The present invention generally relates to a transport apparatus, and more specifically to a transport apparatus for transporting people, including patients, that provides multiple functions and that can be configured as a chair or an emergency cot. While the term patient is used herein it should construed broadly to encompass not only people undergoing medical treatment, but also people who simply need help or assistance for medical or non-medical reasons.
Patients are handled by a wide range of transport apparatuses or equipment, each with its own functionality. For example, transport apparatuses or equipment may include stair chairs, both powered and non-powered, cots, stretchers, and the like. Each has a configuration that is suited to the particular need of the caregiver or attendant. For example, when a patient needs to transported down stairs, the stair chair has a chair-like configuration and may include a treaded track to help lowering the patient down stairs. A cot on the other hand typically has a generally horizontal deck to support a patient in a supine position. However, when handling a patient, the patient often needs to be transferred from one support to another support, which can add stress to the patient and also to the handlers or caregivers.
The present invention provides a transport apparatus that may be configured between a chair configuration, such as a stair chair, and a cot. The present invention also provides a transport apparatus with a compact lift mechanism that can be used to raise the deck of the transport apparatus and further tilt the deck while allowing independent articulation of the foot and head sections of the deck. The transport apparatus of the present invention also provides a stair chair with a caster track transition to facilitate handling of the patient.
In one form of the invention, the transport apparatus includes base, a back for supporting a patient, a deck having a head end and a foot end, a lift mechanism supporting the deck on the base, with the lift mechanism a central pivot axis about which the lift mechanism collapses or extends to lower or raise the deck. Further, the transport apparatus has center gravity extending through the central pivot axis of the lift mechanism when the deck is in a fully raised position and which is off-set toward the head end of the deck when the deck is a lowered position.
In one aspect, the lift mechanism comprises an X-frame lift mechanism.
In another aspect, the X-frame comprises first and second X-frames with each of the X-frames having upper ends and lower ends and with the upper ends of the first X-frame pivotally coupled to the lower ends of the second frame.
In addition, each of the first and second X-frames may have telescoping legs. For example, the upper ends of the second X-frame may be provided by its respective telescoping legs. In addition, the lower ends of the first X-frame may be provided by its respective telescoping legs. In this manner, the telescoping legs allow the X-frames to vary the angle of the deck to thereby tilt the deck relative to the base.
In another aspect, the deck comprises an articulatable deck having a head section, a seat section, and a foot section with a lift mechanism coupled with the seat section, with the head and foot sections independently articulatable with respect to the deck section and the lift mechanism.
Further, in any of the above transport apparatuses, the deck section may include a head section or foot section with the head section or foot section including telescoping portions thereby extending the length of the deck.
Further in any of the above, the deck section may include a seat section, a head section, and a foot section, with at least one section comprising a perimeter frame and a pad supported by the frame, wherein the pad is exposed on both sides of the section.
In a further aspect, each section comprises a perimeter frame and a pad supported by each perimeter frame, wherein the pads are exposed on both sides of each section.
For example, the pad may comprise a core cushioning member and a base supporting said cushioning member, with both the base and cushioning member enveloped in a cover, such as a liquid impermeable cover, such as vinyl.
In another form of the invention, the transport apparatus includes a base, a deck for supporting the patient, with the deck having a seat section, a head section articulatable relative to the seat section, and a foot articulatable relative to the seat section. The lift mechanism supports the deck on the base, and includes an X-frame with telescoping legs at one end. The lift mechanism is mounted to the seat section wherein the head section and foot section are each independently articulatable with respect to the deck section and the lift mechanism. Further, the lift mechanism is operable to tilt the seat section to thereby tilt the deck.
In one form, the X-frame comprises first and second X-frames with each of the X-frames having upper ends and lower ends with the upper ends of the first X-frame pivotally coupled to the lower ends of the second X-frame.
For example, each of the first and second X-frames may have telescoping legs. Further, the upper ends of the second X-frame may be provided by its respective telescoping legs.
In another aspect, the head section, foot section, and the seat section are reconfigurable between a generally horizontal configuration to form a cot configuration, and a folded configuration wherein the head section is generally vertical relative to the seat section and the foot section is generally vertical relative to the seat section to form a chair configuration.
In any of the above, the base may include a plurality of casters.
Further, in any of the above, the base may include a track.
When the base includes both the track and the casters, the casters may be mounted for movement between a ground engaging position and a non-grounding engaging position to allow the track to engage the ground.
In another aspect, the transport apparatus further includes a drive train for driving the transport apparatus relative to the ground (or stairs). For example, the drive train may drive a track or may drive a removably mounted pair of wheels.
In another form of the invention, a transport apparatus includes a base, a deck for supporting the patient, a lift mechanism for supporting the deck on the base, and an electrically powered device at the transport apparatus. The transport apparatus also includes a wireless user actuatable device at the transport apparatus for controlling the electrically powered device. For example, the electrically powered device may comprise a drive mechanism, for example, to drive a track mounted to the base or for raising or lowering the lift mechanism.
In another aspect, the deck has a seat section, a head section articulatable relative to the seat section and a foot section articulatable relative to the seat section when the drive mechanism is operable to the move the head section or the foot section.
In addition, the present invention provides a transport apparatus that has a first configuration to provide a first functionality and which may be reconfigured to a second configuration to provide a second functionality.
In one form of the invention, a transport apparatus system includes a first wheeled base for forming a part of a first transport apparatus, a litter deck for supporting a patient, the deck having a seat section and an articulatable head or foot section and movably supported with respective to the first base to thereby form the support surface for the first transport apparatus. A second wheeled base is provided for forming a part of a second transport apparatus, with the litter deck releasably mounted with respective to the first base and transferable to the second base and configured to be releasably mounted with respective to the second base to thereby form the support surface for the second transport apparatus.
In one aspect, the transport apparatus system further includes a lifting mechanism for moving the litter deck relative to the first base when mounted with respective to the first base.
In addition, the lifting mechanism may comprise first and second pairs of X-frames, each of the pairs of X-frames having upper ends and lower ends, with the upper ends of the first pair of X-frames pivotally coupled to respective lower ends of the second pair of X-frames.
Optionally, each of the first and second pairs of X-frames may have telescoping legs wherein the lifting mechanism can tilt the deck with respect to the first base.
In another aspect, the second transport apparatus may comprise a stair chair.
In yet another aspect, the first transport apparatus may comprise a cot, and comprise a cot reconfigurable between a chair and a cot.
Further, in any of the above transport apparatuses, the deck section may include a head section or foot section with the head section or foot section including telescoping portions thereby extending the length of the deck. In addition, the deck may have articulatable head and foot sections.
Further, in any of the above first transport apparatuses, the deck may comprise an articulatable deck having an articulatable head section and an articulatable foot section, with a lifting mechanism coupled to the seat section wherein the head and foot sections are each independently articulatable with respect to the deck section and the lift mechanism.
In another form of the invention, a transport apparatus includes wireless switches to allow control of the various accessories or drive mechanisms at the transport apparatus and further allow communication between the attachable devices.
In another form of the invention, a stair chair includes a wheeled base; a frame mounted to the base and supporting at least one track; and a seat section supported by the frame. A foot section is pivotally mounted adjacent an edge of the seat section, and a head section is pivotally mounted adjacent an opposed edge of the seat section.
In one aspect, the seat, foot, and head sections may be releasably mounted to the frame and are removable without disassembly.
In another aspect, the base may include a plurality of casters.
In another aspect, the seat, foot, and head sections may be removable independently.
In yet another aspect, the seat, foot, and head sections may be removable as an assembly.
According to yet another aspect, the stairs chair is collapsible into a configuration so that is can be mounted onto another frame to form a cot.
In yet another form of the invention, an emergency medical cot includes a base, a deck for supporting a patient having a seat section, a head section articulatable relative to the seat section, and a foot section articulatable relative to the seat section. The deck is releasably mounted at the cot and is removable without disassembly. A lifting mechanism supports the deck on the base, which is configured to adjust the angular orientation of the deck while allowing the head section and the foot section to be articulated relative to the seat section.
In one aspect, the lifting mechanism comprises first and second pairs of X-frames, each of the pairs of X-frames having upper ends and lower ends, with the upper ends of the first pair of X-frames pivotally coupled to respective lower ends of the second pair of X-frames.
In another aspect, each of the first and second pairs of X-frames has telescoping legs wherein the lifting mechanism can tilt the deck with respect to the first base.
In another form, a transport apparatus system includes a first wheeled base for forming a part of a first transport apparatus, a litter frame movably mounted to the first wheeled base, and a second wheeled base for forming a part of a second transport apparatus. A frame is mounted to the second base, and a litter deck is mounted to the litter frame for supporting a patient, the litter deck configured in chair configuration, the base, the frame and the deck being reconfigurable to lie in a generally horizontal configuration and adapted to be mounted to the litter frame to thereby form a transport apparatus surface for the first transport apparatus.
In addition, the transport apparatus system may further include a lifting mechanism for moving the litter frame relative to the first base.
In yet another aspect, the deck may have a seat section, and articulatable head and foot sections.
For example, the second transport apparatus may comprise a stair chair. And, the first transport apparatus may comprise a cot.
In one form, the lift mechanism may comprises an X-frame and further may comprise first and second X-frames with each of the X-frames having upper ends and lower ends with the upper ends of the first X-frame pivotally coupled to the lower ends of the second X-frame.
For example, each of the first and second X-frames may have telescoping legs. Further, the upper ends of the second X-frame may be provided by its respective telescoping legs.
In another aspect, the head section, foot section, and the seat section are reconfigurable between a generally horizontal configuration to form a cot configuration, and a folded configuration wherein the head section is generally vertical relative to the seat section and the foot section is generally vertical relative to the seat section to form a chair configuration.
In any of the above, each base may include a plurality of casters.
These and other objects, advantages, and features of the invention will be more fully understood and appreciated by reference to the description of the current embodiment and the drawings.
Before the embodiments of the invention are explained in detail, it is to be understood that the invention is not limited to the details of operation or to the details of construction and the arrangement of the components set forth in the following description or illustrated in the drawings. The invention may be implemented in various other embodiments and of being practiced or being carried out in alternative ways not expressly disclosed herein. Also, it is to be understood that the phraseology and terminology used herein are for the purpose of description and should not be regarded as limiting. The use of “including” and “comprising” and variations thereof is meant to encompass the items listed thereafter and equivalents thereof as well as additional items and equivalents thereof. Further, enumeration may be used in the description of various embodiments. Unless otherwise expressly stated, the use of enumeration should not be construed as limiting the invention to any specific order or number of components. Nor should the use of enumeration be construed as excluding from the scope of the invention any additional steps or components that might be combined with or into the enumerated steps or components.
Referring to
In another aspect, the transport apparatus may incorporate a releasable litter deck so that the deck may be removed for use as or on another transport apparatus. For example, the litter deck may be transferred to another transport apparatus frame or removed for replacement with another litter deck to thereby customize the transport apparatus. Or the litter may be configured to be removed and then unfolded into a chair configuration, such as a stair chair configuration. In this manner, apparatus 10 may provide increased versatility.
Referring again to
In the illustrated embodiment, lift mechanism 18 comprises a double X-frame lift mechanism with a pair of lower X-frames 18a and a pair of upper X-frames 18b, which are joined at their respective upper and lower ends by pivot connections 20a and 22a. The lower ends of lower X-frame members 18a are pivotally joined to base 16 with one of the lower ends being slidably, pivotally mounted to the base and the other pinned to the base. Similarly, the upper X-frame members are pivotally mounted to frame 14 with one upper end being slidably pivotally mounted and the other end pinned. In this manner, when the X-frames are pivoted about to their respective central pivot axes 20 and 22, frame 14, and hence deck 12, will be lowered or raised relative to base 16, as would be understood by those skilled in the art.
The unfolding and folding of the respective X-frames is provided by a driver 24, which is best illustrated in
Referring to
Foot section 30 may be pivotally mounted to frame 14 by way of a transverse shaft 30a, which is received in bushings 30b mounted to frame 14 and secured to the framework of section 30. The head section 28 may be pivotally mounted to the seat section 26 by a pivot shaft or the like, similarly mounted to the head section frame work. The articulatable sections of deck 12 may be manually moved or may be moved by actuators, such as electric actuators. When manually moved, the respective mounts may provide resistance or may incorporate a release mechanism, for example, which are released by handles or the like provided in the head section and/or foot section (such as a handle 30e of foot section 30 shown in
Each respective section of the deck may include a pad to thereby form a sectioned support surface for a patient. The respective pads are sized and configured (and gatched) such that the deck sections may be moved between the chair configuration as shown in
Seat section 26 optionally includes side rails 40 that are pivotally mounted about the opposed sides of seat section 26 to frame 14. Side rails 40 may each include a hand hold 42, and further may be provided with a pad 40a to provide cushioned lateral support to a patient supported on apparatus 10.
Side rails 40 are mounted in a generally vertical orientation relative to seat section 26 and may further be released from their generally vertical orientation to an angle relative to the support surface to increase the width of the deck, at least of the seat section of the deck. For example, side rails 40 may be configured to be tilted in a range from a generally vertical orientation, such as about 80-90 degrees relative to the patient deck at seat section 26 to an angle in a range from about 30-50 degrees relative to the seat section, and optionally no more than 45 degrees to avoid creating any instability issues.
In addition to seat sections and head sections, deck 12 may also incorporate extendible head and foot rests 44, 46 which may be mounted on telescoping tubes to thereby extend the length of the deck to accommodate taller patients. Telescoping tubes 44a and 46a may be moved manually, for example, by way of handles 44b and 46b. For example, the telescoping tubes 44a and 46a may provide resistance to movement of the respective head rest and foot rest (and provide infinite positioning between a fully extended position and retracted position) or may include detent mechanisms to provide defined positions for the respective rests. Alternately, the rests may be moved by actuators, such as electrically powered actuators.
Referring again to
As best seen in
As previously noted, transport apparatus 10 may be configured as a chair, and more particularly as a stair chair. In the illustrated embodiments, base 16 includes a track assembly 60. Track assembly 60 may be formed from a pair of continuous loops of treaded belt to form a pair of moving tracks 62, which are mounted about wheels 64, 66, and 68 to form generally triangular shaped pathways for the belts. A suitable belt has an inner drive tread and an outer drive tread. Wheels 64, 66, and 68 may be mounted directly to base 16 or may be mounted to a separate frame, which can then be mounted to base 16, which allows the whole track assembly to be removable.
As noted above, track assembly 60 may be powered. For example, as best seen in
Actuator 24 and motor 69 (or motors) may be controlled by controls mounted to apparatus 10 including, for example, a wireless motor control provided for example by a user interface 72. In the illustrated embodiment user interface 72 comprises a touch screen 74. User interface 72 may be incorporated into apparatus 10, for example, at the head section, or may be removably mounted such as shown in
In addition to controlling motor 69, user interface 72 may also control lighting provided about apparatus 10, described more fully below. Alternately, the lighting may be controlled by onboard circuitry and sensors, such as light sensors that detect the ambient lighting conditions and actuate the lights to provide better visibility of apparatus 10 (also as described below).
In some embodiments, the user interface may include a controller that forwards data to a location remote from the support, for example patient data and information, and optionally other data related to either the patient support or a device or other objects (e.g. medical devices, mattress, patients or caregivers wearing near field ID tags, or other items). Further, the controller may send data that indicates an association between the support and a device. The data may be forwarded wirelessly using a far field communications transceiver. For example, the recipient of the data may be a healthcare computer network, such as, but not limited to, an Ethernet. The controller may include a far field communications transceiver for example a WIFI device (IEEE 802.11) that forwards the data to the healthcare computer network. The data forwarded by the patient support to the healthcare network, in some instances, may include data indicative of the location of the patient support and/or the device. The controller may further be configured to determine an identity of the device by communicating with it through either near field or far field communication transceivers. A display of the interface 72 may display the identity of the device and/or information indicating the association between the device and the patient support. The user interface may include a keypad, one or more buttons, a touch screen, one or more switches, or the like, which is adapted to allow a user to select certain functions and also either accept a displayed association with the device or to override the displayed association.
In another embodiment, the controller may include a near field communication system that communicates in any of the manners, and with any of the devices, disclosed in commonly assigned U.S. patent application Ser. No. 13/802,992, filed Mar. 14, 2013 by applicants Michael Hayes et al, and entitled COMMUNICATION SYSTEMS FOR PATIENT SUPPORT APPARATUSES, which is which is incorporated by reference herein in its entirety and commonly owned by Stryker Corporation of Kalamazoo, Mich. Such a near field communications transceiver can be used for establishing associations between the patient support and a device or other objects (e.g. medical devices, mattress, patients or caregivers wearing near field ID tags, or other items). For example, in some embodiments, near field communications may be used as a proxy for determining associations amongst wirelessly communicating devices due to the limited physical range of the near field communications. In other words, if two devices are able to communicate with each other using near field communication, they must be located within a certain relatively close range, and given that close range, a determination can be made as to whether the devices are likely associated with each other or not. In still other embodiments, the far field communication is incorporated into the patient support, either alone or in combination with the near field communication, and used for determining associations and/or for communicating data at a rate higher than what is possible using near field communications.
Interface 72 may also be configured to communicate with other devices, such as any of the devices disclosed in commonly assigned U.S. patent application Ser. No. 13/570,934 filed Aug. 9, 2012, by applicants Michael Hayes et al. and entitled PATIENT SUPPORT APPARATUS WITH IN-ROOM DEVICE COMMUNICATION, the complete disclosure of which is hereby incorporated herein by reference and commonly owned by Stryker Corporation of Kalamazoo, Mich. For further details of user interface 72 reference is made to copending application Ser. No. 61/781,308, entitled CONFIGURABLE PATIENT SUPPORT, filed on even date herewith, which is incorporated by reference herein in its entirety and commonly owned by Stryker Corporation of Kalamazoo, Mich.
In addition, apparatus 10 may incorporate a computer (e.g. at interface 72) that acts as a thin client for at least one network service, thereby enabling upgrades, modifications, improvements, and customizations of the one or more functions performed by apparatus 10.
Apparatus 10 may also incorporate sensors to detect the orientation of the support and/condition or status of a patient or devices at the support. The network service may then also provide information, algorithms, data processing, and/or other features for apparatus 10 that relate to such features as: monitoring patient activity, providing patient care assessments, implementing a patient care protocol, monitoring maintenance needs, and analyzing sensor data.
In still other embodiments, the patient support may be configured to act as a wireless hotspot for providing Internet access to one more mobile devices, including, but not limited to, other patient support apparatuses, smart phones, computer tablets, and medical devices. In this manner, information may be downloaded to the support from, for example, at a remote location, such as a hospital, or vice versa—information at the support can be uploaded to a hospital, such as an emergency room in advance of the patient arriving at the hospital. For further details of suitable communication, reference is made to co-pending patent application Ser. No. 61/790,823, filed on Mar. 15, 2013, entitled PATIENT SUPPORT APPARATUS WITH REMOTE COMMUNICATIONS. Other suitable communication systems are also described in co-pending patent application Ser. No. 61/791,117, filed on Mar. 15, 2013, entitled PATIENT SUPPORT APPARATUS WITH PATIENT INFORMATION SENSORS, both of which are incorporated by reference herein in their entireties and commonly owned by Stryker Corporation of Kalamazoo, Mich.
Referring to
As best seen in
As best seen in
As noted above, apparatus 10 may incorporate a plurality of lights to provide various functions. For example, apparatus 10 may include lights to provide lighting when the support is used in a low ambient light condition, to provide increased visibility of apparatus 10, or simply to provide enhanced visibility for the emergency medical staff, for example, to indicate where the side rails are and further where the head section is so that the attendants can quickly locate and, when needed, maneuver sections of the support.
For example, referring to
Referring again to
Additional controls may be provided in handles 100, which are mounted to frame 14. For example, handles 100 may be pivotally mounted to frame 14 to allow handles 100 to be moved between operative positions where the handles may be pushed or pulled on to move transport apparatus 10 or a stored position, such as shown in
Referring now to
To increase maneuverability of apparatus 10, apparatus 10 optionally includes auxiliary wheels 110, which may be mounted such as shown in
Referring to
As would be understood, the transport apparatus may include an articulatable deck to allow the transport apparatus to be configured between a chair configuration and cot configuration and further optionally includes a lift mechanism, which is configured to tilt the deck with the deck is in its cot configuration. The chair may be configured as stair chair with tracks or may have the tracks removed and used as a trackless chair. The lift mechanism may have a compact configuration, which can provide a great range of motion and further may allow the deck to be lowered to a low height of less than 14, less than 13″ and as low as 12″. Further, the lift mechanism allows the deck to tilt even when in its chair configuration to provide a more comfortable sitting arrangement for a person supported on the transport apparatus. In addition, with the dual X-frame configuration the foot section can be lowered into a chair position even when said X-frames are in a lowered position. For example, the X-frames as shown may be configured to remain in a footprint defined by the seat section when the X-frames are fully collapsed to their lower most position to provide a compact mechanism while still retaining a full range of motion.
Further, the transport apparatus may incorporate an auxiliary wheel, in addition to its casters, to offer greater maneuverability and stability and optionally to provide a powered transport apparatus.
Referring to
In another aspect, the transport apparatus may incorporate a releasable litter deck so that the deck may be removed for use as or on another transport apparatus. For example, the litter deck may be transferred to another transport apparatus frame or removed for replacement with another litter deck to thereby customize the transport apparatus. Or the litter may be configured to be removed and then unfolded into a chair configuration, such as a stair chair configuration. In this manner, apparatus 210 may provide increased versatility.
Referring again to
The unfolding and folding of the respective X-frames is provided by a driver 224, which is best illustrated in
Referring to
Each respective section of the deck may include a pad to thereby form a sectioned support surface for a patient. The respective pads are sized and configured (and gatched) such that the deck sections may be moved between the chair configuration as shown in
Seat section 226 optionally includes side rails 240 that are pivotally mounted about the opposed sides of seat section 226 to frame 214. Side rails 240 may each include a hand hold 242 and further may be provided with a pad 240a to provide cushioned lateral support to a person supported on apparatus 210.
Side rails 240 are mounted in a generally vertical orientation relative to seat section 226 and may further be released from their generally vertical orientation to an angle relative to the support surface to increase the width of the deck at least of the seat section of the deck. For example, side rails 240 may be configured to be tilted in a range from a generally vertical orientation, such as about 80-90 degrees relative to the patient deck at seat section 226 to an angle in a range from about 30-50 degrees relative to the seat section, and optionally no more than 45 degrees to avoid creating any instability issues.
In addition to foot section 230 and head section 228, deck 212 may also incorporate extendible head and foot rests 244, 246 which may be mounted on telescoping tubes to thereby extend the length of the deck to accommodate taller patients. Telescoping tubes 244a and 246a may be moved manually, for example, and further may provide resistance to movement of the respective head rest and foot rest (and provide infinite positioning between a fully extended position and retracted position) or may include detent mechanisms to provide defined positions for the respective rests. Alternately, the rests may be moved by actuators, such as electrically powered actuators.
Referring again to
As best seen in
Actuator 224 may be controlled by controls mounted to apparatus 210 including, for example, a wireless motor control provided for example by a user interface 272, mounted for example to a rail 278 provided on the back of head section 228. In the illustrated embodiment user interface 272 comprises a touch screen 274.
Referring to
In addition, apparatus 210 may incorporate its plurality of lights, such as light strips 292 similar to light strips 92 described above, to provide various functions. As noted, one or more lights may provide an indication of a status of a component of the transport apparatus or of a component supported or mounted to apparatus 210. For example, the lights may be used to indicate that the apparatus is in a transport height or a loading height configuration, for example, using sensors that detect the position of the actuators or the lift mechanism and which are in communication with the on-board controller, which controls the light or lights. Lights also may be used to indicate the status of the apparatus. For example, the apparatuses described herein may incorporate an impact detector or indicator that provides an indication that the apparatus was subject to a damaging impact abuse, such as described in copending U.S. Pat. application entitled ENERGY ABSORBING FASTENING SYSTEM, Ser. No. 13/712,303, filed Dec. 12, 2012, which is incorporated by reference herein in its entirety. As described, the indicator may located between the deck and the deck support frame comprise a strain gauge, such as a load cell, a piezoelectric crystal, or an accelerometer in combination with a scale to indicate the level of acceleration all of which can generate signals that can be processed by the controller mounted on the apparatus, which then generates an indicia, visual or audible, to indicated either the level of impact or that a certain magnitude had been exceeded. This indicia, for example, may comprise one or more of the lights referenced above being illuminated or illuminated with a specified color.
Referring again to
Referring now to
Referring to
For example, the transport apparatus 210 may be positioned in its cot configuration such as shown in
Alternately, frame 310 of stair chair apparatus 350 may be tilted so that the deck sections support may be transferred over from apparatus 210 to stair chair frame 310 as an assembly in a sliding or rolling fashion, by way of bearings or bearing surfaces (provided on the respective frames) or the like so that deck 212 may be simply passed over the foot end of frame 214 and onto the head end of frame 310. Once properly positioned, deck 212 may then be coupled to the respective sections of the frame. Suitable reliable mounting mechanisms may include spring loaded or over center clamps.
Another method may include removing the tracks of stair chair frame 310 first, to provide a less obstructed path between frames 214 and 310. With their removal, the chair frame may need not be tilted and instead simply coupled to the end of frame 214 by hooks 298 again so that the deck sections may be transferred over from apparatus 210 to stair chair frame 310 as an assembly.
In yet another form, as best understood from
Further the tracks may facilitate the transfer of stair chair apparatus 350 onto apparatus 210 and/or removal of apparatus 350 from transport apparatus 210. After the apparatus 350 is then transferred off frame 214 of transport apparatus 210, it may then be reconfigured in a stair chair configuration such as shown in
As will be more fully described below, to facilitate the transfer of a deck section or apparatus 350 onto apparatus 210 either the deck section or respective frames may incorporate rollers, bearings, segmented channels, or a carriage onto which the tracks of the stair chair can be guided. Once mounted to the cot base, the deck may be positioned in a cot configuration as shown in
To facilitate the transfer of apparatus 350 onto and off cot base 214, apparatus 350 may include hand holds, in the form of tubular handles at each of its head end and foot end. Further, to increase the length of the deck, deck 212 of apparatus 350 (similar to the previous embodiment) may include extendible foot and head rests. For details of how they could be mounted, reference is made to the description above.
In this manner, a single deck may be used both on a cot base and/or on a stair chair base. Furthermore, when the deck is moved as an assembly, with or with the entire stair chair structure, a person supported on the deck may also be transferred.
As described above, a transport apparatus system may be provided that offers different modes of transportation of a person, including transportation of a person in a supine position, such as on a cot, or in a seated position, such as on a transport chair by simply transferring the support surface from one apparatus to the other apparatus. Or as described, one apparatus may be mounted on a second apparatus and then reconfigured to form the support surface of the second apparatus. Further examples of how this can be achieved are illustrated in
Referring to
As best understood from
Optionally pivot joint 420 provides a stationary pivotal coupling between the respective apparatuses over a defined range of motion of apparatus 412 but may be configured to release the coupling once apparatus 412, for example, has been mounted to apparatus 410 and tilted and loaded sufficiently, for example, so that at least most of its weight, or at least the center of gravity of apparatus 412, will be over apparatus 410.
Referring to
Referring to
Referring to
While each of the pivot joints or linkages are illustrated at, for example, the foot end of apparatus, it should be understood that they may be located at a side of the apparatus instead. Referring to
Referring to
As noted above, several of the pivot assemblies or linkage assemblies may be powered. Referring to
The above description is that of current embodiments of the invention. Various alterations and changes can be made without departing from the spirit and broader aspects of the invention as defined in the appended claims, which are to be interpreted in accordance with the principles of patent law including the doctrine of equivalents. This disclosure is presented for illustrative purposes and should not be interpreted as an exhaustive description of all embodiments of the invention or to limit the scope of the claims to the specific elements illustrated or described in connection with these embodiments. For example, and without limitation, any individual element(s) of the described invention may be replaced by alternative elements that provide substantially similar functionality or otherwise provide adequate operation. This includes, for example, presently known alternative elements, such as those that might be currently known to one skilled in the art, and alternative elements that may be developed in the future, such as those that one skilled in the art might, upon development, recognize as an alternative. Further, the disclosed embodiments include a plurality of features that are described in concert and that might cooperatively provide a collection of benefits. The present invention is not limited to only those embodiments that include all of these features or that provide all of the stated benefits, except to the extent otherwise expressly set forth in the issued claims. Any reference to claim elements in the singular, for example, using the articles “a,” “an,” “the” or “said,” is not to be construed as limiting the element to the singular. Directional terms, such as “vertical,” “horizontal,” “top,” “bottom,” “upper,” “lower,” “inner,” “inwardly,” “outer” and “outwardly,” are used to assist in describing the invention based on the orientation of the embodiments shown in the illustrations. The use of directional terms should not be interpreted to limit the invention to any specific orientation(s).
This application claims the benefit of U.S. Provisional Patent Application No. 61/781,308, filed Mar. 14, 2013, U.S. Provisional Patent Application No. 61/781,844, filed Mar. 14, 2013, and U.S. Provisional Patent Application No. 61/806,189, filed Mar. 28, 2013, which are incorporated herein by reference in their entirety and commonly owned by Stryker Corporation of Kalamazoo, Mich.
Number | Name | Date | Kind |
---|---|---|---|
3644944 | Bourgraf | Feb 1972 | A |
3786523 | Sele | Jan 1974 | A |
3813712 | Bonnin | Jun 1974 | A |
3936893 | Anderson | Feb 1976 | A |
3967328 | Cox | Jul 1976 | A |
4078269 | Weipert | Mar 1978 | A |
4193147 | Fischer | Mar 1980 | A |
4255823 | Boyer | Mar 1981 | A |
4451945 | Heinz et al. | Jun 1984 | A |
4566550 | Misawa | Jan 1986 | A |
4566706 | Bihler | Jan 1986 | A |
4691962 | Holdt | Sep 1987 | A |
4813088 | DiMatteo et al. | Mar 1989 | A |
4962941 | Rembos | Oct 1990 | A |
5023968 | Diehl et al. | Jun 1991 | A |
5050899 | Stensby | Sep 1991 | A |
5112076 | Wilson | May 1992 | A |
5135350 | Eelman et al. | Aug 1992 | A |
5435027 | Bourgraf | Jul 1995 | A |
5438722 | Jayamanne | Aug 1995 | A |
5659910 | Weiss | Aug 1997 | A |
5790997 | Ruehl | Aug 1998 | A |
5896602 | Marblestone | Apr 1999 | A |
6125485 | Way | Oct 2000 | A |
6128796 | McCormick et al. | Oct 2000 | A |
6173461 | Alexander | Jan 2001 | B1 |
6219864 | Ellis | Apr 2001 | B1 |
6231067 | Johnson | May 2001 | B1 |
6336235 | Ruehl | Jan 2002 | B1 |
6381781 | Bourgraf et al. | May 2002 | B1 |
6386614 | Logan | May 2002 | B1 |
6701545 | Ferneau et al. | Mar 2004 | B1 |
7140055 | Bishop et al. | Nov 2006 | B2 |
7389552 | Reed et al. | Jun 2008 | B1 |
7490884 | Matunaga et al. | Feb 2009 | B2 |
7581265 | Bourgraf et al. | Sep 2009 | B1 |
7805784 | Lemire | Oct 2010 | B2 |
7887113 | Lambarth et al. | Feb 2011 | B2 |
7918473 | Yao | Apr 2011 | B2 |
7931288 | Chuang | Apr 2011 | B1 |
8051513 | Reed et al. | Nov 2011 | B2 |
8056163 | Lemire et al. | Nov 2011 | B2 |
8104121 | Bourgraf et al. | Jan 2012 | B2 |
8155918 | Reed et al. | Apr 2012 | B2 |
8316480 | Burak, Jr. | Nov 2012 | B2 |
8359685 | Patwardhan | Jan 2013 | B2 |
8439416 | Lambarth et al. | May 2013 | B2 |
8459660 | Livingston | Jun 2013 | B2 |
8864205 | Lemire et al. | Oct 2014 | B2 |
8973925 | Helterbrand | Mar 2015 | B1 |
20020056162 | Flynn | May 2002 | A1 |
20030033672 | Jehn | Feb 2003 | A1 |
20030116927 | Quigg | Jun 2003 | A1 |
20040034935 | Ferneau et al. | Feb 2004 | A1 |
20040111798 | Matunaga et al. | Jun 2004 | A1 |
20040133981 | Walkingshaw | Jul 2004 | A1 |
20050172405 | Menkedick | Aug 2005 | A1 |
20060016008 | Choi | Jan 2006 | A1 |
20070017029 | Wurdeman | Jan 2007 | A1 |
20070174967 | Bourgraf et al. | Aug 2007 | A1 |
20070182220 | Walkinshaw et al. | Aug 2007 | A1 |
20090165208 | Reed et al. | Jul 2009 | A1 |
20100017964 | Kruse | Jan 2010 | A1 |
20100117312 | Walkingshaw et al. | May 2010 | A1 |
20100176618 | Souke et al. | Jul 2010 | A1 |
20120139197 | Livingston | Jun 2012 | A1 |
20140033435 | Jutras | Feb 2014 | A1 |
20140041120 | Li | Feb 2014 | A1 |
20150115638 | Lambarth et al. | Apr 2015 | A1 |
Number | Date | Country |
---|---|---|
2481694 | Oct 2003 | CA |
2548611 | May 2003 | CN |
2915071 | Jun 2007 | CN |
200960241 | Oct 2007 | CN |
0287857 | Oct 1988 | EP |
0759735 | Sep 1998 | EP |
0786396 | Sep 2001 | EP |
1212025 | Jun 2002 | EP |
1226803 | Jul 2002 | EP |
0744934 | Dec 2002 | EP |
0932385 | Mar 2004 | EP |
1046444 | Oct 1966 | GB |
2381256 | Apr 2003 | GB |
0113854 | Mar 2001 | WO |
02039944 | May 2002 | WO |
02039944 | May 2002 | WO |
2005056376 | Jun 2005 | WO |
2008127089 | Oct 2008 | WO |
2008127944 | Oct 2008 | WO |
2009076630 | Jun 2009 | WO |
2009114806 | Sep 2009 | WO |
2010025387 | Mar 2010 | WO |
2011100556 | Aug 2011 | WO |
2013052452 | Apr 2013 | WO |
2013096861 | Jun 2013 | WO |
2013192411 | Dec 2013 | WO |
2014035250 | Mar 2014 | WO |
2014150652 | Sep 2014 | WO |
Entry |
---|
PCT International Search Report regarding Application No. PCT/US2014/026370 filed Mar. 13, 2014, a counterpart to U.S. Appl. No. 14/206,151. |
PCT International Written Opinion regarding Application No. PCT/US2014/026370 filed Mar. 13, 2014, a counterpart to U.S. Appl. No. 14/206,151. |
Number | Date | Country | |
---|---|---|---|
20140265181 A1 | Sep 2014 | US |
Number | Date | Country | |
---|---|---|---|
61806189 | Mar 2013 | US | |
61781844 | Mar 2013 | US | |
61781308 | Mar 2013 | US |