1. Field of Invention
The subject invention is generally related to safety and surveillance equipment for aircraft and is specifically directed to a comprehensive multi-media flight recording and playback system for commercial aircraft wherein data and/or video images may be collected, monitored, transmitted, stored and replayed for event reconstruction.
2. Discussion of the Prior Art
Aircraft safety is of ever increasing importance. This is particularly true with respect to commercial airlines as more and more people and freight are moved in this manner. The airways are becoming increasingly crowded with traffic. Global tracking systems are now in place to monitor the flight of the aircraft from the moment it lifts off until it safely lands at its destination. Radar and global positioning systems are commonplace both on the aircraft and at the ground tracking stations. All of these electronic systems have increased the overall safety record of commercial traffic to new standards as the number of miles flown continues to escalate at an alarming pace.
In addition, the on board avionics, including electronic monitoring and diagnostic equipment, particularly on large commercial jets, continues to evolve giving both the on board crew and the tracking station more complete, accurate and up-to-date information regarding the condition of the aircraft while in flight. Flight recorders long have been incorporated in order to provide a record of each flight and in order to provide critical information to aid in the determination of the causes of an accident or malfunction should one occur.
One of the greatest safety investigation inventions for the commercial airline industry has been the crash protected flight recorder, more commonly called the “Black Box.” Today, flight recorders for accident investigation are mandatory pieces of equipment in civil aircraft. Flight recorders have changed in design and airline usefulness during the past 40 years.
Efforts to require crash-protected flight recorders date back to the 1940s. The introduction of Flight Data Recorders (FDR), however, experienced many delays, first being mandated in 1958. The initial requirement for these data recorders was to record the actual flight conditions of the aircraft, i.e., heading, altitude, airspeed, vertical accelerations, and time. These early devices had very limited recording capabilities. The five analog parameters mentioned above were embossed onto a metal foil, which was used only once. With just five parameters, however, there were not enough recorded data for meaningful accident investigation. Consequently, in 1987, these recorders became unacceptable to most government regulatory authorities and additional parameters were required.
Although most major airlines replaced these old technology recorders long before required by law, many of the first generation recorders are still flying in older model aircraft. The remainder of these foil recorders will soon be unusable, since the metal foil is being quickly depleted.
Further, the flight data alone cannot provide all accident information needed by investigators. An advanced technology covering the recording of sounds in the cockpit, crews' conversations, air traffic control communications and aircraft noises is required. This initiated development of the second next generation of recorders that use magnetic tape as the recording medium. The first product to use this new technology was the cockpit voice recorder (CVR). In 1965, all commercial operators were mandated to install a CVR, which would retain the last 30 minutes of crew voice communications and noises within the cockpit environment. The magnetic tape required very complex fire and crash protection.
The Fairchild CVR, Models A100 and A100A, manufactured by L-3 Communications Aviation Recorders, are examples of second generation recorders. These have become the most widely used CVR in the world and have now been in service for more than 30 years. More recently, this same “tape” technology has been expanded to the flight data recorder. This second-generation FDR records additional flight parameters while meeting higher crash and fire protection requirements than the first generation FDR's, including operational data for engines, flight controls, flaps and other operating components to fully assist accident investigators. By the mid 1980s, all newly Type Certified (TC) aircraft were being fitted with recorders that could capture between 17 to 32 parameters.
In 1990, the third generation Solid State Flight Data Recorder (SSFDR) became commercially practical. The SSFDR, Model F1000, was the first certified flight recorder to use this new technology. The Solid State CVR (SSCVR) became available in a 30-minute format in 1992 and in a two-hour format in 1995.
The subject invention is directed to a recording and playback system wherein data, video, audio and/or images are multiplexed and sequenced in order to provide a detailed record of the time of an event, the altitude and geographic location of the aircraft and the type and location of the event within the aircraft, greatly enhancing event reconstruction efforts. The terms VDR, Multimedia Flight Data Recorder, IP Data are used interchangeably to refer to this system. The system is a comprehensive multi-media safety and surveillance system, which in the preferred form provides both visual and audio information as well as critical data to the flight crew, and to a ground tracking station, and also permits recording the information and data generated during flight for archival purposes and for later playback, particularly useful in reconstructing catastrophic events. In one preferred embodiment, a plurality of sensor units, including at least one video image sensor/device, are placed strategically throughout the aircraft. For example, several video cameras may be placed such that the lens of each is aimed through an opening provided in the fuselage in order to provide video imaging of the engines, tail section, and landing gear and other functional components of the aircraft. Additional cameras may be placed throughout the interior of the aircraft on the flight deck, in the cargo hold, in the passenger cabin and other desired spaces. The data sensors/transducers, such as by way of example, the engine temperature sensor, oil pressure and hydraulic pressure sensors, strain gauges and the like, are also incorporated in the data collection system of the subject invention. Audio may also be digitized, such as cockpit audio, radio audio, and microphone audio, and stored in the data collection system. This can thus combine the function of the previous generation Cockpit Voice Recorder (CVR) into the Multimedia Flight Data Recorder (MFDR) of the subject invention.
In an additional preferred embodiment, the Multimedia Flight Data Recorder described by this invention also records data from conventional Flight Data Acquisition & Management System (FDAMS), Digital Flight Data Acquisition Unit (DFDAU), and Aircraft Condition Monitoring System (ACMS). These conventional systems would be interfaced with the I/P Flight Data Recorder of this invention utilizing I/P (Internet Protocol). The conventional systems above, typically interfaced with protocols ARINC 429, ARINC 573, ARINC 724, ARINC 724B, ARINC 739, ARINC 740 and the like, would be converted to I/P protocol for transmission to the Multimedia Flight Data Recorder of this invention. This provides a dramatic improvement in data collection techniques by utilizing highly flexible LAN techniques for the transmission of and storage of aircraft safety data. This converted data can be stored in conjunction with other LAN data such as streaming motion video, step video (still images), streaming audio and event data such as alarms.
In summary, the Multimedia Flight Data Recorder can record conventional flight data, video data, image data, audio data and event data in any selection or combination as communicated over the aircraft LAN to the Multimedia Flight Data Recorder. The Flight Data Recorder may also play back data simultaneously to recording operations, such as for reference to the pilots or to ground analysts during emergency situations.
The system may be hardwired in the aircraft, or may use wireless transmission and receiving systems. The wireless system is particularly useful for adapting the system as a retrofit on existing aircraft and also provides assurances against disruption of data transmission and collection during a catastrophic airframe failure. In the preferred embodiment, the wireless system is fully self-contained with each sensor unit having an independent power supply and where appropriate, a sensor light source. The ground link, monitoring and recording systems for collecting and transmitting the data are also self-contained. This assures that the system will continue to operate in the event of either a malfunction, such as a total power failure, or a structural failure of the aircraft causing a disruption in power source, power wiring or signaling wiring and will not disrupt the generation and collection of data and visual images.
A monitor may be provided on the flight deck and recorders may be placed in the tail section, as is common for flight data and voice recorders currently in use. The flight deck would have instant live access to all of the images as they are captured by the video cameras and/or flight sensors and the recorder would make an historic record of the images and data for archive purposes. Where random access recording techniques are used, such as, by way of example, digital random access memory storage devices, the flight deck and the ground station may also be able to search and retrieve stored information. For example, current hydraulic pressure of a component may be compared with the pressure of a past point in time to monitor rate of change.
Where desired, ground tracking or control stations would have selective access to the images on a near or real-time basis. In addition, the ground station could send video images to the aircraft flight deck monitors on a selective basis. That is, the ground tracking station will have the capability of interrogating the in-flight data, including video images, while the aircraft is in flight. Near real-time data can be received and historical data can be retrieved as well, when the random access storage device is utilized.
The plurality of sensors are synchronized through an on-board multiplexing system whereby the plurality of data, including visual image data, may be displayed, recorded, and/or transmitted with known time criteria for each element of data. In the preferred embodiment, the system is adapted for incorporating the data signal generated by the aircraft navigational data such as that provided by the on-board global positioning system for tracking the altitude, latitude and longitude coordinates synchronized with the collected data in order to provide accurate information of where the aircraft is in its flight plan when an incident occurs. A time or chronology signal may also be incorporated in the data scheme. Any signal that is capable of being captured and stored may be monitored in this manner. For example, radar images that are currently displayed on a cockpit monitor can also be transmitted to the ground and can be stored in the record of the “black box” recording system on board the aircraft. Transducer signals monitoring pressure system and engine components are also be collected for transmission and storage. Data generated by image sensors ranging from analog video cameras to digital cameras to infrared sensors and the like can collected and distributed by the system. The system is particularly well suited for use in combination with forward linking infrared (FLIR) cameras for producing visual images in darkness. This would be particularly useful in determining the flight path of the aircraft, both on board and for later retrieval when incidents occur in low light level conditions. Some of these features are shown and described in my co-pending application entitled: “Record and Playback System for Aircraft”, Ser. No. 09/257,765, filed on Feb. 25, 1999 and incorporated by reference herein.
The system of the subject invention provides a comprehensive multi-media data capture, display, transmission and storage surveillance system for the aircraft while in flight, with data readily accessible to both the flight crew and a ground tracking station. The system is particularly suited for providing data transmission over a Local Area Network (LAN) onboard the aircraft and in an IP (Internet Protocol) format and is adapted for merging both analog and digital legacy and state of the art systems into a comprehensive recording and playback system for aircraft.
In one embodiment of the invention, the capture, retrieval, monitor and archive system is installed utilizing a wireless transmitting/receiving system combined with a sensor in order to assure that transmission will not be lost in the event of a power shutdown or a structural failure causing possible open circuit conditions that could occur in a hard wired system. Such a system may be completely self-contained with an integrated power supply and an integrated illumination system in the case of a video sensor. The illumination system would provide lighting to permit capture of images in the event the aircraft power system fails. The communication between the sensor and the Multimedia Flight Data Recorder, in the preferred embodiment, would utilize the industry standards 802.11 or 802.11b or their predecessors. These wireless protocols are highly developed for small size, provide error correction protocol and sufficient bandwidth for video.
The system is of invaluable service to the flight crew and the ground tracking station, providing visual indication of such information as the operation of the landing gear, for example, or of an engine smoke condition, or of the presence of smoke or fire in the cargo hold. In addition, the system provides instant visual access to conditions in the passenger cabin or in the cargo hold. The ground or tracking station can relay video information directly to the crew in the event of certain conditions. For example, if a terrorist or terrorist group were on board, the ground crew would have access to visual information indicating the conditions in the passenger cabin and cockpit. This would permit the ground crew to ascertain the number of terrorists on board, the types of weapons carried and visual identification of the individuals without any communication from the flight crew and without any flight crew action. Such information is invaluable in determining the best course of action for dealing with such a crisis. Further, critical visual information can be transmitted to the flight crew for assisting the crew in dealing with the situation.
Of course, it is an important aspect of the invention that all of the collected data, including any video images, be recorded on the flight recorder to provide an historic video record of the flight. This is invaluable in reconstructing the cause of catastrophic occurrences during a flight.
In the preferred embodiment, the system includes a plurality of strategically located video image sensors such as, by way of example, analog and/or digital video cameras, a video data recorder and a pilot display module (MCDU or MIDU). In the preferred embodiment, all data is recorded in an IP format. The IP encoder may be an integral component of the recorder, or the data may be transmitted in an IP format from the data generator device. The recorder includes one or more non-volatile memory arrays for storing and processing the data. The recorder includes both wired and wireless network connectivity. In the preferred embodiment, the memory arrays are in a hardened hermetic assembly while other support electronics may be housed in a less rigorous assembly. An underwater beacon generator may be provided to assist in locating a downed recorder unit. The system is adapted for sending live signals directly to ground support via radio or satellite communications channels. The system also includes audio sensors and component monitoring sensor devices and can replace the Cockpit Voice Recorder (CVR) system where desired. The system is adapted for selectively transmitting all of the data on a near real time basis to a ground tracking station.
Discussion of Typical Data Storage Requirements:
Storage of typical flight data such as altitude, ground speed, air speed, engine parameters and the like does not consume much data storage capacity, even when samples are recorded every few seconds. Storage of streaming video is, however, intensive. Compression is utilized to reduce the bandwidth of full motion video from the raw bandwidth of 15 MBytePS to lesser rates from 128 KBytePS to 2 MPBytePS based on compression types and parameter selection. The most popular commercial video compression standards are now MPEG, the Motion Picture Experts Group. High-resolution still frame images, such as JPEG or wavelet, can be utilized to store higher quality images at a lower capture rate than full motion video. Images compressed to 16 KByte to 32 KByte have shown adequate quality for flight video collection. Combinations of full motion video at various frame rates and compression ratios and still frame imagery at various compression rates and intervals may be utilized to optimize image quality and storage requirements.
Solid-state non-volatile memory technology is quite dense, and is continuing to double in density every few years. One solid-state flash memory that can be utilized for this invention is the SST CompactFlash technology, which is currently available in a 256 MByte package that is approximately 1.5 inches square and 0.13 inches thick. An array of 16 of these modules will provide 4 GByte of storage, enough storage to record 16 cameras running at 2 FPS of high quality wavelet compression at 16 KBytes per image for over 2 hours in addition to storing flight data. The CompactFlash technology utilized in the preferred embodiment is that which is in the Silicon Storage Technology, Inc. model number SST48CF256.
The following applications are fully incorporated herein by reference:
It is, therefore, an object and feature of the subject invention to provide a network compatible, comprehensive, multi-media data collection, storage and playback system for aircraft.
It is an additional object and feature of the subject invention to provide a video record of critical components and areas of an aircraft during flight for archival and retrieval purposes.
It is an object and feature of the subject invention to provide a video or other sensor record of surrounding periphery of the aircraft such that a missile attack to that aircraft can be recorded for identification.
It is yet another object and feature of the subject invention to provide apparatus for permitting ground personnel to receive near real-time video images, audio information and/or data relating to critical components and areas of an aircraft during flight.
It is a further object and feature of the subject invention to provide apparatus for permitting ground personnel to query, retrieve and receive historical video images, audio information and/or data relating to critical components and areas of an aircraft during flight
It is a further object and feature of the subject invention to provide accurate information of where the aircraft is during a flight path when a specific visually captured image occurs.
It is a further object and feature of the subject invention to provide accurate information of where the aircraft is during a flight path when a specific event occurs.
It is also an object and feature of the subject invention to provide a system for linking recorded video images with an inertial navigation system such or other navigational data source such as, by way of example, a global positioning system for archival purposes.
It is still another object and feature of the invention to permit the monitoring, storing and retrieval of any of a variety of video images, audio signals and performance data by the tracking, surveillance and imaging equipment on board the aircraft.
It is an object and feature of the invention to convert on board navigation and safety equipment interface buses such as industry standard ARINC 429, ARINC 573, ARINC 724, ARINC 724B, ARINC 739, ARINC 740 to an I/P connection, such as Ethernet 10/100 BASE-T and the like, for distribution throughout the aircraft and to the flight recorder.
It is a further object and feature of the invention to convert on board navigation and safety equipment data streams and files such are typically communicated on industry standard ARINC 429, ARINC 573, ARINC 724, ARINC 724B, ARINC 739, ARINC 740 formats, to data files communicated over an I/P connection, such as Ethernet 10/100 BASE-T and the like, for recording on an industry standard file server architecture, such as Unix or Windows NT architecture, within a hardened Multimedia Flight Data Recorder.
It is an object and feature of the invention to power one or more remote sensors with a standby battery that is in wireless communication with the data recorder apparatus which also has standby battery power to enable operation of the data collection system for a period of time after the aircraft has had a power failure or wiring failure due to fire, airframe failure, explosion, sabotage or the like.
It is an object and feature of the invention to utilize 802.11, 802.11b or a predecessor standard for data transmission between the sensor and the Multimedia Flight Data Recorder.
It is an object and feature of the invention to utilize a simple modification to the 802.11 standard for use exclusively for aircraft and airport security such that commercial 802.11 industry standard product would not interfere with data transmissions in the aircraft and airport systems.
It is an object and feature of the invention to minimize the number of electrical signals (wires) that are necessary to interconnect the to the hardened portion of the aircraft data recorder by utilization of I/P for the interconnection between the mass memory array and the rest of the system electronics for the purposes of simplifying the hermetic sealing and hardening of the mass memory array.
It is an object and feature of the invention to be a hardened file server that can be utilized to store important data that may be required to be maintained after the recorder is subjected to an intense event, such as an airplane or train crash, fire, explosion, or other environmentally severe event.
Other objects and features of the subject invention will be readily apparent from the accompanying drawings and detailed description of the preferred embodiments.
60 minutes high temperature fire exposure at 1100° C.;
10 hours low temperature fire exposure at 260° C.;
30 days of deep water immersion at a depth of 20,000 feet;
impact shock survival of 3400 Gs;
impact drop survival of 500 pounds dropped from 10 feet; and
penetration and static crush of 5000 pounds.
Standards and specifications may be found in Minimum Operational Specifications (MOPS) of TSO C-123a/C124a and Eurocae ED-56/55A.
In the subject invention, the boards are encased in an insulating envelope 14 and are sealed in a thermal mass 16. The outer wall or cover of the assembly 10 is a water-resistant, crush-resistant fire-resistant case. The support electronics are mounted in a separate support housing 18 that may be non-hardened and non-hermetic, if desired. The VDR is mounted on the airframe by suitable mounting means such as the integral tab mounts 20. The power and control coupling 22 and data or video input coupling 24 are mounted in the support housing.
The basic configuration of the invention is shown in
The memory array is contained in the hardened hermetic assembly 10. The controller supplies power and a data interchange bus to the memory array in the hardened housing. In this embodiment, an acoustic locator transmitter device 34 is attached to the exterior of the hardened housing to provide for assistance in locating the VDR during an investigation.
An enhanced configuration of the system is shown in
In a preferred embodiment of the multimedia flight data recorder, it is an important feature of the invention that the digital data signal is in a network IP protocol and can be distributed over a wired LAN and/or wireless LAN as shown in
A hub 62 configuration is shown in
A fully enhanced system is shown in
While certain features and embodiments of the invention have been described in detail herein, it will be readily understood that the invention includes all modifications and enhancements within the scope and spirit of the following claims.
This application is a continuation of patent application Ser. No. 10/719,796 filed on Nov. 21, 2003 and entitled “Record and Playback System for Aircraft.” This application claims priority from Provisional Patent Application Ser. No. 60/428,386 filed Nov. 22, 2002 and entitled “Record and Playback System for Aircraft.” The subject invention is generally related to safety and surveillance equipment for aircraft and is specifically directed to a comprehensive multi-media flight recording and playback system for commercial aircraft wherein data and/or video images may be collected, monitored, transmitted, stored and replayed for event reconstruction.
Number | Name | Date | Kind |
---|---|---|---|
4163283 | Darby | Jul 1979 | A |
4179695 | Levine et al. | Dec 1979 | A |
4197536 | Levine | Apr 1980 | A |
4516125 | Schwab et al. | May 1985 | A |
4831438 | Bellman, Jr. et al. | May 1989 | A |
4845629 | Murga | Jul 1989 | A |
4857912 | Everett, Jr. et al. | Aug 1989 | A |
4891650 | Sheffer | Jan 1990 | A |
4910692 | Outram | Mar 1990 | A |
5027104 | Reid | Jun 1991 | A |
5027114 | Kawashima et al. | Jun 1991 | A |
5091780 | Pomerleau | Feb 1992 | A |
5109278 | Erickson | Apr 1992 | A |
5111291 | Erickson | May 1992 | A |
5166746 | Sato et al. | Nov 1992 | A |
5218367 | Sheffer et al. | Jun 1993 | A |
5243340 | Norman et al. | Sep 1993 | A |
5243530 | Stanifer et al. | Sep 1993 | A |
5268698 | Smith, Sr. et al. | Dec 1993 | A |
5283643 | Fujimoto | Feb 1994 | A |
5321615 | Frisbie et al. | Jun 1994 | A |
5334982 | Owen | Aug 1994 | A |
5341194 | Rose et al. | Sep 1994 | A |
5400031 | Fitts | Mar 1995 | A |
5408330 | Squicciarini et al. | Apr 1995 | A |
5432838 | Purchase | Jul 1995 | A |
5440337 | Henderson et al. | Aug 1995 | A |
5440343 | Parulski | Aug 1995 | A |
5448243 | Bethke et al. | Sep 1995 | A |
5463595 | Rodhall et al. | Oct 1995 | A |
5469371 | Bass | Nov 1995 | A |
5497149 | Fast | Mar 1996 | A |
5508736 | Cooper | Apr 1996 | A |
5509009 | Laycock | Apr 1996 | A |
5530440 | Danzer et al. | Jun 1996 | A |
5553609 | Chen et al. | Sep 1996 | A |
5557254 | Johnson et al. | Sep 1996 | A |
5557278 | Piccirillo et al. | Sep 1996 | A |
5598167 | Zijderhand | Jan 1997 | A |
5612668 | Scott | Mar 1997 | A |
5627753 | Brankin et al. | May 1997 | A |
5629691 | Jain | May 1997 | A |
5636122 | Shah et al. | Jun 1997 | A |
5642285 | Woo | Jun 1997 | A |
5666157 | Aviv | Sep 1997 | A |
5670961 | Tomita et al. | Sep 1997 | A |
5677979 | Squicciarini | Oct 1997 | A |
5689442 | Swanson | Nov 1997 | A |
5712679 | Coles | Jan 1998 | A |
5712899 | Pace, II | Jan 1998 | A |
5714948 | Farmakis et al. | Feb 1998 | A |
5742336 | Lee | Apr 1998 | A |
5751346 | Dozier | May 1998 | A |
5777551 | Hess | Jul 1998 | A |
5777580 | Janky et al. | Jul 1998 | A |
5793416 | Rostoker et al. | Aug 1998 | A |
5825283 | Camhi | Oct 1998 | A |
5835059 | Nadel et al. | Nov 1998 | A |
5850180 | Hess | Dec 1998 | A |
5867804 | Pilley et al. | Feb 1999 | A |
5917405 | Joao | Jun 1999 | A |
5926210 | Hackett et al. | Jul 1999 | A |
5933098 | Haxton | Aug 1999 | A |
5938706 | Feldman | Aug 1999 | A |
5974158 | Auty et al. | Oct 1999 | A |
5983161 | Lemelson et al. | Nov 1999 | A |
5999116 | Evers | Dec 1999 | A |
6002427 | Kipust | Dec 1999 | A |
6009356 | Monroe | Dec 1999 | A |
6067571 | Igarashi et al. | May 2000 | A |
6069655 | Seeley | May 2000 | A |
6078850 | Kane et al. | Jun 2000 | A |
6084510 | Lemelson et al. | Jul 2000 | A |
6092008 | Bateman | Jul 2000 | A |
6100964 | De Cremiers | Aug 2000 | A |
6133941 | Ono | Oct 2000 | A |
6154658 | Caci | Nov 2000 | A |
6157317 | Walker | Dec 2000 | A |
6181373 | Coles | Jan 2001 | B1 |
6195609 | Pilley et al. | Feb 2001 | B1 |
6226031 | Barraclough et al. | May 2001 | B1 |
6246320 | Monroe | Jun 2001 | B1 |
6259475 | Ramachandran et al. | Jul 2001 | B1 |
6275231 | Obradovich | Aug 2001 | B1 |
6278965 | Glass et al. | Aug 2001 | B1 |
6282488 | Castor et al. | Aug 2001 | B1 |
6292098 | Ebata | Sep 2001 | B1 |
6356625 | Castellani et al. | Mar 2002 | B1 |
6385772 | Courtney | May 2002 | B1 |
6424370 | Courtney | Jul 2002 | B1 |
6462697 | Klamer et al. | Oct 2002 | B1 |
6476858 | Ramirez Diaz et al. | Nov 2002 | B1 |
6504479 | Lemons | Jan 2003 | B1 |
6522532 | Liao et al. | Feb 2003 | B2 |
6525761 | Sato et al. | Feb 2003 | B2 |
6549130 | Joso | Apr 2003 | B1 |
6556241 | Yoshimura et al. | Apr 2003 | B1 |
6570610 | Kipust | May 2003 | B1 |
6628835 | Brill | Sep 2003 | B1 |
6646676 | DaGraca | Nov 2003 | B1 |
6662649 | Knight et al. | Dec 2003 | B1 |
6675386 | Hendricks et al. | Jan 2004 | B1 |
6698021 | Amini | Feb 2004 | B1 |
6720990 | Walker et al. | Apr 2004 | B1 |
7027719 | Schneider et al. | Apr 2006 | B1 |
7113852 | Kapadia et al. | Sep 2006 | B2 |
7113971 | Ohi et al. | Sep 2006 | B1 |
20030071899 | Joso | Apr 2003 | A1 |
20030097661 | Li et al. | May 2003 | A1 |
20030185296 | Masten, Jr. | Oct 2003 | A1 |
20050055727 | Creamer et al. | Mar 2005 | A1 |
20050130803 | Rastegar | Jun 2005 | A1 |
Number | Date | Country |
---|---|---|
220752 | May 1987 | EP |
532110 | Mar 1993 | EP |
209397 | Jul 1993 | EP |
613109 | Aug 1994 | EP |
613110 | Aug 1994 | EP |
613111 | Aug 1994 | EP |
744630 | Nov 1996 | EP |
785536 | Jul 1997 | EP |
232031 | Aug 1997 | EP |
6-301898 | Oct 1994 | JP |
9-282600 | Oct 1997 | JP |
HEI-10-66058 | Mar 1998 | JP |
A-10-155040 | Jun 1998 | JP |
11-093253 | Apr 1999 | JP |
11-160424 | Jun 1999 | JP |
WO9004242 | Apr 1990 | WO |
WO9527910 | Oct 1995 | WO |
WO9612265 | Apr 1996 | WO |
WO9737336 | Oct 1997 | WO |
WO9852174 | Nov 1998 | WO |
Number | Date | Country | |
---|---|---|---|
20070124042 A1 | May 2007 | US |
Number | Date | Country | |
---|---|---|---|
60428386 | Nov 2002 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 10719796 | Nov 2003 | US |
Child | 11617408 | US |