The subject matter described herein relates to automated monitoring and reporting of environmental data. Complex manufacturing environments may experience a wide variety of conditions that may affect operations of machinery or materials being worked. Existing environmental monitoring systems tend to be integrated into existing machinery and operate using proprietary measurement, processing, and communication protocols. Monitoring systems which are more flexible and which operate according to open standards may find utility in complex manufacturing environments.
Embodiments of systems and methods in accordance with the present disclosure may provide improved environmental condition monitoring and reporting. In one embodiment, a data acquisition device comprises a plurality of sensors to detect an environmental condition, a configurable processor coupled to the plurality of sensors, wherein the configurable processor is configured to receive one or more signals from the plurality of sensors, process the one or more signals to generate environmental data representative of the environmental condition, implement a device profile for web services (DPWS) interface, present a graphical representation of the plurality of environment sensors, and make the environmental data available for access by one or more remote devices via the DPWS interface.
In another embodiment, a method to monitor environmental conditions comprises detecting, in a plurality of environmental sensors mounted on an electronic device, environmental conditions in a plurality of environmental sensors receiving, in a configurable processor coupled to the plurality of sensors, one or more signals from the plurality of sensors, processing, in the configurable processor, the one or more signals to generate environmental data representative of the environmental condition, and transmitting the data to a remote device.
Further areas of applicability will become apparent from the description provided herein. It should be understood that the description and specific examples are intended for purposes of illustration only and are not intended to limit the scope of the present disclosure
Embodiments of methods and systems in accordance with the teachings of the present disclosure are described in detail below with reference to the following drawings.
Systems and methods for environmental condition monitoring, reporting, and data analysis are described herein. Specific details of certain embodiments are set forth in the following description and in
Clusters 110 may be coupled to one or more external servers by a network 122. In the embodiment depicted in
In the embodiment depicted in
The outputs of detectors 230 are input into a processor 218. In some embodiments the processor 218 may be implemented as a configurable processor, e.g., a microprocessor or a field programmable gate array (FPGA). A memory module 216 may be coupled to processor 218 to store logic instructions and/or data generated by the processor 218.
Device 210 may comprise a coprocessor 242 that comprises an internal A/D converter to receive inputs from one or more environmental monitoring devices external to device 210. In the embodiment depicted in
Device 210 may comprise one or more network interfaces 212A, 212B, 212C, which may be referred to collectively herein by reference numeral 212. Network interfaces 212 provide a communication interface to one or more external communication networks. By way of example, network interface 212A may provide an interface to a wired network 260A such as an Ethernet, while network interfaces 212B, 212C provide interfaces to wireless networks 260B, 260C, respectively. Wireless networks 260B, 260C may be implemented, e.g., as WiFi network which operate pursuant to an IEEE 802.11.x standard, WiMAX networks, or cellular networks. The particular communication standard pursuant to which the wireless networks 260B, 260C operate is not critical.
Device 210 may further include one or more communication buses to provide communication with external devices 280, or a host computer 282 or external sensor 284. In the embodiment depicted in
In some embodiments the processor 218 executes logic instructions which establish a web-based interface to the various sensors 230 on the device 210. By way of example, the processor 218 may implement a Device(s) Profile for Web Services (DPWS) interface to provide for discovery and communication capabilities for the various sensors 230 on device 210.
As mentioned above, in practice, the processor 218 may implement a DPWS protocol module to provide DPWS functionality. Thus, in operation, the device 210 may function as a DPWS server to provide web-based access to services and information provided by sensors 230 on the device 210 and information collected from external devices such as current sensors 272, 274, accelerometers 276, 278, and other external devices 270. Aspects of the DPWS interface will be explained with reference to
Referring to
One skilled in the art will recognize that the interface 500 enables a user to discover networked devices and capabilities thereof, and to collect and manipulate data from the sensors without possessing specific knowledge of operational characteristics of the device or communication protocols pursuant to which the device operates. Data may be collected, processed and stored using simple drag and drop techniques that present a pictorial model of the data processing environment. The graphical depiction of the window 520 may be stored in a storage medium.
Sensor nodes 612 are communicatively coupled to a directory service module 620. In some embodiments directory service module 620 discovers and maintains a directory of networked devices on sensor nodes 612. The directory is made accessible to clients 662. An application composition GUI 630 is communicatively coupled to directory service 620 and provides a service to permit users to construct applications, e.g., using the graphical techniques described with reference to
In the foregoing discussion, specific implementations of exemplary processes have been described, however, it should be understood that in alternate implementation, certain acts need not be performed in the order described above. In alternate embodiments, some acts may be modified, performed in a different order, or may be omitted entirely, depending on the circumstances. Moreover, in various alternate implementations, the acts described may be implemented by a computer, controller, processor, programmable device, firmware, or any other suitable device, and may be based on instructions stored on one or more computer-readable media or otherwise stored or programmed into such devices (e.g. including transmitting computer-readable instructions in real time to such devices). In the context of software, the acts described above may represent computer instructions that, when executed by one or more processors, perform the recited operations. In the event that computer-readable media are used, the computer-readable media can be any available media that can be accessed by a device to implement the instructions stored thereon.
While various embodiments have been described, those skilled in the art will recognize modifications or variations which might be made without departing from the present disclosure. The examples illustrate the various embodiments and are not intended to limit the present disclosure. Therefore, the description and claims should be interpreted liberally with only such limitation as is necessary in view of the pertinent prior art.
Number | Name | Date | Kind |
---|---|---|---|
7609205 | Haskell | Oct 2009 | B2 |
7911338 | Naeve et al. | Mar 2011 | B2 |
8174378 | Richman et al. | May 2012 | B2 |
8274783 | Polizzotto et al. | Sep 2012 | B2 |
8576073 | Mooring et al. | Nov 2013 | B2 |
20020013538 | Teller | Jan 2002 | A1 |
20040225955 | Ly | Nov 2004 | A1 |
20050275527 | Kates | Dec 2005 | A1 |
20070100479 | Ahmed | May 2007 | A1 |
20070103292 | Burkley et al. | May 2007 | A1 |
20070103319 | Pedraza et al. | May 2007 | A1 |
20070222585 | Sabol et al. | Sep 2007 | A1 |
20070252692 | Wallace et al. | Nov 2007 | A1 |
20070288849 | Moorer et al. | Dec 2007 | A1 |
20080030345 | Austin et al. | Feb 2008 | A1 |
20080036591 | Ray | Feb 2008 | A1 |
20080246629 | Tsui et al. | Oct 2008 | A1 |
20080249654 | Pedraza et al. | Oct 2008 | A1 |
20080297365 | Welles et al. | Dec 2008 | A1 |
20090100422 | Abe | Apr 2009 | A1 |
20090195497 | Fitzgerald et al. | Aug 2009 | A1 |
20090302996 | Rhee et al. | Dec 2009 | A1 |
20100039284 | Hall et al. | Feb 2010 | A1 |
20100123572 | Thubert et al. | May 2010 | A1 |
20100127880 | Schechter et al. | May 2010 | A1 |
20100261465 | Rhoads et al. | Oct 2010 | A1 |
20100286490 | Koverzin | Nov 2010 | A1 |
20110035271 | Weaver et al. | Feb 2011 | A1 |
20120131217 | Delorme et al. | May 2012 | A1 |
20120223830 | Tyler | Sep 2012 | A1 |
20120313791 | Mehta | Dec 2012 | A1 |
20120319838 | Ly et al. | Dec 2012 | A1 |
Number | Date | Country |
---|---|---|
0101366 | Jan 2001 | WO |
2008016339 | Feb 2008 | WO |
Entry |
---|
PCT International Search Report mailed Aug. 6, 2012. |
Number | Date | Country | |
---|---|---|---|
20120319838 A1 | Dec 2012 | US |