capable of reconfiguring into any of three primary configurations, as depicted in
As depicted in the bow-end views of
The three primary configurations of marine vessel 100 are obtained by changing the position of the segments with respect to one another, with respect to upper hull 102, or both. It is to be understood that, within their range of motion, the segments of strut 106 are substantially infinitely positionable so that are variety of other configurations are possible as well.
Some additional important features of marine vessel 100 are now described in detail.
Mission Module—Upper Hull
The mission module is intended to carry mission-specific payloads. Such payloads are not used for most missions and, as such, are not part of the core systems of the marine vessel. Examples of mission-specific payloads include, without limitation, certain types of weapons, specialized sensors, expendables, and even personnel.
As depicted in
Mission module 226 is configured with standard mechanical, electrical, and data interfaces (not depicted), which couple to appropriate interfaces within upper hull 102. In the illustrative embodiment that is depicted in
Rear hatch 328 provides access to the interior of mission module 226 from the exterior of the marine vessel 100. Top hatch 430 and side hatch 432 are used to deploy sensors, weapons, etc. from mission module 326. Bottom hatch 434 is used to deploy systems such as towed sonar bodies and dipping sonar. To that end, bottom hatch 434 interfaces to a matching opening on the floor of mission-module bay 222.
Front hatch 436 provides access to a region (not depicted) that is behind and/or underneath cockpit 208. Seal 438, which is disposed around front hatch 436, seals mission module 226 to marine vessel 100 at this region. By virtue of this arrangement, a water-tight seal is simply and efficiently created between mission module 226 and marine vessel 100. In some embodiments, mission module 226 does not incorporate front hatch 436. Depending upon the layout of the region behind cockpit 208, seal 438 might or might not be required. That is, if there is a solid wall (e.g., bulkhead, etc.) behind the cockpit, such that the forward section of upper hull 102 is sealed off from the aft section, then seal 438 is not required. In fact, in such embodiments, marine vessel 100 can operate without mission module 226 in mission-module bay 222
In some embodiments, mission module 226 is inserted into and removed from mission-module bay 222 through opening 324 at the stern of marine vessel 100. The insertion and removal process can be performed, for example, with a crane while marine vessel 100 is aboard its mother ship.
Mission Bays—Lower Hulls
Referring now to
As depicted in
As depicted in
As indicated above, it is anticipated that one tactical package for the lower mission bay is a torpedo. Since space is limited, the torpedo tube that contains the torpedo will not be substantially longer than the torpedo. Without some accommodation, if the torpedo is fired, marine vessel 100 will be light and tend to rise.
To address this problem, void regions that surround the torpedo tube are arranged to rapidly fill with water when a torpedo is fired. The total volume of water that is held by these voids regions and the torpedo tube (after the torpedo fires), equals the weight of the torpedo.
Wheel Assemblies
Referring again to
When vessel 100 is in its launch/recovery configuration, wheel assemblies 860 deploy. When struts 106 are unfolded for operation (e.g., cruise-and-surveillance configuration, minimum-draft configuration, etc.), wheel assemblies 860 retract into lower hulls 104. The wheels are driven, such that vessel 100 can move under its own power. Marine vessel 100 can be controlled (e.g., steered) by coupling a joy stick to interface electronics (i.e., wheel control electronics) located underneath a panel in one of lower hulls 104.
Once on board the mother ship, it is normally necessary to move small vessels laterally to clear the recovery area. But there is often little room to maneuver. In accordance with the illustrative embodiment, the wheels of marine vessel 100 are capable of rotating 90 degrees so that the vessel can move laterally rather than having to “turn.”
Marine vessel 100 moves from position 1 atop launch/recovery ramp 1372 to position 2 in recovery area 1370. Vessel 100 must be moved away from position 2 to permit other vessels to enter or leave recovery 1372. As a consequence, vessel 100 is moved directly ahead to position 3A, laterally to 4, and then back to 5. Alternatively, vessel 100 is moved laterally to position 3B. In either case, the ability to move laterally greatly simplifies maneuvering in recovery area 1370.
In the illustrative embodiment, a simple piston (1462) and hinge (1464, 1466) arrangement is used to facilitate retraction and deployment of wheel assembly 860. Motor 1468 is used to rotate the wheels.
It is understood that the various embodiments shown in the Figures are illustrative, and are not necessarily drawn to scale. Reference throughout the specification to “one embodiment” or “an embodiment” or “some embodiments” means that a particular feature, structure, material, or characteristic described in connection with the embodiment(s) is included in at least one embodiment of the present invention, but not necessarily all embodiments. Furthermore, it is to be understood that the above-described embodiments are merely illustrative of the present invention and that many variations of the above-described embodiments can be devised by those skilled in the art without departing from the scope of the invention. It is therefore intended that such variations be included within the scope of the following claims and their equivalents.
This case claims priority of U.S. provisional patent application 60/567,271, which was filed on Apr. 30, 2004 and is incorporated by reference herein.
Number | Name | Date | Kind |
---|---|---|---|
1334445 | Gaffney | Mar 1920 | A |
1920507 | Holloway | Aug 1933 | A |
2227725 | Laddon | Jan 1941 | A |
2405115 | Creed | Aug 1946 | A |
3541987 | Barkley | Nov 1970 | A |
4085695 | Bylo | Apr 1978 | A |
4474128 | Wallach | Oct 1984 | A |
4553493 | Sadler et al. | Nov 1985 | A |
4697764 | Hardy et al. | Oct 1987 | A |
5176098 | Royle | Jan 1993 | A |
5237947 | Manning | Aug 1993 | A |
5544607 | Rorabaugh et al. | Aug 1996 | A |
5915321 | Fountaine | Jun 1999 | A |
5924377 | Rausch et al. | Jul 1999 | A |
6089173 | Lande | Jul 2000 | A |
6159058 | Matheson | Dec 2000 | A |
20040149194 | Schmidt et al. | Aug 2004 | A1 |
Number | Date | Country |
---|---|---|
3326942 | Feb 1984 | DE |
3614291 | Oct 1987 | DE |
03033336 | Apr 2003 | WO |
Number | Date | Country | |
---|---|---|---|
20060075948 A1 | Apr 2006 | US |
Number | Date | Country | |
---|---|---|---|
60567271 | Apr 2004 | US |