The invention disclosed herein generally relates to the field of encoding and decoding of audio. In particular it relates to encoding and decoding of an audio scene comprising audio objects.
The present disclosure is related to U.S. Provisional application No. 61/827,246 filed on the same date as the present application, entitled “Coding of Audio Scenes”, and naming Heiko Purnhagen et al., as inventors is hereby included by reference in its entirety.
There exist audio coding systems for parametric spatial audio coding. For example, MPEG Surround describes a system for parametric spatial coding of multichannel audio. MPEG SAOC (Spatial Audio Object Coding) describes a system for parametric coding of audio objects.
On an encoder side these systems typically downmix the channels/objects into a downmix, which typically is a mono (one channel) or a stereo (two channels) downmix, and extract side information describing the properties of the channels/objects by means of parameters like level differences and cross-correlation. The downmix and the side information are then encoded and sent to a decoder side. At the decoder side, the channels/objects are reconstructed, i.e. approximated, from the downmix under control of the parameters of the side information.
A drawback of these systems is that the reconstruction is typically mathematically complex and often has to rely on assumptions about properties of the audio content that is not explicitly described by the parameters sent as side information. Such assumptions may for example be that the channels/objects are treated as uncorrelated unless a cross-correlation parameter is sent, or that the downmix of the channels/objects is generated in a specific way.
In addition to the above, coding efficiency emerges as a key design factor in applications intended for audio distribution, including both network broadcasting and one-to-one file transmission. Coding efficiency is of some relevance also to keep file sizes and required memory limited, at least in non-professional products.
In what follows, example embodiments will be described with reference to the accompanying drawings, on which:
All the figures are schematic and generally show parts to elucidate the subject matter herein, whereas other parts may be omitted or merely suggested. Unless otherwise indicated, like reference numerals refer to like parts in different figures.
As used herein, an audio signal may refer to a pure audio signal, an audio part of a video signal or multimedia signal, or an audio signal part of a complex audio object, wherein an audio object may further comprise or be associated with positional or other metadata. The present disclosure is generally concerned with methods and devices for converting from an audio scene into a bitstream encoding the audio scene (encoding) and back (decoding or reconstruction). The conversions are typically combined with distribution, whereby decoding takes place at a later point in time than encoding and/or in a different spatial location and/or using different equipment. In the audio scene to be encoded, there is at least one audio object. The audio scene may be considered segmented into frequency bands (e.g., B=11 frequency bands, each of which includes a plurality of frequency samples) and time frames (including, say, 64 samples), whereby one frequency band of one time frame forms a time/frequency tile. A number of time frames, e.g., 24 time frames, may constitute a super frame. A typical way to implement such time and frequency segmentation is by windowed time-frequency analysis (example window length: 640 samples), including well-known discrete harmonic transforms.
In an example embodiment within a first aspect, there is provided a method for encoding an audio scene whereby a bitstream is obtained. The bitstream may be partitioned into a downmix bitstream and a metadata bitstream. In this example embodiment, signal content in several (or all) frequency bands in one time frame is encoded by a joint processing operation, wherein intermediate results from one processing step are used in subsequent steps affecting more than one frequency band.
The audio scene comprises a plurality of audio objects. Each audio object is associated with positional metadata. A downmix signal is generated by forming, for each of a total of M downmix channels, a linear combination of one or more of the audio objects. The downmix channels are associated with respective positional locators.
For each audio object, the positional metadata associated with the audio object and the spatial locators associated with some or all the downmix channels are used to compute correlation coefficients. The correlation coefficients may coincide with the coefficients which are used in the downmixing operation where the linear combinations in the downmix channels are formed; alternatively, the downmixing operation uses an independent set of coefficients. By collecting all non-zero correlation coefficients relating to the audio object, it is possible to upmix the downmix signal, e.g., as the inner product of a vector of the correlation coefficients and the M downmix channels. In each frequency band, the upmix thus obtained is adjusted by a frequency-dependent object gain, which preferably can be assigned different values with a resolution of one frequency band. This is accomplished by assigning a value to the object gain in such manner that the upmix of the downmix signal rescaled by the gain approximates the audio object in that frequency band; hence, even if the correlation coefficients are used to control the downmixing operation, the object gain may differ between frequency band to improve the fidelity of the encoding. This may be accomplished by comparing the audio object and the upmix of the downmix signal in each frequency band and assigning a value to the object gain that provides a faithful approximation. The bitstream resulting from the above encoding method encodes at least the downmix signal, the positional metadata and the object gains.
The method according to the above example embodiment is able to encode a complex audio scene with a limited amount of data, and is therefore advantageous in applications where efficient, particularly bandwidth-economical, distribution formats are desired.
The method according to the above example embodiment preferably omits the correlation coefficients from the bitstream. Instead, it is understood that the correlation coefficients are computed on the decoder side, on the basis of the positional metadata in the bitstreams and the positional locators of the downmix channels, which may be predefined.
In an example embodiment, the correlation coefficients are computed in accordance with a predefined rule. The rule may be a deterministic algorithm defining how positional metadata (of audio objects) and positional locators (of downmix channels) are processed to obtain the correlation coefficients. Instructions specifying relevant aspects of the algorithm and/or implementing the algorithm in processing equipment may be stored in an encoder system or other entity performing the audio scene encoding. It is advantageous to store an identical or equivalent copy of the rule on the decoder side, so that the rule can be omitted from the bitstream to be transmitted from the encoder to the decoder side.
In a further development of the preceding example embodiment, the correlation coefficients may be computed on the basis of the geometric positions of the audio objects, in particular their geometric positions relative to the audio objects. The computation may take into account the Euclidean distance and/or the propagation angle. In particular, the correlation coefficients may be computed on the basis of an energy preserving panning law (or pan law), such as the sine-cosine panning law. Panning laws and particularly stereo panning laws, are well known in the art, where they are used for source positioning. Panning laws notably include assumptions on the conditions for preserving constant power or apparent constant power, so that the loudness (or perceived auditory level) can be kept the same or approximately so when an audio object changes its position.
In an example embodiment, the correlation coefficients are computed by a model or algorithm using only inputs that are constant with respect to frequency. For instance, the model or algorithm may compute the correlation coefficients based on the spatial metadata and the spatial locators only. Hence, the correlation coefficients will be constant with respect to frequency in each time frame. If frequency-dependent object gains are used, however, it is possible to correct the upmix of the downmix channels at frequency-band resolution so that the upmix of the downmix channels approximates the audio object as faithfully as possible in each frequency band.
In an example embodiment, the encoding method determines the object gain for at least one audio object by an analysis-by-synthesis approach. More precisely, it includes encoding and decoding the downmix signal, whereby a modified version of the downmix signal is obtained. An encoded version of the downmix signal may already be prepared for the purpose of being included in the bitstream forming the final result of the encoding. In audio distribution systems or audio distribution methods including both encoding of an audio scene as a bitstream and decoding of the bitstream as an audio scene, the decoding of the encoded downmix signal is preferably identical or equivalent to the corresponding processing on the decoder side. In these circumstances, the object gain may be determined in order to rescale the upmix of the reconstructed downmix channels (e.g., an inner product of the correlation coefficients and a decoded encoded downmix signal) so that it faithfully approximates the audio object in the time frame. This makes it possible to assign values to the object gains that reduce the effect of coding-induced distortion.
In an example embodiment, an audio encoding system comprising at least a downmixer, a downmix encoder, an upmix coefficient analyzer and a metadata encoder is provided. The audio encoding system is configured to encode an audio scene so that a bitstream is obtained, as explained in the preceding paragraphs.
In an example embodiment, there is provided a method for reconstructing an audio scene with audio objects based on a bitstream containing a downmix signal and, for each audio object, an object gain and positional metadata associated with the audio object. According to the method, correlation coefficients—which may be said to quantify the spatial relatedness of the audio object and each downmix channel—are computed based on the positional metadata and the spatial locators of the downmix channels. As discussed and exemplified above, it is advantageous to compute the correlation coefficients in accordance with a predetermined rule, preferably in a uniform manner on the encoder and decoder side. Likewise, it is advantageous to store the spatial locators of the downmix channels on the decoder side rather than transmitting them in the bitstream. Once the correlation coefficients have been computed, the audio object is reconstructed as an upmix of the downmix signal in accordance with the correlation coefficients (e.g., an inner product of the correlation coefficients and the downmix signal) which is rescaled by the object gain. The audio objects may then optionally be rendered for playback in multi-channel playback equipment.
Alone, the decoding method according to this example embodiment realizes an efficient decoding process for faithful audio scene reconstruction based on a limited amount of input data. Together with the encoding method previously discussed, it can be used to define an efficient distribution format for audio data.
In an example embodiment, the correlation coefficients are computed on the basis only of quantities without frequency variation in a single time frame (e.g., positional metadata of audio objects). Hence, each correlation coefficient will be constant with respect to frequency. Frequency variations in the encoded audio object can be captured by the use of frequency-dependent object gains.
In an example embodiment, an audio decoding system comprising at least a metadata decoder, a downmix decoder, an upmix coefficient decoder and an upmixer is provided. The audio decoding system is configured to reconstruct an audio scene on the basis of a bitstream, as explained in the preceding paragraphs.
Further example embodiments include: a computer program for performing an encoding or decoding method as described in the preceding paragraphs; a computer program product comprising a computer-readable medium storing computer-readable instructions for causing a programmable processor to perform an encoding or decoding method as described in the preceding paragraphs; a computer-readable medium storing a bitstream obtainable by an encoding method as described in the preceding paragraphs; a computer-readable medium storing a bitstream, based on which an audio scene can be reconstructed in accordance with a decoding method as described in the preceding paragraphs. It is noted that also features recited in mutually different claims can be combined to advantage unless otherwise stated.
In an example embodiment within a second aspect, there is provided a method for reconstructing an audio scene on the basis of a bitstream comprising at least a downmix signal with M downmix channels. Downmix channels are associated with positional locators, e.g., virtual positions or directions of preferred channel playback sources. In the audio scene, there is at least one audio object and at least one bed channel. Each audio object is associated with positional metadata, indicating a fixed (for a stationary audio object) or momentary (for a moving audio object) virtual position. A bed channel, in contrast, is associated with one of the downmix channels and may be treated as positionally related to that downmix channel, which will from time to time be referred to as a corresponding downmix channel in what follows. For practical purposes, it may therefore be considered that a bed channel is rendered most faithfully where the positional locator indicates, namely, at the preferred location of a playback source (e.g., loudspeaker) for a downmix channel. As a further practical consequence, there is no particular advantage in defining more bed channels than there are available downmix channels. In summary, the position of an audio object can be defined and possibly modified over time by way of the positional metadata, whereas the position of a bed channel is tied to the corresponding bed channel and thus constant over time.
It is assumed in this example embodiment that each channel in the downmix signal in the bitstream comprises a linear combination of one or more of the audio object(s) and the bed channel(s), wherein the linear combination has been computed in accordance with downmix coefficients. The bitstream forming the input of the present decoding method comprises, in addition to the downmix signal, either the positional metadata associated with the audio objects (the decoding method can be completed without knowledge of the downmix coefficients) or the downmix coefficients controlling the downmixing operation. To reconstruct a bed channel on the basis of its corresponding downmix channel, said positional metadata (or downmix coefficients) are used in order to suppress that content in the corresponding downmix channel which represents audio objects. After suppression, the downmix channel contains bed channel content only, or is at least dominated by bed channel content. Optionally, after these processing steps, the audio objects may be reconstructed and rendered, along with the bed channels, for playback in multi-channel playback equipment.
Alone, the decoding method according to this example embodiment realizes an efficient decoding process for faithful audio scene reconstruction based on a limited amount of input data. Together with the encoding method to be discussed below, it can be used to define an efficient distribution format for audio data.
In various example embodiments, the object-related content to be suppressed is reconstructed explicitly, so that it would be renderable for playback. Alternatively, the object-related content is obtained by a process designed to return an incomplete representation estimation which is deemed sufficient in order to perform the suppression. The latter may be the case where the corresponding downmix channel is dominated by bed channel content, so that the suppression of the object-related content represents a relatively minor modification. In the case of explicit reconstruction, one or more of the following approaches may be adopted:
Various example embodiments may involve suppression of object-related content to different extents. One option is to suppress as much object-related content as possible, preferably all object-related content. Another option is to suppress a subset of the total object-related content, e.g., by an incomplete suppression operation, or by a suppression operation restricted to suppressing content that represents fewer than the full number of audio objects contributing to the corresponding downmix channel. If fewer audio objects than the full number are (attempted to be) suppressed, these may in particular be selected according to their energy content. Specifically, the decoding method may order the objects according to decreasing energy content and select so many of the strongest objects for suppression that a threshold value on the energy of the remaining object-related content is met; the threshold may be a fixed maximal energy of the object-related content or may be expressed as a percentage of the energy of the corresponding downmix channel after suppression has been performed. A still further option is to take the effect of auditory masking into account. Such an approach may include suppression of the perceptually dominating audio objects whereas content emanating from less noticeable audio objects—in particular audio objects that are masked by other audio objects in the signal—may be left in the downmix channel without inconvenience.
In an example embodiment, the suppression of the object-related content from the downmix channel is accompanied—preferably preceded—by a computation (or estimation) of the downmix coefficients that were applied to the audio objects when the downmix signal—in particular the corresponding downmix channel—was generated. The computation is based on the positional metadata, which are associated with the objects and received in the bitstream, and further on the positional locator of the corresponding downmix channel. (It is noted that in this second aspect, unlike the first aspect, it is assumed that the downmix coefficients that controlled the downmixing operation on the encoder side are obtainable once the positional locators of the downmix channels and the positional metadata of the audio objects are known.) If the downmix coefficients were received as part of the bitstream, there is clearly no need to compute the downmix coefficients in this manner. Next, the energy of the contribution of the audio objects to the corresponding downmix channel, or at least the energy of the contribution of a subset of the audio objects to the corresponding downmix channel, is computed based on the reconstructed audio objects or based on the downmix coefficients and the downmix signal. The energy is estimated by considering the audio objects jointly, so that the effect of statistical correlation (generally a decrease) is captured. Alternatively, if in a given use case it is reasonable to assume that the audio objects are substantially uncorrelated or approximately uncorrelated, the energy of each audio object is estimated separately. The energy estimation may either proceed indirectly, based on the downmix channels and the downmix coefficients together, or directly, by first reconstructing the audio objects. A further way in which the energy of each object could be obtained is as part of the incoming bitstream. After this stage, there is available, for each bed channel, an estimated energy of at least one of those audio objects that provide a non-zero contribution to the corresponding downmix channel, or an estimate of the total energy of two or more contributing audio objects considered jointly. The energy of the corresponding downmix channel is estimated as well. The bed channel is then reconstructed by filtering the corresponding downmix channel, with the estimated energy of at least one audio object as further inputs.
In an example embodiment, the computation of the downmix coefficients referred to above preferably follows a predefined rule applied in a uniform fashion on the encoder and decoder side. The rule may be a deterministic algorithm defining how positional metadata (of audio objects) and positional locators (of downmix channels) are processed to obtain the downmix coefficients. Instructions specifying relevant aspects of the algorithm and/or implementing the algorithm in processing equipment may be stored in an encoder system or other entity performing the audio scene encoding. It is advantageous to store an identical or equivalent copy of the rule on the decoder side, so that the rule can be omitted from the bitstream to be transmitted from the encoder to the decoder side.
In a further development of the preceding example embodiment, the downmix coefficients are computed on the basis of the geometric positions of the audio objects, in particular their geometric positions relative to the audio objects. The computation may take into account the Euclidean distance and/or the propagation angle. In particular, the downmix coefficients may be computed on the basis of an energy preserving panning law (or pan law), such as the sine-cosine panning law. As mentioned above, panning laws and stereo panning laws in particular, are well known in the art, where they are used, inter alia, for source positioning. Panning laws notably include assumptions on the conditions for preserving constant power or apparent constant power, so that the perceived auditory level remains the same when an audio object changes its position.
In an example embodiment, the suppression of the object-related content from the downmix channel is preceded by a computation (or estimation) of the downmix coefficients that were applied to the audio objects when the downmix signal—and the corresponding downmix channel in particular—was generated. The computation is based on the positional metadata, which are associated with the objects and received in the bitstream, and further on the positional locator of the corresponding downmix channel. If the downmix coefficients were received as part of the bitstream, there is clearly no need to compute the downmix coefficients in this manner. Next, the audio objects—or at least each audio object that provides a non-zero contribution to the downmix channels associated with the relevant bed channels to be reconstructed—are reconstructed and their energies are computed. After this stage, there is available, for each bed channel, the energy of each contributing audio object as well as the corresponding downmix channel itself. The energy of the corresponding downmix channel is estimated. The bed channel is then reconstructed by rescaling the corresponding downmix channel, namely by applying a scaling factor which is based on the energies of the audio objects, the energy of the corresponding downmix channel and the downmix coefficients controlling contributions from the audio objects to the corresponding downmix channel. The following is an example way of computing the scaling factor hn on the basis of the energy (E[Yn]) of the corresponding downmix channel, the energy (E[Sn2], n=NB+1, . . . , N) of each audio object and the downmix coefficients (dn, N
Here, ε≥0 and γ∈[0.5, 1] are constants. Preferably, ε=0 and γ=0.5. In different example embodiments, the energies may be computed for different sections of the respective signals. Basically, the time resolution of the energies may be one time frame or a fraction (subdivision) of a time frame. The energies may refer to a particular frequency band or collection of frequency bands, or the entire frequency range, i.e., the total energy for all frequency bands. As such, the scaling factor hn may have one value per time frame (i.e., may be a broadband quantity, cf.
In an example embodiment, the object-related content is suppressed by signal subtraction in the time domain or the frequency domain. Such signal subtraction may be a constant-gain subtraction of the waveform of each audio object from the waveform of the corresponding downmix channel; alternatively, the signal subtraction amounts to subtracting transform coefficients of each audio object from corresponding transform coefficients of the corresponding downmix channel, again with constant gain in each time/frequency tile. Other example embodiments may instead rely on a spectral suppression technique, wherein the energy spectrum (or magnitude spectrum) of the bed channel is substantially equal to the difference of the energy spectrum of the corresponding downmix channel and the energy spectrum of each audio object that is subject to the suppression. Put differently, a spectral suppression technique may leave the phase of the signal unchanged but attenuate its energy. In implementations acting on time-domain or frequency-domain representations of the signals, spectral suppression may require gains that are time- and/or frequency-dependent. Techniques for determining such variable gains are well known in the art and may be based on an estimated phase difference between the respective signals and similar considerations. It is noted that in the art, the term spectral subtraction is sometimes used as a synonym of spectral suppression in the above sense.
In an example embodiment, an audio decoding system comprising at least a downmix decoder, a metadata decoder and an upmixer is provided. The audio decoding system is configured to reconstruct an audio scene on the basis of a bitstream, as explained in the preceding paragraphs.
In an example embodiment, there is provided a method for encoding an audio scene, which comprises at least one audio object and at least one bed channel, as a bitstream that encodes a downmix signal and the positional metadata of the audio objects. In this example embodiment, it is preferred to encode at least one time/frequency tile at a time. The downmix signal is generated by forming, for each of a total of M downmix channels, a linear combination of one or more of the audio objects and any bed channel associated with the respective downmix channel. The linear combination is formed in accordance with downmix coefficients, wherein each such downmix coefficients that is to be applied to the audio objects is computed on the basis of a positional locator of a downmix channel and positional metadata associated with an audio object. The computation preferably follows a predefined rule, as discussed above.
It is understood that the output bitstream comprises data sufficient to reconstruct the audio objects at an accuracy deemed sufficient in the use case concerned, so that the audio objects may be suppressed from the corresponding bed channel. The reconstruction of the object-related content either is explicit, so that the audio objects would in principle be renderable for playback, or is done by an estimation process returning an incomplete representation sufficient to perform the suppression. Particularly advantageous approaches include:
The method according to the above example embodiment is able to encode a complex audio scene—such as one including both positionable audio objects and static bed channels—with a limited amount of data, and is therefore advantageous in applications where efficient, particularly bandwidth-economical, distribution formats are desired.
In an example embodiment, an audio encoding system comprising at least a downmixer, a downmix encoder and a metadata encoder is provided. The audio encoding system is configured to encode an audio scene in such manner that a bitstream is obtained, as explained in the preceding paragraphs.
Further example embodiments include: a computer program for performing an encoding or decoding method as described in the preceding paragraphs; a computer program product comprising a computer-readable medium storing computer-readable instructions for causing a programmable processor to perform an encoding or decoding method as described in the preceding paragraphs; a computer-readable medium storing a bitstream obtainable by an encoding method as described in the preceding paragraphs; a computer-readable medium storing a bitstream, based on which an audio scene can be reconstructed in accordance with a decoding method as described in the preceding paragraphs. It is noted that also features recited in mutually different claims can be combined to advantage unless otherwise stated.
The technological context of the present invention can be understood more fully from the related U.S. provisional application (titled “Coding of Audio Scenes”) initially referenced.
Assuming ∥dl∥=C for all l=1, . . . , N, then dnTdl≤C2 with equality for l=n, that is, the dominating coefficient will be the one multiplying Sn. The signal dnTY may however include contributions from the other audio objects as well, and the impact of these further contributions may be limited by an appropriate choice of the object gain gn. More precisely, the object gain computation unit 403 assigns a value to the object gain gn such that
in the time/frequency tile.
which is then provided to an upmixer 705, which applies the elements of matrix U to the downmix channels to reconstruct the audio objects. Parallel to this, the downmix coefficients are supplied from the downmix coefficient reconstruction unit 703 to a Wiener filter 707 after being multiplied by the energies of the audio objects. Between the multiplexer 701 and a further input of the Wiener filter 707, there is provided an energy estimator 706 for computing the energy E[Ym2], m=1, . . . , NB of each downmix channel that is associated with a bed channel. Based on this information, the Wiener filter 707 internally computes a scaling factor
with constant ε≥0 and 0.5≤γ≤1, and applies this to the corresponding downmix channel, so as to reconstruct the bed channel as Ŝn=hnYn, n=1, . . . , NB. In summary, the decoding system shown in
In comparison with the baseline audio decoding system 300 shown in
Furthermore, it is recalled that the computation of the energies of the downmix channels and the energies of the audio objects (or reconstructed audio objects) may be performed with a granularity with respect to time/frequency than the time/frequency tiles into which the audio signals are segmented. The granularity may be coarser with respect to frequency (as illustrated by
Further example embodiments will become apparent to a person skilled in the art after studying the description above. Even though the present description and drawings disclose embodiments and examples, the scope is not restricted to these specific examples. Numerous modifications and variations can be made without departing from the scope, which is defined by the accompanying claims. Any reference signs appearing in the claims are not to be understood as limiting their scope.
The systems and methods disclosed hereinabove may be implemented as software, firmware, hardware or a combination thereof. In a hardware implementation, the division of tasks between functional units referred to in the above description does not necessarily correspond to the division into physical units; to the contrary, one physical component may have multiple functionalities, and one task may be carried out by several physical components in cooperation. Certain components or all components may be implemented as software executed by a digital signal processor or microprocessor, or be implemented as hardware or as an application-specific integrated circuit. Such software may be distributed on computer readable media, which may comprise computer storage media (or non-transitory media) and communication media (or transitory media). As is well known to a person skilled in the art, the term computer storage media includes both volatile and nonvolatile, removable and non-removable media implemented in any method or technology for storage of information such as computer readable instructions, data structures, program modules or other data. Computer storage media includes, but is not limited to, RAM, ROM, EEPROM, flash memory or other memory technology, CD-ROM, digital versatile disks (DVD) or other optical disk storage, magnetic cassettes, magnetic tape, magnetic disk storage or other magnetic storage devices, or any other medium which can be used to store the desired information and which can be accessed by a computer. Further, it is well known to the skilled person that communication media typically embodies computer readable instructions, data structures, program modules or other data in a modulated data signal such as a carrier wave or other transport mechanism and includes any information delivery media.
This application is a continuation of allowed U.S. application Ser. No. 17/219,911, filed Apr. 1, 2021, which is a divisional of U.S. application Ser. No. 16/380,879 filed Apr. 10, 2019, now U.S. Pat. No. 10,971,163 issued on Apr. 6, 2021, which is a continuation of U.S. application Ser. No. 15/584,553 filed May 2, 2017, now U.S. Pat. No. 10,290,304 issued on May 14, 2019, which is a continuation of U.S. patent application Ser. No. 14/893,377 filed Nov. 23, 2015, now U.S. Pat. No. 9,666,198 issued on May 30, 2017, which is a U.S. 371 National Phase entry from PCT/EP2014/060732 filed May 23, 2014, which claims priority to U.S. Provisional Patent Application No. 61/827,469 filed May 24, 2013, which are all hereby incorporated by reference in their entirety.
Number | Name | Date | Kind |
---|---|---|---|
7394903 | Herre et al. | Jul 2008 | B2 |
7567675 | Bharitkar | Jul 2009 | B2 |
7680288 | Melchior | Mar 2010 | B2 |
7756713 | Chong | Jul 2010 | B2 |
8135066 | Harrison | Mar 2012 | B2 |
8139773 | Oh | Mar 2012 | B2 |
8175280 | Villemoes | May 2012 | B2 |
8175295 | Oh | May 2012 | B2 |
8194861 | Henn | Jun 2012 | B2 |
8195318 | Oh | Jun 2012 | B2 |
8204756 | Kim et al. | Jun 2012 | B2 |
8223976 | Purnhagen | Jul 2012 | B2 |
8234122 | Kim | Jul 2012 | B2 |
8271290 | Breebaat | Sep 2012 | B2 |
8296158 | Kim | Oct 2012 | B2 |
8315396 | Schreiner | Nov 2012 | B2 |
8364497 | Beack | Jan 2013 | B2 |
8379868 | Goodwin et al. | Feb 2013 | B2 |
8396575 | Kraemer | Mar 2013 | B2 |
8407060 | Hellmuth | Mar 2013 | B2 |
8417531 | Kim et al. | Apr 2013 | B2 |
8620465 | Van Den Berghe et al. | Dec 2013 | B2 |
20050114121 | Tsingos | May 2005 | A1 |
20050157883 | Herre et al. | Jul 2005 | A1 |
20060072623 | Park | Apr 2006 | A1 |
20090125313 | Hellmuth | May 2009 | A1 |
20090210238 | Kim | Aug 2009 | A1 |
20090220095 | Oh | Sep 2009 | A1 |
20100017003 | Oh | Jan 2010 | A1 |
20100076772 | Kim | Mar 2010 | A1 |
20100189266 | Oh | Jul 2010 | A1 |
20100191354 | Oh | Jul 2010 | A1 |
20100284549 | Oh | Nov 2010 | A1 |
20110013790 | Hilpert et al. | Jan 2011 | A1 |
20110022206 | Scharrer | Jan 2011 | A1 |
20110022402 | Engdegard | Jan 2011 | A1 |
20110081023 | Raghuvanshi | Apr 2011 | A1 |
20110112669 | Scharrer | May 2011 | A1 |
20110182432 | Ishikawa | Jul 2011 | A1 |
20120076204 | Raveendran | Mar 2012 | A1 |
20120143613 | Herre | Jun 2012 | A1 |
20120177204 | Hellmuth | Jul 2012 | A1 |
20120182385 | Kanamori | Jul 2012 | A1 |
20120183148 | Cho | Jul 2012 | A1 |
20120213376 | Hellmuth et al. | Aug 2012 | A1 |
20120232910 | Dressler | Sep 2012 | A1 |
20120243690 | Engdegard | Sep 2012 | A1 |
20120259643 | Engdegard et al. | Oct 2012 | A1 |
20120263308 | Herre | Oct 2012 | A1 |
20120269353 | Herre | Oct 2012 | A1 |
20120275609 | Beack | Nov 2012 | A1 |
20130028426 | Purnhagen | Jan 2013 | A1 |
20140023196 | Xiang | Jan 2014 | A1 |
20140025386 | Xiang | Jan 2014 | A1 |
20160125888 | Purnhagen et al. | May 2016 | A1 |
Number | Date | Country |
---|---|---|
101529504 | Sep 2009 | CN |
101809654 | Aug 2010 | CN |
101981617 | Feb 2011 | CN |
102595303 | Jul 2012 | CN |
103109549 | May 2013 | CN |
2273492 | Jan 2011 | EP |
2485979 | Jun 2012 | GB |
20070037985 | Apr 2007 | KR |
1332 | Aug 2013 | RS |
2406164 | Dec 2010 | RU |
2430430 | Sep 2011 | RU |
2452043 | May 2012 | RU |
2008046530 | Apr 2008 | WO |
2008069593 | Jun 2008 | WO |
2008100100 | Aug 2008 | WO |
2009049895 | Apr 2009 | WO |
2010125104 | Nov 2010 | WO |
2011039195 | Apr 2011 | WO |
2011102967 | Aug 2011 | WO |
2012125855 | Sep 2012 | WO |
2013142657 | Sep 2013 | WO |
2014015299 | Jan 2014 | WO |
2014025752 | Feb 2014 | WO |
2014099285 | Jun 2014 | WO |
2014161993 | Oct 2014 | WO |
2014187986 | Nov 2014 | WO |
2014187988 | Nov 2014 | WO |
2014187989 | Nov 2014 | WO |
Entry |
---|
Boustead, P. et al “DICE: Internet Delivery of Immersive Voice Communication for Crowded Virtual Spaces” IEEE Virtual Reality, Mar. 12-16, 2005, pp. 35-41. |
Capobianco, J. et al “Dynamic Strategy for Window Splitting, Parameters Estimation and Interpolation in Spatial Parametric Audio Coders” IEEE International Conference on Acoustics, Speech and Signal Processing, Mar. 25-30, 2012, pp. 397-400. |
Dolby Atmos Next-Generation Audio for Cinema, Apr. 1, 2012 (available at http://www.dolby.com/us/en/professional/cinema/products/dolby-atmos-next-- generation-audio-for-cinema-white-paper.pdf. cited by applicant. |
Engdegard J. et al “Spatial Audio Object Coding (SAOC)—The upcoming MPEG Standard on Parametric Object Based Audio Coding” Journal of the Audio Engineering Society, New York, US, May 17, 2008, pp. 1-16. |
Engdegard, J. et al “Spatial Audio Object Coding (SAOC)—The Upcoming MPEG Standard on Parametric Object Based Audio Coding” AES presented at the 124th Convention, May 17-20, 2008, Amsterdam,pp. 1-15. |
Falch, C. et al “Spatial Audio Object Coding with Enhanced Audio Object Separation” Proc. of the 13th Int. Conference on Digital Audio Effects,(DAFx-10) Graz, Austria, Sep. 6-10, 2010, pp. 1-10. |
Gorlow, S. et al “Informed Audio Source Separation Using Linearly Constrained Spatial Filters” IEEE Transactions on Audio, Speech and Language Processing, New York, USA, vol. 21, No. 1, Jan. 1, 2013, pp. 3-13. |
Herre, J. et al “The Reference Model Architecture for MPEG Spatial Audio Coding” AES convention presented at the 118th Convention, Barcelona, Spain, May 28-31, 2005. |
Innami, S. et al “On-Demand Soundscape Generation Using Spatial Audio Mixing” IEEE International Conference on Consumer Electronics, Jan. 9-12, 2011, pp. 29-30. |
Innami, S. et al “Super-Realistic Environmental Sound Synthesizer for Location-Based Sound Search System” IEEE Transactions on Consumer Electronics, vol. 57, Issue 4, pp. 1891-1898, Nov. 2011. |
ISO/IEC FDIS 23003-2:2010 Information Technology—MPEG Audio Technologies—Part 2: Spatial Audio Object Coding (SAOC) ISO/IEC JTC 1/SC 29/WG 11, Mar. 10, 2010. |
Jang, Dae-Young, et al “Object-Based 3D Audio Scene Representation” Audio Engineering Society Convention 115, Oct. 10-13, 2003, pp. 1-6. |
Schuijers, E. et al “Low Complexity Parametric Stereo Coding in MPEG-4” AES Convention, paper No. 6073, May 2004. |
Stanojevic, T. “Some Technical Possibilities of Using the Total Surround Sound Concept in the Motion Picture Technology”, 133rd SMPTE Technical Conference and Equipment Exhibit, Los Angeles Convention Center, Los Angeles, California, Oct. 26-29, 1991. |
Stanojevic, T. et al “Designing of TSS Halls” 13th International Congress on Acoustics, Yugoslavia, 1989. |
Stanojevic, T. et al “The Total Surround Sound (TSS) Processor” SMPTE Journal, Nov. 1994. |
Stanojevic, T. et al “The Total Surround Sound System”, 86th AES Convention, Hamburg, Mar. 7-10, 1989. |
Stanojevic, T. et al “TSS System and Live Performance Sound” 88th AES Convention, Montreux, Mar. 13-16, 1990. |
Stanojevic, T. et al. “TSS Processor” 135th SMPTE Technical Conference, Oct. 29-Nov. 2, 1993, Los Angeles Convention Center, Los Angeles, California, Society of Motion Picture and Television Engineers. |
Stanojevic, Tomislav “3-D Sound in Future HDTV Projection Systems” presented at the 132nd SMPTE Technical Conference, Jacob K. Javits Convention Center, New York City, Oct. 13-17, 1990. |
Stanojevic, Tomislav “Surround Sound for a New Generation of Theaters, Sound and Video Contractor” Dec. 20, 1995. |
Stanojevic, Tomislav, “Virtual Sound Sources in the Total Surround Sound System” Proc. 137th SMPTE Technical Conference and World Media Expo, Sep. 6-9, 1995, New Orleans Convention Center, New Orleans, Louisiana. |
Tsingos, N. et al “Perceptual Audio Rendering of Complex Virtual Environments” ACM Transactions on Graphics, vol. 23, No. 3, Aug. 1, 2004, pp. 249-258. |
Number | Date | Country | |
---|---|---|---|
20230267939 A1 | Aug 2023 | US |
Number | Date | Country | |
---|---|---|---|
61827469 | May 2013 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 16380879 | Apr 2019 | US |
Child | 17219911 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 17219911 | Apr 2021 | US |
Child | 18167204 | US | |
Parent | 15584553 | May 2017 | US |
Child | 16380879 | US | |
Parent | 14893377 | US | |
Child | 15584553 | US |