This invention relates to air vents installed between adjacent roof rafters of a structure, and particularly to foldable air vents that can be packaged integrally with insulation batt material.
With an increasing emphasis on energy efficiency, attic insulation has often been supplemented by blown, loose-fill insulation, or by additional or thicker insulation bats to prevent heat loss in the winter and cool air loss in the summer. Unfortunately, thicker attic insulation can lead to poor air circulation when the spaces between the roof joists and the top wall plate of the building are closed or obstructed. These spaces must be left open to provide air flow between the soffit area and the attic space, for reducing excess humidity and heat, which have been known to deteriorate roofing and structural components. In order to keep this area open, attic vents have been used.
The purpose of an attic vent is to prevent installed insulation, such as fiberglass bats, blankets, fiberglass and cellulose loose fill, from blocking the natural air flow from the ventilated soffit up through to the roof ridge vent or gable vents in the attic. Several attic vents have been designed for this purpose. See, for example, U.S. Pat. No. 4,007,672 directed to a perforated block-style vent, U.S. Pat. No. 4,125,971 directed to a flat panel formed on site into an arch; U.S. Pat. No. 4,126,973 directed to a perforated block-style vent; U.S. Pat. No. 4,197,683 which is directed to the use of a vent board attached in the A-plane of a header board; U.S. Pat. No. 4,214,510 directed to a rolled sheet design; U.S. Pat. No. 5,341,612 directed to the use of a longitudinal ridge in a roof vent for compressive stiffness; U.S. Pat. No. 5,596,847 directed to a vent having an integral transverse stiffening element integrated in the bottom offset wall; U.S. Pat. No. 5,600,928, directed to a vent having stiffeners in the form of saddles in the longitudinal ridges of the roof plane and gussets between offset, bottom surface and the inclined walls of the channel; U.S. Pat. No. 6,347,991, directed to a vent having an integral hinge in a transverse direction, about 4-6 inches from one end; U.S. Pat. No. 6,346,040, directed to an integral vent and dam folded on-site from a flat sheet; and U.S. Pat. No. 6,357,185, directed to a vent having a sealable panel between the bottom of the and the top of the header.
In addition, there are many commercial attic vents that are available for this purpose: PERMA-R® from Owens-Corning; CERTIVENT® from Diversifoam, Inc. A simple foam available from Apache Products; DUROVENT® available from ADO Products; PROVENT® from an unnamed source; and products available from Pactiv; AEROVENT® from Shelter Enterprises, Inc.; and POLYVENT PLUS® from Moore Products, LLC.
Most of the above mentioned patented or commercial vents are vacuumed-formed extruded polystyrene foam. These designs provide for an open air flow area required by most building codes, while providing the stiffness to resist collapsing when the insulation is installed.
The use of such pre-formed vents requires that the vent and insulation be provided as separate pieces, since the insulation batts are typically packaged compressed for packaging so as to reduce the insulation package size for shipping and storage. At the work site, the installer typically nails or staples the vent to the roof structure before the insulation is installed. As a result, the installer may forego installation of the vent (either inadvertently or otherwise) or may install fewer vents than is desirable to provide optimal venting of the roof structure. Proper installation of vents is particularly important in cathedral ceiling applications, in which every rafter bay is individually insulated, and where the insulation vents should be installed along the entire length of the roof.
Accordingly, there is a need for an attic air vent that can be reconfigurable from a relatively flat to a deployed configuration for compact storage and transport. There is also a need for a reconfigurable attic air vent which can be attached to the insulation material during manufacture and compressed along with the insulation batt for packaging, shipping and storage, and which can later be installed with the insulation material in a single step to provide a desired insulation path between the roof soffit and roof peak.
A vent is disclosed for use in maintaining a space between insulation material and a roof structure. In one embodiment, the vent includes a bottom panel having first and second sides and a longitudinal axis, a pair of longitudinally disposed first and second side rails, and a plurality of support legs associated with each side rail. Each support leg can have first and second ends, with the first end connected to one side of the bottom panel and the second end being connected to one of the side rails. The support legs can be connected to the bottom panel and side rails along respective fold lines so that the vent has a flattened configuration in which the top surfaces of the bottom panel, support legs and side rails are all substantially parallel to one another other, and a deployed configuration in which the top surfaces of the bottom panel and side rails are substantially parallel to one another and are substantially non-parallel to the top surfaces of the support legs.
An insulation product including a vent and an insulation member is also disclosed. The vent can comprise a bottom panel having first and second sides and a longitudinal axis, a plurality of support legs, and a pair of longitudinally disposed first and second side rails. In one embodiment, the vent is fixed to the insulation member along at least a portion of the bottom panel.
In another embodiment, an attic vent for ventilating air under a roof between a soffit area of said roof and an attic space is provided. The vent is configured to form a duct with an attic facing side of said roof, and can include a bottom panel having first and second sides and a longitudinal axis, a pair of longitudinally disposed first and second side rails, and a plurality of support legs associated with each side rail. Each support leg can have a first end foldably associated with one of the first and second sides and a second end foldably associated with one of the first and second side rails. The foldable support legs allow the vent to assume a flat configuration in which top surfaces of the support legs, side rails or flanges and a portion of the bottom panel are all substantially parallel to each other, and a deployed configuration in which the top surfaces of the bottom panel and side rails or flanges are substantially parallel to one another while being substantially non-parallel to the top surface of each of the support legs.
A method of providing a ventilation path between an insulation member and a roof structure is also provided. The method can include the steps of (a) providing an insulation batt having a roof facing surface, an attic facing surface, and a longitudinal axis; (b) providing a ventilation device having a bottom panel, a pair of longitudinal side rails or flanges, and a plurality of support members disposed between the bottom panel and each side rail, each of the support members further having a first end foldably connected to one of the side rails and a second end foldably connected to the bottom panel; (c) fixing the bottom panel of the ventilation device to the roof facing surface of the insulation batt; and (d) installing the insulation batt and ventilation device between a pair of rafters adjacent the roof structure so that the ventilation device forms a duct with the attic facing side of the roof.
A foldable attic vent for maintaining a space between an insulation material and a roof structure is also disclosed. The vent can comprise a bottom panel having first and second sides, a longitudinal length and a planar surface thereon. The vent can also have first and second flanges for engaging the attic side of said roof structure, said first and second flanges disposed laterally from said bottom panel and connected thereto by at least first and second support legs, respectively. Thus configured, the vent can be provided in a first position, whereby said planar surface, flanges and support legs are approximately located within a common plane. The vent can further be reconfigurable to a second position whereby said first and second support legs are folded upwardly from said common plane to present said first and second flanges in a higher plane which is substantially parallel with said common plane when said attic vent is installed.
The accompanying drawings illustrate preferred embodiments of the invention so far devised for the practical application of the principles thereof, and in which:
This invention is directed to attic air vents used under the roof of a building to ventilate air from a soffit area to an attic space. The invention is particularly advantageous for use in cathedral ceiling applications in which pre-formed insulation batts are placed between roof rafters. Pre-formed insulation batts can be self-retaining, meaning they are manufactured to have a width that is from ¼″ to ½″ wider than the distance between adjacent roof rafters. The resulting friction-fit between the batts and roof rafters eliminates the need for stapling or other mechanical fastenings. One problem with such self-retaining insulation batts is that without careful installation they can be pressed up too close to the roof, thereby cutting off air flow from the soffit to the roof peak.
In accordance with the Figures, and particularly
In use, the installer can unpack the vent 10, which will either be pre-attached to an insulation batt 300 at the factory or will be provided separately, but in either case will be provided in a flattened configuration. If the vent 10 is pre-attached to the insulation batt, it will typically be folded into the configuration shown in
To deploy the vent the installer simply grasps the side rails 14a, b and pulls them out and away from the bottom panel 12, at the same time folding the associated support legs 16 along fold lines 160a, b, so that the vent assumes the deployed configuration of
Referring in more detail to
Furthermore, at least one opening 20 can be provided in the bottom panel 12 to facilitate the passage of moisture from the insulation batt to the duct space 500 (
Referring again to
A series of intermittent and longitudinally oriented perforations 160a define the fold lines between the support members 16 and the side rails 14a, b, and a parallel series of perforations 160b define fold lines between the support members 16 and the bottom panel 12. Transversely oriented cuts 160c, d are provided between each set of parallel perforations 160a, b to form the individual support members 16. Thus formed, the side rails 14a, b are longitudinally foldable with respect to the support members 16 along perforations 160a, and the support members 16 are longitudinally foldable with respect to the bottom panel 12 along perforations 160b. These cut and fold lines allow the vent to be reconfigured from the flat configuration of
The perforations 160a, b can be sized and configured to provide a plurality of individual support members 16 having desired dimensions of length and width. Since it is the support members that provide the offset between the side rails 14a, b and the bottom panel 12 when the vent is in the deployed configuration, adjusting the size of the support members adjusts the offset height “H” between the panel and the rails to thus provide a desired ventilation space (i.e. a duct) between the insulation batt 300 and the attic side 104 of the roof upon installation. In one embodiment, the side rails 14a, b are sized to provide an offset height “H” of about 1.5 in, which represents a gap of about the same amount between the insulation and the attic side 104 of the roof 100. A 1.5 in offset height “H” between the insulation and the roof is desirable for rafter lengths up to about 30 to 35 feet. Longer rafter lengths can warrant an offset “H” of about 2 in. to 3 in. Such increased size gaps can easily be provided simply by increasing the distance between perforations 160a, b by an amount equal to the desired incremental increase in offset.
At least one pair of locking tabs 18a, b can be provided for each side rail 14a, b to maintain the vent 10 in the deployed configuration and to prevent the vent from collapsing during installation. As can be seen in
When the vent 10 is configured in the deployed configuration so that support members 16 are oriented substantially perpendicular to bottom panel 12, the tabs 18a, b themselves can be deployed by folding along their respective lateral perforations 180b, c upward, away from each other in a “French Door” fashion as shown in
It is noted that although the illustrated embodiment describes a pair of tab members 18a, b associated with each of two individual support member 16, any number and arrangement of tab members can be provided.
Further, although the openings 20 in the bottom panel 12 are shown as being generally rectangular in shape, any appropriate size and/or shaped opening may be used (e.g. punched holes, slits, etc. Likewise, at least a portion of the bottom panel 12 could be made of a breathable material, thus eliminating the need for stamping or cutting individual openings.
As previously noted, insulation batts of the type used between roof rafters can be designed to be self-retaining. Thus, the batt can be manufactured to be about ¼″ to ½″ wider than the expected distance between adjacent rafters. Prior to installation, the user simply applies a lateral compression force to the batt and slides it between the rafters. When the batt is released it springs back to forms a friction fit with the rafters. For embodiments of the invention in which the vent 10 is pre-affixed to the batt, the vent 10 enhances this self-retaining feature by increasing the lateral stiffness of the batt. As can be seen in
The vent 10 can be cut or stamped from a single sheet of material to create the separations and fold lines desired to produce the vent of
The air vent 10 can be manufactured from cardboard, sheet plastic and foamed plastic, such as polyurethane or polyolefin foam, and most desirably, extruded polystyrene (XPS) foam. Suitable flame resistant materials, such as trisphosphate, hexabromocyclododecane, or equivalent material can be added to the base material. In a preferred embodiment, the vent 10 is manufactured from XPS foam, which is impervious to moisture, and which resists formation of mold and mildew.
The vent 10 can be manufactured by stamping, cutting, molding or any other suitable method known in the art for providing a vent structure that can be folded from a substantially flat state to a deployed state to provide desired ventilation air flow between an insulation batt and a roof structure.
In the illustrated embodiment, the vent 10 has a flattened width “FW” of about 25.5 inches (in) and a length “L” of about 48 in. These dimensions allow the vent to substantially conform to a standard preformed insulation batt 300 when the vent is deployed. Such sizing is advantageous because it allows the vent and batt to be connected to one another during the manufacturing process, so that the two may be packaged, shipped, and installed together, which can increase the ease of installation as well as reduce the chance for installation error due to selection of an improper vent or where no vent is installed at all. While such pre-assembly is an advantage, it is not critical, and thus the two pieces may be provided separately to the installer. The vent and batt may thereafter be glued or otherwise fixed together at the job site prior to installation using known methods and materials. Alternatively, the vent and batt may be installed without the need for gluing or fixing the pieces together.
Where the vent is connected to the batt during manufacture, the vent can be folded into the configuration shown in
Referring to
Referring to
In an alternative embodiment, a simplified vent 10 can be provided without side rails 14a, b. With this simplified design, support members 16 would directly engage the attic side 104 of the roof 100 when the vent is installed between rafters. From a manufacturing standpoint, such an arrangement would provide a simpler design as compared to the arrangement of
One additional advantage to this simplified design is that an adjustable offset height feature could be provided. As such each support member 16 could be provided with a series of calibrated longitudinal perforation lines, each labeled to correspond with a particular offset height (e.g. 1{fraction (1/2)}″, 2″, 3″). Upon installation, the user could simply fold up the support member 16 along the desired calibration line to provide the desired offset height between the roof 104 and the insulation batt 300. This arrangement would allow the manufacture of a single sized vent 10 which could then be used in a variety of applications.
a show the vent 10 of
Air flow from the soffit 102 is illustrated by flow arrows, and can be seen entering the soffit vent 106 beneath the eaves, and traveling upward along the attic side 104 of the roof, between the roof and the insulation batt 300 until it reaches the roof peak 440.
To insulate a single rafter bay, multiple insulation batts are typically required and are placed in an end-to-end fashion. Accordingly, one vent 10 should be installed with each insulation batt, with the vents similarly being placed end-to-end along the rafter bay to create a substantially continuous ventilation duct between the batts and the roof, from the soffit area to the roof peak.
The vent and insulation batt 300 can be installed without special tools in new and existing structures, and the installation can be performed with a minimum of time and labor.
Accordingly, it should be understood that the embodiments disclosed herein are merely illustrative of the principles of the invention. Various other modifications may be made by those skilled in the art which will embody the principles of the invention and fall within the spirit and the scope thereof.
The present invention is a continuation-in-part of copending U.S. application Ser. No. 10/666,657, filed on Sep. 19, 2003, by Duncan et al., titled “Baffled Attic Vent and Method of Making Same,” the entirety of which is incorporated herein by reference.
Number | Date | Country | |
---|---|---|---|
Parent | 10666657 | Sep 2003 | US |
Child | 11083397 | Mar 2005 | US |