1. Field of the Invention
The present invention relates to an electrical apparatus having an electronic device with its energy flow controlled by switches.
2. Background Art
Switches are typically electrically controlled two-state devices that open and close contacts to effect operation of devices in an electrical or optical circuit. Relays, for example, typically function as switches that activate or deactivate portions of electrical, optical or other devices. Relays are commonly used in many applications including telecommunications, radio frequency (RF) communications, portable electronics, consumer and industrial electronics, aerospace, and other systems. More recently, optical switches (also referred to as “optical relays” or simply “relays” herein) have been used to switch optical signals (such as those in optical communication systems) from one path to another.
While conventional relays are mechanical or solid-state devices, recent developments in micro-electro-mechanical systems (MEMS) technologies and microelectronics manufacturing have made new types of micro electrostatic and micromagnetic relays possible. Such micromagnetic relays typically include an electromagnet that energizes an armature to make or break an electrical contact. When the magnet is de-energized, a spring or other mechanical force typically restores the armature to a quiescent position. Such relays typically exhibit a number of marked disadvantages, however, in that they generally exhibit only a single stable output (i.e., the quiescent state) and they are not latching (i.e., they do not retain a constant output as power is removed from the relay). Moreover, the spring required by conventional micromagnetic relays may degrade or break over time.
Non-latching micromagnetic relay switches are known. Such relays include a permanent magnet and an electromagnet for generating a magnetic field that intermittently opposes the field generated by the permanent magnet. The replay must consume power in the electromagnet to maintain at least one of the output states. Moreover, the power required to generate the opposing field would be significant, thus making the relay less desirable for use in space, portable electronics, and other applications that demand low power consumption.
The basic elements of a micromagnetic latching switch include a permanent magnet, a substrate, a coil, and a cantilever at least partially made of soft magnetic materials. In its optimal configuration, the permanent magnet produces a static magnetic field that is relatively perpendicular to the horizontal plane of the cantilever. However, the magnetic field lines produced by a permanent magnet with a typical regular shape (disk, square, etc.) are not necessarily perpendicular to a plane, especially at the edge of the magnet. Then, any horizontal component of the magnetic field due to the permanent magnet can either eliminate one of the bistable states or greatly increase the current that is needed to switch the cantilever from one state to the other. Careful alignment of the permanent magnet relative to the cantilever so as to locate the cantilever in the right spot of the permanent magnet field (usually near the center) will permit bi-stability and minimize switching current. Nevertheless, high-volume production of the switch can become difficult and costly if the alignment error tolerance is small.
A bi-stable, latching switch that has a very low series resistance value and that does not require power to hold the state is therefore desired. Such a switch should also be reliable, simple in design, low-cost and easy to manufacture, and should be useful in optical and/or electrical environments.
The latching micromagnetic switch of the present invention can be used in a plethora of products including household and industrial appliances, consumer electronics, military hardware, medical devices and vehicles of all types, just to name a few broad categories of goods. The latching micromagnetic switch of the present invention has the advantages of compactness, simplicity of fabrication, and has good performance at high frequencies.
Embodiments of the present invention provide an apparatus including a circuit and a latching micromagnetic switch that controls energy flow through the circuit. The latching micromagnetic switch includes a cantilever, a permanent magnet, and a coil configured to latch the latching micromagnetic switch in one of two positions each time energy passes through the coil. The circuit can be a transistor or an array of transistors connected in parallel. If the circuit is an array of transistors, there can be an array of the switches, where each one of the switches is coupled to a corresponding one of the transistors. The switches are coupled to at least one of a source, drain, or gate of the corresponding transistor.
In some embodiments, the electrical device and the latching micromagnetic switch are integrated on a same substrate.
In some other embodiments, the electrical device and the latching micromagnetic switch are located on separate substrates and coupled together.
An advantage of embodiments of the present invention is that they provide a bi-stable, latching switch that has a very low impedance value and that does not require power to hold the states.
Further embodiments, features, and advantages of the present inventions, as well as the structure and operation of the various embodiments of the present invention, are described in detail below with reference to the accompanying drawings.
The accompanying drawings, which are incorporated herein and form a part of the specification, illustrate the present invention and, together with the description, further serve to explain the principles of the invention and to enable a person skilled in the pertinent art to make and use the invention.
FIGS. 5A-C show extracted horizontal components (Bx) of the magnetic flux in
The present invention will now be described with reference to the accompanying drawings. In the drawings, like reference numbers indicate identical or functionally similar elements. Additionally, the left-most digit(s) of a reference number identifies the drawing in which the reference number first appears.
Introduction
It should be appreciated that the particular implementations shown and described herein are examples of the invention and are not intended to otherwise limit the scope of the present invention in any way. Indeed, for the sake of brevity, conventional electronics, manufacturing, MEMS technologies and other functional aspects of the systems (and components of the individual operating components of the systems) may not be described in detail herein. Furthermore, for purposes of brevity, the invention is frequently described herein as pertaining to a micro-electronically-machined relay for use in electrical or electronic systems. It should be appreciated that many other manufacturing techniques could be used to create the relays described herein, and that the techniques described herein could be used in mechanical relays, optical relays or any other switching device. Further, the techniques would be suitable for application in electrical systems, optical systems, consumer electronics, industrial electronics, wireless systems, space applications, or any other application.
The terms, chip, integrated circuit, monolithic device, semiconductor device, and microelectronic device, are often used interchangeably in this field. The present invention is applicable to all the above as they are generally understood in the field.
The terms metal line, interconnect line, trace, wire, conductor, signal path and signaling medium are all related. The related terms listed above, are generally interchangeable, and appear in order from specific to general. In this field, metal lines are sometimes referred to as traces, wires, lines, interconnect or simply metal. Metal lines, generally gold (Au), aluminum (Al), copper (Cu) or an alloy of Al and Cu, are conductors that provide signal paths for coupling or interconnecting, electrical circuitry. Conductors other than metal are available in microelectronic devices. Materials such as doped polysilicon, doped single-crystal silicon (often referred to simply as diffusion, regardless of whether such doping is achieved by thermal diffusion or ion implantation), titanium (Ti), molybdenum (Mo), and refractory metal suicides are examples of other conductors.
The terms contact and via, both refer to structures for electrical connection of conductors from different interconnect levels. These terms are sometimes used in the art to describe both an opening in an insulator in which the structure will be completed, and the completed structure itself. For purposes of this disclosure contact and via refer to the completed structure.
The term vertical, as used herein, means substantially orthogonal to the surface of a substrate. Moreover, it should be understood that the spatial descriptions (e.g., “above”, “below”, “up”, “down”, “top”, “bottom”, etc.) made herein are for purposes of illustration only, and that practical latching relays can be spatially arranged in any orientation or manner.
The above-described micromagnetic latching switch is further described in international patent publications WO0157899 (titled Electronically Switching Latching Micromagnetic Relay And Method of Operating Same), and WO0184211 (titled Electronically Micromagnetic latching switches and Method of Operating Same), to Shen et al. These patent publications provide a thorough background on micromagnetic latching switches and are incorporated herein by reference in their entirety. Moreover, the details of the switches disclosed in WO0157899 and WO0184211 are applicable to implement the switch embodiments of the present invention as described below.
Overview of a Latching Switch
Magnet 102 is any type of magnet such as a permanent magnet, an electromagnet, or any other type of magnet capable of generating a magnetic field H0 134, as described more fully below. By way of example and not limitation, the magnet 102 can be a model 59-P09213T001 magnet available from the Dexter Magnetic Technologies corporation of Fremont, Calif., although of course other types of magnets could be used. Magnetic field 134 can be generated in any manner and with any magnitude, such as from about 1 Oersted to 104 Oersted or more. The strength of the field depends on the force required to hold the cantilever in a given state, and thus is implementation dependent. In the exemplary embodiment shown in
Substrate 104 is formed of any type of substrate material such as silicon, gallium arsenide, glass, plastic, metal or any other substrate material. In various embodiments, substrate 104 can be coated with an insulating material (such as an oxide) and planarized or otherwise made flat. In various embodiments, a number of latching relays 100 can share a single substrate 104. Alternatively, other devices (such as transistors, diodes, or other electronic devices) could be formed upon substrate 104 along with one or more relays 100 using, for example, conventional integrated circuit manufacturing techniques. Alternatively, magnet 102 could be used as a substrate and the additional components discussed below could be formed directly on magnet 102. In such embodiments, a separate substrate 104 may not be required.
Insulating layer 106 is formed of any material such as oxide or another insulator such as a thin-film insulator. In an exemplary embodiment, insulating layer is formed of Probimide 7510 material. Insulating layer 106 suitably houses conductor 114. Conductor 114 is shown in
Cantilever (moveable element) 112 is any armature, extension, outcropping or member that is capable of being affected by magnetic force. In the embodiment shown in
Alternatively, cantilever 112 can be made into a “hinged” arrangement (such as that described below in conjunction with
Contact 108 and staging layer 110 are placed on insulating layer 106, as appropriate. In various embodiments, staging layer 110 supports cantilever 112 above insulating layer 106, creating a gap 116 that can be vacuum or can become filled with air or another gas or liquid such as oil. Although the size of gap 116 varies widely with different implementations, an exemplary gap 116 can be on the order of 1-100 microns, such as about 20 microns, Contact 108 can receive cantilever 112 when relay 100 is in a closed state, as described below, Contact 108 and staging layer 110 can be formed of any conducting material such as gold, gold alloy, silver, copper, aluminum, metal or the like. In various embodiments, contact 108 and staging layer 110 are formed of similar conducting materials, and the relay is considered to be “closed” when cantilever 112 completes a circuit between staging layer 110 and contact 108. In certain embodiments wherein cantilever 112 does not conduct electricity, staging layer 110 can be formulated of non-conducting material such as Probimide material, oxide, or any other material. Additionally, alternate embodiments may not require staging layer 110 if cantilever 112 is otherwise supported above insulating layer 106.
Principle of Operation of a Micromagnetic Latching Switch
When it is in the “down” position, the cantilever makes electrical contact with the bottom conductor, and the switch is “on” (also called the “closed” state). When the contact end is “up”, the switch is “off” (also called the “open” state). These two stable states produce the switching function by the moveable cantilever element. The permanent magnet holds the cantilever in either the “up” or the “down” position after switching, making the device a latching relay. A current is passed through the coil (e.g., the coil is energized) only during a brief (temporary) period of time to transition between the two states.
(i) Method to Produce Bi-Stability
The principle by which bi-stability is produced is illustrated with reference to
(ii) Electrical Switching
If the bidirectional magnetization along the easy axis of the cantilever arising from H0 can be momentarily reversed by applying a second magnetic field to overcome the influence of (H0), then it is possible to achieve a switchable latching relay. This scenario is realized by situating a planar coil under or over the cantilever to produce the required temporary switching field. The planar coil geometry was chosen because it is relatively simple to fabricate, though other structures (such as a wraparound, three-dimensional type) are also possible. The magnetic field (Hcoil) lines generated by a short current pulse loop around the coil. It is mainly the ζ-component (along the cantilever, see
The operation principle can be summarized as follows: A permalloy cantilever in a uniform (in practice, the field can be just approximately uniform) magnetic field can have a clockwise or a counterclockwise torque depending on the angle between its long axis (easy axis, L) and the field. Two bistable states are possible when other forces can balance die torque. A coil can generate a momentary magnetic field to switch the orientation of magnetization (vector m) along the cantilever and thus switch the cantilever between the two states.
Relaxed Alignment of Magnets
To address the issue of relaxing the magnet alignment requirement, the inventors have developed a technique to create perpendicular magnetic fields in a relatively large region around the cantilever. The invention is based on the fact that the magnetic field lines in a low permeability media (e.g., air) are basically perpendicular to the surface of a very high permeability material (e.g., materials that are easily magnetized, such as permalloy). When the cantilever is placed in proximity to such a surface and the cantilever's horizontal plane is parallel to the surface of the high permeability material, the above stated objectives can be at least partially achieved. The generic scheme is described below, followed by illustrative embodiments of the invention.
The boundary conditions for the magnetic flux density (B) and magnetic field (H) follow the following relationships:
If μ1>>μ2, the normal component of H2 is much larger than the normal component of H1, as shown in
FIGS. 5A-C show the extracted horizontal components (Bx) of the magnetic flux along cut-lines at various heights (y=−75 mm, −25 mm, 25 mm . . . ). From the top to bottom (a1-b1-c1), the right-hand figures correspond to case (a) a single permanent magnet, (b) a permanent magnet with a high-permeability magnetic layer (thickness t=100 mm), and another case where the high-permeability magnetic layer thickness is t=25 mm. In (a1) without the high-permeability magnetic layer, we can see that Bx increases rapidly away from the center. In (b1), Bx is reduced from (a1) due to the use of the high-permeability magnetic layer. A thinner high-m layer (c1) is less effective as the thicker one (b1).
This property, that the magnetic field is normal to the boundary surface of a high-permeability material, and the placement of the cantilever (soft magnetic) with its horizontal plane parallel to the surface of the high-permeability material, can be used in many different configurations to relax the permanent magnet alignment requirement.
The above cases are provided as examples to illustrate the use of high-permeability magnetic materials in combination with permanent magnets to produce magnetic fields perpendicular to the horizontal plane of the cantilever of the micromagnetic latching switches. Different variations (multiple layers, different placements, etc.) can be designed based on this principle to accomplish the goal of relaxing the alignment of the permanent magnet with the cantilever to make the switch bistable (latching) and easy (low current) to switch from one state to the other.
In another embodiment pf the present invention, the switch system comprises micromagnetic cantilevers, electromagnets (S-shape or single-line coils), permanent magnetic and soft magnetic layer in parallel to provide an approximate uniform magnetic field distribution, single-pole double-throw (SPDT) schemes, and transmission line structures suitable for radio frequency signal transmissions.
For the best performance, the cantilever centerline (which may not be the same as the hinge line) should be located approximately near the center of the magnet, i.e., the two distances from the edge (w1 and w2) are approximately equal. However, the cantilever centerline can also be located away from the center of the magnets and the device will still be functional. The S-shape coil produces the switching magnetic field to switch the cantilever from one state to the other by applying positive or negative current pulses into the coil. In the figure, the effective coil turn number under the cantilever is 5. However, the coil turn number n can be any arbitrary positive integer number (1≦n≦∞). When the turn number is one, it means there is just a single switching metal line under the cantilever. This is very useful design when the device size is scaled down. In addition, multilayer coil can also be used to strengthen the switching capability. This can be done by adding the successive coil layers on top of the other layer(s). Coil layers can be spaced by the in-between insulator and connected through the conducting vias.
The permanent magnetic field holds (latches) the cantilever to either state. When the cantilever toggles to the right, the cantilever's bottom conductor (e.g., Au) touches the bottom contacts and connects the signal line 1. In this case, the signal line 2 is disconnected. On the other hand, when the cantilever toggles to the left, the signal line 2 is connected and signal line 1 is disconnected. It forms a SPDT latching switch. Although in the figure, the widths of the magnet and permalloy layer on substrate are same, in reality, they can be different. The width of the magnet can either be larger or smaller than the width of the permalloy layer.
Application Specific Uses of Latching Micromagnetic Switches
Many goods comprising electrical or electronic-related devices employ discrete components made of conductive traces disposed on some form of a substrate. The latching micromagnetic switches 100 of the present invention can be used to change various characteristics of such conductive traces, or simply connect or couple them together. By way of example, but not limitation, the latching micromagnetic switch of the present invention can be used to adjust, select, switch, couple, or otherwise reconfigurable (e.g., digitally tune) many types of devices or conductive traces. For purposes of this description and the accompanying claims, the term “conductive trace” means any metal, metal alloy, semiconductor (e.g., doped or not doped) or other conductive material formed or otherwise patterned on a substrate, as would also become apparent to a person skilled in the art based on the teachings herein. The terms “microstrip” and conductive trace are used interchangeably herein.
General Apparatus Using the Switches
Also, as discussed above, the latching micromagnetic switches can either be integrated on a same substrate as an electrical device being controlled or can be non-integrated and located on a separate substrate from the electrical device being controlled. This allows for pre-existing devices to use the switches, while also allowing for new devices to integrate the switches to reduce the size of the overall apparatus.
Power transistors (e.g., 1104 or 1204) operate at their optimum gain or optimum efficiency under very specific bias and drive levels. In an embodiment where an apparatus (e.g., 1100 or 1200) is in a (transmitter) power amplifier application, transistor size is chosen to provide maximum gain or the maximum required output power at the best possible power-added efficiency. According to embodiments of the present invention, a power amplifier (e.g., 1102 or 1202), which can be used in a transmitter (e.g., 1100 or 1200), can be made to operate at a maximum power-added efficiency at a number of different power levels by switching ON or OFF an appropriate number of parallel transistors or transistor cells (e.g., 1104 or 1204). In embodiments requiring maximum output power, all switches (e.g., 1112 or 1212) would be closed. In embodiments requiring minimum output power, only one of the switches (e.g., 1112 or 1212) would be closed. In embodiments when the power amplifier is idling, all the switches could be open to eliminate all direct current (D.C.) power dissipation.
In the above-described embodiments, if a failure occurs in a single cell in a transistor (e.g., 1112, 1212, or 1214) the failed cell could be isolated and the power amplifier could continue to operate at a reduced output power level. This allows for reliability, and thus redundancy, in a power amplifier.
Other HighQ Switching Applications
Latching micromagnetic switches of the present invention can be used in high redundancy RF circuit applications to switch-in redundant components to replace failed components. Another area in which the latching micromagnetic switches of the present invention can be used is in RF switch arrays for a testing apparatus. Once a probe is connected to a device under test, various tests can be performed by switchably connecting various different test modules/circuits using an array of micromagnetic latches according to the present invention.
The latching micromagnetic switches of the present invention can be used in communications switch applications, such as in cross-point switches. Public switch network switches and private branch exchange switches can be implemented using cross-point switches comprising latching micromagnetic switches. Both optical-to-electrical-to-optical (OEO) and all optical cross-point switch can employ latching micromagnetic switches.
Repeaters exist for receiving EM (electromagnetic) information signals, optionally performing signal conditioning or processing (amplification, filtering, frequency translation, etc.) on the received signals, and re-transmitting the conditioned signals at same or different frequencies. Repeaters suffer from the disadvantage of being relatively expensive in terms of cost and power consumption. Conventional wireless communications circuitry is complex and has a large number of circuit parts. Higher part counts result in higher power consumption, which is undesirable, particularly in battery powered repeater units. A latching micromagnetic switch according to the present invention can reduce power consumption in such repeaters.
High sensitivity, low noise amplifiers can also benefit by incorporating latching micromagnetic switches. In this embodiment, a selectable number of output devices (e.g., transistors) can be used to adjust or optimize the amplifier output power. Gate and/or drain switching can be performed by latching micromagnetic switches to achieve a highQ, low noise signal.
Latching micromagnetic switches can also be used as switching elements in each pixel of an image projector. A dense array of mirrored cantilevered switches can be used to project bright light or filtered light of much higher intensity than permitted by conventional LCD projectors. The latching micromagnetic switches of the present invention can withstand switching speeds well in excess of the frequency required for image projection.
The low-power dissipation of the latching micromagnetic switches of the present invention can have benefits in power management and relay circuits in many fields. An example field is automotive applications, such as sensor switching and higher power switching using parallel latching micromagnetic switches.
Latching micromagnetic switches can be used in conjunction with a magnetic key to implement a reconfigurable relay lock. A key can be fabricated by arranging several to hundreds of miniature magnets in a physically, programmed array fashion. A cooperative lock mechanism to receive the key can be formed of an array of latching micromagnetic switches to read the programmed array of miniature magnets to unlock any manner of device, circuit or hardware component (e.g., a door). The key can be configured as a flat rectangular card, or can take-on a variety of physical shapes, as would also become apparent to a person skilled in the art. The lock can be digitally controlled to facilitate a programmable code.
Another security approach is to simply group switches together in a combinational logic circuit that would require actuation of the given combination of switches to pass a signal.
Other applications for latching micromagnetic switches include cable modems, TV tuners and smart circuit breakers.
The corresponding structures, materials, acts and equivalents of all elements in the claims below are intended to include any structure, material or acts for performing the functions in combination with other claimed elements as specifically claimed. Moreover, the steps recited in any method claims may be executed in any order. The scope of the invention should be determined by the appended claims and their legal equivalents, rather than by the examples given above. Finally, it should be emphasized that none of the elements or components described above are essential or critical to the practice of the invention, except as specifically noted herein.
This application is a continuation of U.S. Ser. No. 10/156,764, filed May 9, 2002, which claims priority under 35 U.S.C. §119(e) to U.S. Provisional Patent Application No. 60/293,515, filed May 29, 2001, which are both incorporated by reference herein in their entireties. The application is related to (2040.0010002) U.S. application Ser. No. 10/147,918, filed May 20, 2002, and entitled “Apparatus Utilizing Latching Micromagnetic Switches,” which is incorporated by reference herein in its entirety.
Number | Date | Country | |
---|---|---|---|
60293515 | May 2001 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 10156764 | May 2002 | US |
Child | 11060573 | Feb 2005 | US |