Blockchain usage is growing. As cryptographic blockchain gains acceptance, improved techniques are needed to provide private record keeping.
The features, aspects, and advantages of the exemplary embodiments are understood when the following Detailed Description is read with reference to the accompanying drawings, wherein:
The exemplary embodiments will now be described more fully hereinafter with reference to the accompanying drawings. The exemplary embodiments may, however, be embodied in many different forms and should not be construed as limited to the embodiments set forth herein. These embodiments are provided so that this disclosure will be thorough and complete and will fully convey the exemplary embodiments to those of ordinary skill in the art. Moreover, all statements herein reciting embodiments, as well as specific examples thereof, are intended to encompass both structural and functional equivalents thereof. Additionally, it is intended that such equivalents include both currently known equivalents as well as equivalents developed in the future (i.e., any elements developed that perform the same function, regardless of structure).
Thus, for example, it will be appreciated by those of ordinary skill in the art that the diagrams, schematics, illustrations, and the like represent conceptual views or processes illustrating the exemplary embodiments. The functions of the various elements shown in the figures may be provided through the use of dedicated hardware as well as hardware capable of executing associated software. Those of ordinary skill in the art further understand that the exemplary hardware, software, processes, methods, and/or operating systems described herein are for illustrative purposes and, thus, are not intended to be limited to any particular named manufacturer.
As used herein, the singular forms “a,” “an,” and “the” are intended to include the plural forms as well, unless expressly stated otherwise. It will be further understood that the terms “includes,” “comprises,” “including,” and/or “comprising,” when used in this specification, specify the presence of stated features, integers, steps, operations, elements, and/or components, but do not preclude the presence or addition of one or more other features, integers, steps, operations, elements, components, and/or groups thereof. It will be understood that when an element is referred to as being “connected” or “coupled” to another element, it can be directly connected or coupled to the other element or intervening elements may be present. Furthermore, “connected” or “coupled” as used herein may include wirelessly connected or coupled. As used herein, the term “and/or” includes any and all combinations of one or more of the associated listed items.
It will also be understood that, although the terms first, second, etc. may be used herein to describe various elements, these elements should not be limited by these terms. These terms are only used to distinguish one element from another. For example, a first device could be termed a second device, and, similarly, a second device could be termed a first device without departing from the teachings of the disclosure.
Here, though, exemplary embodiments allow private record keeping. Even though any usage of the smartphone 24, and/or any software application 22, may be documented within the personal blockchain 54, any of the usage may be marked or designed as private 62. Any usage flagged as private 62 may thus not be shared, published, and/or disclosed, as later paragraphs will explain. So, even though the personal blockchain 54 may immutably record the date, time, and the location 60 of any usage, exemplary embodiments may be configured to not reveal any of the blocks 56 of data within the personal blockchain 54.
The text message 30 may also be private 62. When the user sends or receives the text message 30, the user may wish to keep the text message private 62. That is, even though exemplary embodiments may represent the usage information 70 in the block 56 of data within the personal blockchain 54, the user may wish that the block 56 of data not be revealed to others. The user, for example, may mark the text message 30 with a privacy parameter 64. The privacy parameter 64 is any selection, option, flag, data, or command that indicates the text message 30 is to be private 62. When the blockchain application 50 determines that the text message 30 has been configured as private 62, the blockchain application 50 may indicate that the block 56 of data is also private 62. So, even though the block 56 of data is integrated within the personal blockchain 54, exemplary embodiments may prevent the block 56 of data from being shared with, or sent to, other parties or services. The personal blockchain 54 thus immutably records the date, time, content 76, and the location 60 of the text message 30, but exemplary embodiments may prohibit that information from being publicly revealed.
The user's other devices 20 may generate their own, individual blockchains. For example, any time the tablet computer 110 is used, its locally-stored blockchain application 50 collects the corresponding usage information 70b and generates the personal blockchain 54b that is dedicated to or represents the tablet computer 110. The personal blockchain 54b thus immutably documents any usage information 70b received by, generated by, and/or transmitted by the tablet computer 110. Similarly, whenever the desktop computer 112 and the smartwatch 114 operate, the locally-stored blockchain applications 50c-d collects the corresponding usage information 70c-d and generates entries in the personal blockchains 54c-d that is specific, respectively, to the desktop computer 112 and to the smartwatch 114. The personal blockchains 54c-d thus immutably document any device-specific usage information 70c-d received by, generated by, and/or transmitted by the desktop computer 112 and the smartwatch 114. Exemplary embodiments permit the user to mark any usage information 70a-d with the privacy parameter 64a-d, thus preventing the corresponding personal blockchain 54a-d from publicly revealing specific usage.
As
Some of the usage information 70, though, may be private 62. That is, if any of the usage information 70 includes or indicates the privacy parameter 64, then the cloud-based blockchain service 122 may decline or fail to publicly publish or distribute via the public blockchain 130. The third-party server 124 may still generate the data records 132 in the blockchain data layer 134, and the third-party server 124 may also add the additional layer of cryptographic hashing to generate the cryptographic proofs 136. The cryptographic proofs 136 may be incorporated into the personal blockchain 54, as the privacy parameter 64 may permit. However, the cryptographic proofs 136 may not be incorporated into the public blockchain 130, in response to the privacy parameter 64.
The blockchain data layer 134 may thus have public and private portions. As the third-party server 124 generates the data records 132 in the blockchain data layer 134, some of the data records 134 may be private data records 138 and some of the data records 134 may be public data records 139. The private data records 138 may be generated based on the usage information 70 indicating or including the privacy parameter 64. The public data records 139 may be generated based on the usage information 70 lacking an association with, or indication of, the privacy parameter 64. The private data records 138 and the public data records 139 may both be incorporated into the personal blockchain 54. The private data records 138, though, may be impermissible for integration into the public blockchain 130. The private data records 138 may even be tagged with or include metadata indicating the privacy parameter 64 to help prevent public disclosure. Moreover, exemplary embodiments may even segregate or differentiate the private data records 138 from the public data records 139 to further ensure no public disclosure.
Exemplary embodiments thus present an elegant solution. Exemplary embodiments may generate the personal blockchain 54 that documents personal usage of a single device (such as the smartphone 24). However, when the multiple devices 20 are associated with the same user (perhaps by a common user identifier, account, or authentication scheme), exemplary embodiments may additionally or alternatively create the user-specific, personal blockchain 54 that documents personal usage of all her multiple devices 20. Because some usage may be unworthy or not meaningful for blockchain documentation, exemplary embodiments may also permit selection of individual, historical usage that deserves the blockchain recordation 140. Because blockchain technology integrates or chains cryptographically hashed blocks of data, timestamps, and other data, the personal blockchain 54 may thus be a distributed ledger that privately records transactional usage. Moreover, any of the usage may be designated or authorized for public disclosure. The user, in other words, may choose which usage may be cryptographically published as a public witness via anchor(s) to the public blockchain 130.
The usage information 70 may be any device or network data. While the usage information 70 may be any electronic data or representation, the usage information 70 is likely binary data or values. The usage information 70 may represent names, text, biometric identification (e.g., fingerprint, Iris, and/or voice), Internet protocol address(es), domain name information, audio, video, image, web page, time, location (e.g., GPS), key or touch inputs (clickstream data), hardware serial numbers, cellular identifiers, and any other data or information describing an input or output. The usage information 70 may also include or represent any alphanumeric combination that uniquely identifies the smartphone 24, such as the smartphone's cellular telephone number (or CTN), International Mobile Subscriber Identity (or IMSI), or Mobile Station International Subscriber Directory Number (MSISDN).
Exemplary embodiments may thus cooperate in a client/server fashion. The user's device 20 and the third-party server 124 may cooperate to send, receive, and/or generate the service request 200, the service result 202, and/or the data records 132 associated with the blockchain data layer 134. The blockchain application 50 and the service application 192 may likewise cooperate to send, receive, and/or generate the personal blockchain 54 and/or the public blockchain 130.
Exemplary embodiments include still more publication mechanisms. For example, the cryptographic proof 136 and/or the public blockchain 130 may be sent (via the communications network 170 illustrated in
Exemplary embodiments may be applied regardless of networking environment. Exemplary embodiments may be easily adapted to stationary or mobile devices having cellular, wireless fidelity (WI-FI®), near field, and/or BLUETOOTH® capability. Exemplary embodiments may be applied to mobile devices utilizing any portion of the electromagnetic spectrum and any signaling standard (such as the IEEE 802 family of standards, GSM/CDMA/TDMA or any cellular standard, and/or the ISM band). Exemplary embodiments, however, may be applied to any processor-controlled device operating in the radio-frequency domain and/or the Internet Protocol (IP) domain. Exemplary embodiments may be applied to any processor-controlled device utilizing a distributed computing network, such as the Internet (sometimes alternatively known as the “World Wide Web”), an intranet, a local-area network (LAN), and/or a wide-area network (WAN). Exemplary embodiments may be applied to any processor-controlled device utilizing power line technologies, in which signals are communicated via electrical wiring. Indeed, exemplary embodiments may be applied regardless of physical componentry, physical configuration, or communications standard(s).
Exemplary embodiments may utilize any processing component, configuration, or system. Any processor could be multiple processors, which could include distributed processors or parallel processors in a single machine or multiple machines. The processor can be used in supporting a virtual processing environment. The processor could include a state machine, application specific integrated circuit (ASIC), programmable gate array (PGA) including a Field PGA, or state machine. When any of the processors execute instructions to perform “operations,” this could include the processor performing the operations directly and/or facilitating, directing, or cooperating with another device or component to perform the operations.
Exemplary embodiments may packetize. When any device or server communicates via the communications network 170, the device or server may collect, send, and retrieve information. The information may be formatted or generated as packets of data according to a packet protocol (such as the Internet Protocol). The packets of data contain bits or bytes of data describing the contents, or payload, of a message. A header of each packet of data may contain routing information identifying an origination address and/or a destination address.
As
Exemplary embodiments may use any hashing function. Many readers may be familiar with the SHA-256 hashing algorithm. The SHA-256 hashing algorithm acts on any electronic data or information to generate a 256-bit hash value as a cryptographic key. The key is thus a unique digital signature. There are many hashing algorithms, though, and exemplary embodiments may be adapted to any hashing algorithm.
Exemplary embodiments may also assign a user identifier 252. Because the user may have multiple, different devices (as explained with reference to
Exemplary embodiments represent a personal archive. As any data record 132 is generated, exemplary embodiments may reference the data record 132 in the electronic database 260. The cloud-based blockchain service 122 may thus also function as a query handler to receive queries from clients. A query may specify any query parameter and the cloud-based blockchain service 122 looks up and/or retrieves the corresponding entries. For example, a client submitting a query may specify the device identifier 250, and the cloud-based blockchain service 122 generates a query response that identifies all the data records 132 that are associated with the device identifier 250. If the query parameter specifies the user account or user identifier 252, then the cloud-based blockchain service 122 may identify all the data records 132 that are associated with the same user. Indeed, because the data records 132 may also be cataloged or logged according to time (such as the window 232 of time illustrated with reference to
Hash matching may also be used. When the blockchain application 50 collects the usage information 70, the blockchain application 50 may hash the usage information 70 (using the hashing algorithm 180) to generate the hash values 182. The blockchain application 50 may then query the electronic database 260 for any of the hash values 182. If any entry matches any hash value 182, then exemplary embodiments infer that the private blockchain recordation 141 is desired. However, if the database 260 fails to match the hash values 182, then exemplary embodiments infer that the public blockchain recordation 143 is desired.
Privacy may thus be automatically implemented. This disclosure above explained how the user's device 20 may identify itself using its corresponding device identifier 250. For example, when the device 20 sends its respective blocks 56 of data in the device-specific personal blockchain 54, the block 56 of data may include, contain, specify, or reference the corresponding device identifier 250. As the third-party server 124 provides the cloud-based blockchain service 122 (such as generating the data records 132 in the blockchain data layer 134), exemplary embodiments may thus carry or notate the data records 132 with the device identifier 250. The device identifier 250, in other words, may be used to cross-reference or annotate the data records 132 with the chain identifier 224.
The cloud-based blockchain service 122 may access the electronic database 260 of privacy. The third-party server 124 may locally store or access the database 260 of privacy as a portion of the cloud-based blockchain service 122. When the third-party server 124 receives the block 56 of data referencing the device identifier 250, the third-party server 124 may query the database 260 of privacy for the device identifier 250. Here the database 260 of privacy may have entries that map, relate, or associate the device identifier 250 to the privacy parameter 64. If a database entry matches the device identifier 250, then the third-party server 124 may identify its corresponding privacy parameter 64. The cloud-based blockchain service 122, in other words, may infer that the block 56 of data is preconfigured for private blockchaining.
The cloud-based blockchain service 122 may thus generate the private data records 138. Because the device identifier 250 is associated with private blockchaining (perhaps via the privacy parameter 64 identified in the database 260 of privacy), the third-party server 124 may generate the private data records 138 in the blockchain data layer 134. The third-party server 124 may also add the additional layer of cryptographic hashing to generate the cryptographic proofs 136, and the cryptographic proofs 136 may be incorporated into the personal blockchain 54. However, the cryptographic proofs 136 may not be incorporated into the public blockchain 130, in response to the privacy parameter 64. Indeed, the private data records 138 may be tagged with or include metadata indicating the privacy parameter 64 to help prevent public disclosure.
User-based privacy may also be automatically implemented. This disclosure above explained how the user's device 20 may send its unique device identifier 250 and the common user account or user identifier 252. The user account or user identifier 252, in other words, may be sent to accompany, or included within, the block 56 of data, perhaps as packet information or metadata. As the third-party server 124 provides the cloud-based blockchain service 122 (such as generating the data records 132 in the blockchain data layer 134), exemplary embodiments may thus additionally or alternatively carry or notate the data records 132 with the user identifier 252. The device identifier 250 and/or the user identifier 252, in other words, may be used to cross-reference or annotate the data records 132 with the chain identifier 224.
The cloud-based blockchain service 122 may access the electronic database 260 of privacy. When the third-party server 124 receives the block 56 of data referencing the device identifier 250 and/or the user identifier 252, the third-party server 124 may query the database 260 of privacy for either or both of the device identifier 250 and the user identifier 252. The database 260 of privacy may thus have entries that map, relate, or associate the device identifier 250 and/or the user identifier 252 to the privacy parameter 64. If a database entry matches either or both of the device identifier 250 and the user identifier 252, then the third-party server 124 may identify the corresponding privacy parameter 64. The cloud-based blockchain service 122, in other words, may infer that the block 56 of data is preconfigured for private blockchaining.
The cloud-based blockchain service 122 may thus generate the private data records 138. Because the device identifier 250 and/or the user identifier 252 is associated with private blockchaining (perhaps via the privacy parameter 64 identified in the database 260 of privacy), the third-party server 124 may generate the private data records 138 in the blockchain data layer 134. The third-party server 124 may also add the additional layer of cryptographic hashing to generate the cryptographic proofs 136, and the cryptographic proofs 136 may be incorporated into the personal blockchain 54. However, the cloud-based blockchain service 122 may be prohibited from incorporating the cryptographic proofs 136 into the public blockchain 130, in response to the privacy parameter 64. Indeed, the private data records 138 may be tagged with or include metadata indicating the privacy parameter 64 to help prevent public disclosure.
Chain-based privacy may also be automatically implemented. This disclosure above explained how the device 20, and/or the user, may have its/her corresponding chain identifier 224. For example, should the blockchain application 50 generate the personal blockchain 54, the personal blockchain 54 and/or any block 56 of data may include, specify, or reference the chain identifier 224, perhaps as packet information or metadata or a known or predetermined hash value. So, as the third-party server 124 provides the cloud-based blockchain service 122 (such as generating the data records 132 in the blockchain data layer 134), exemplary embodiments may thus additionally or alternatively carry or notate the data records 132 with the chain identifier 224. Indeed, exemplary embodiments may cross-reference the device identifier 250 and/or the user identifier 252 with the chain identifier 224, thus allowing any data record 132 to be annotated, identified, and retrieved.
The cloud-based blockchain service 122 may access the electronic database 260 of privacy. When the third-party server 124 receives the block 56 of data referencing any of the device identifier 250, the user identifier 252, and/or the chain identifier 224, the third-party server 124 may query the database 260 of privacy for either query parameter. The database 260 of privacy may thus have entries that map, relate, or associate the device identifier 250, the user identifier 252, and/or the chain identifier 224 to the privacy parameter 64. If a matching database entry is determined, then the third-party server 124 may identify the corresponding privacy parameter 64. The cloud-based blockchain service 122, in other words, may infer that the block 56 of data is preconfigured for private blockchaining.
The cloud-based blockchain service 122 may thus generate the private data records 138. Because any of the device identifier 250, the user identifier 252, and/or the chain identifier 224 is associated with private blockchaining (perhaps via the privacy parameter 64 identified in the database 260 of privacy), the third-party server 124 may generate the private data records 138 in the blockchain data layer 134. The third-party server 124 may also add the additional layer of cryptographic hashing to generate the cryptographic proofs 136, and the cryptographic proofs 136 may be incorporated into the personal blockchain 54. However, the cloud-based blockchain service 122 may be prohibited from incorporating the cryptographic proofs 136 into the public blockchain 130, in response to the privacy parameter 64. Indeed, the private data records 138 may be tagged with or include metadata indicating the privacy parameter 64 to help prevent public disclosure.
Usage-based privacy may also be automatically implemented. Exemplary embodiments may apply private blockchaining based on the usage information 70. This disclosure above explained how exemplary embodiments may send or push the usage information 70 to the third-party server 124. When the third-party server 124 receives the usage information 70, here the third-party server 124 may consult the electronic database 260 of privacy. That is, the third-party server 124 may query the database 260 of privacy for any data or information described by, or included with, the usage information 70. The database 260 of privacy may thus have entries that map, relate, or associate the usage information 70 to the privacy parameter 64. If a matching database entry is determined, then the third-party server 124 may identify the corresponding privacy parameter 64. The cloud-based blockchain service 122, in other words, may infer that private blockchaining is authorized.
The cloud-based blockchain service 122 may thus generate the private data records 138. Because any of the device identifier 250, the user identifier 252, the chain identifier 224, and/or the usage information 70 may be associated with private blockchaining (perhaps via the privacy parameter 64 identified in the database 260 of privacy), the third-party server 124 may generate the private data records 138 in the blockchain data layer 134. The third-party server 124 may also add the additional layer of cryptographic hashing to generate the cryptographic proofs 136, and the cryptographic proofs 136 may be incorporated into the personal blockchain 54. However, the cloud-based blockchain service 122 may be prohibited from incorporating the cryptographic proofs 136 into the public blockchain 130, in response to the privacy parameter 64. Indeed, the private data records 138 may be tagged with or include metadata indicating the privacy parameter 64 to help prevent public disclosure.
The privacy parameter 64 may be unique to the user and/or to the device 20. The privacy parameter 64 may be a unique hash value that indicates private blockchaining. Suppose, for example, that the privacy parameter 64 is any alphanumeric combination that may be associated with private blockchaining. The user, for example, may select the privacy parameter 64 as a multi-character privacy phrase that uniquely indicates private blockchaining is desired. The cloud-based blockchain service 122, however, may select and assign the privacy parameter 64 (perhaps again as a multi-character text string). Regardless, exemplary embodiments may then hash the privacy parameter 64 to yield a unique, private hash value. Thereafter, whenever the private hash value is encountered, exemplary embodiments may apply private blockchaining. For example, the blockchain application 50 may instruct the device 20 to send the private hash value to the third-party server 124 providing the cloud-based blockchain service 122. The block 56 of data in the personal blockchain 54 may specify the private hash value, or the usage information 70 may specify the private hash value. Regardless, when third-party server 124 receives the block 56 of data and/or the usage information 70, the third-party server 124 may inspect either for the private hash value. The database 260 may thus be a simple list of different hash values for which the private blockchain recordation 141 is implemented (such as illustrated by
Exemplary embodiments may be applied to any signaling standard. Most readers are thought familiar with the Global System for Mobile (GSM) communications signaling standard. Those of ordinary skill in the art, however, also recognize that exemplary embodiments are equally applicable to any communications device utilizing the Time Division Multiple Access signaling standard, the Code Division Multiple Access signaling standard, the “dual-mode” GSM-ANSI Interoperability Team (GAIT) signaling standard, or any variant of the GSM/CDMA/TDMA signaling standard. Exemplary embodiments may also be applied to other standards, such as the I.E.E.E. 802 family of standards, the Industrial, Scientific, and Medical band of the electromagnetic spectrum, BLUETOOTH®, and any other.
Exemplary embodiments may be physically embodied on or in a computer-readable non-transitory storage medium. This computer-readable medium, for example, may include CD-ROM, DVD, tape, cassette, floppy disk, optical disk, memory card, memory drive, and large-capacity disks. This computer-readable medium, or media, could be distributed to end-subscribers, licensees, and assignees. A computer program product comprises processor-executable instructions for private processing in blockchain environments, as the above paragraphs explain.
While the exemplary embodiments have been described with respect to various features, aspects, and embodiments, those skilled and unskilled in the art will recognize the exemplary embodiments are not so limited. Other variations, modifications, and alternative embodiments may be made without departing from the spirit and scope of the exemplary embodiments.
This patent application is a continuation of U.S. application Ser. No. 15/983,655 filed May 18, 2018, since issued as U.S. Patent X, and incorporated herein by reference in its entirety. This patent application also relates to U.S. application Ser. No. 15/983,572 filed May 18, 2018 and incorporated herein by reference in its entirety. This patent application also relates to U.S. application Ser. No. 15/983,595 filed May 18, 2018 and incorporated herein by reference in its entirety. This patent application also relates to U.S. application Ser. No. 15/983,612 filed May 18, 2018, since issued as U.S. Pat. No. 10,783,164, and incorporated herein by reference in its entirety. This patent application also relates to U.S. application Ser. No. 15/983,635 filed May 18, 2018 and incorporated herein by reference in its entirety.
Number | Name | Date | Kind |
---|---|---|---|
4309569 | Merkle | Jan 1982 | A |
5499294 | Friedman | Mar 1996 | A |
5606609 | Houser | Feb 1997 | A |
5862218 | Steinberg | Jan 1999 | A |
5920629 | Rosen | Jul 1999 | A |
5966446 | Davis | Oct 1999 | A |
6363481 | Hardjono | Mar 2002 | B1 |
7028263 | Maguire | Apr 2006 | B2 |
7212808 | Engstrom | May 2007 | B2 |
7272179 | Siemens et al. | Sep 2007 | B2 |
7572179 | Choi et al. | Aug 2009 | B2 |
7729950 | Mendizabal et al. | Jun 2010 | B2 |
7730113 | Payette | Jun 2010 | B1 |
8245038 | Golle et al. | Aug 2012 | B2 |
8266439 | Haber et al. | Sep 2012 | B2 |
8359361 | Thornton | Jan 2013 | B2 |
8442903 | Zadoorian et al. | May 2013 | B2 |
8560722 | Gates et al. | Oct 2013 | B2 |
8612477 | Becker | Dec 2013 | B2 |
8706616 | Flynn | Apr 2014 | B1 |
8712887 | DeGroeve et al. | Apr 2014 | B2 |
8867741 | McCorkindale et al. | Oct 2014 | B2 |
8943332 | Horne et al. | Jan 2015 | B2 |
8990322 | Cai | Mar 2015 | B2 |
9094359 | Olsen | Jul 2015 | B2 |
9124423 | Jennas, II et al. | Sep 2015 | B2 |
9325653 | Peterson | Apr 2016 | B1 |
9378343 | David | Jun 2016 | B1 |
9396006 | Kundu et al. | Jul 2016 | B2 |
9398018 | MacGregor | Jul 2016 | B2 |
9407431 | Bellare et al. | Aug 2016 | B2 |
9411524 | O'Hare et al. | Aug 2016 | B2 |
9411976 | Irvine | Aug 2016 | B2 |
9411982 | Dippenaar et al. | Aug 2016 | B1 |
9424576 | Vandervort | Aug 2016 | B2 |
9436923 | Sriram | Sep 2016 | B1 |
9436935 | Hudon | Sep 2016 | B2 |
9472069 | Roskowski | Oct 2016 | B2 |
9489827 | Quinn et al. | Nov 2016 | B2 |
9584493 | Leavy | Feb 2017 | B1 |
9588790 | Wagner | Mar 2017 | B1 |
9647977 | Levasseur | May 2017 | B2 |
9722790 | Ebrahimi | Aug 2017 | B2 |
9818109 | Loh | Nov 2017 | B2 |
9830580 | MacGregor | Nov 2017 | B2 |
9875510 | Kasper | Jan 2018 | B1 |
9876646 | Ebrahimi | Jan 2018 | B2 |
9882918 | Ford et al. | Jan 2018 | B1 |
10025941 | Griffin | Jul 2018 | B1 |
10046228 | Tran | Aug 2018 | B2 |
10102265 | Madisetti | Oct 2018 | B1 |
10102526 | Madisetti | Oct 2018 | B1 |
10108954 | Dunlevy | Oct 2018 | B2 |
10135607 | Roets | Nov 2018 | B1 |
10163080 | Chow | Dec 2018 | B2 |
10270599 | Nadeau | Apr 2019 | B2 |
10346815 | Glover | Jul 2019 | B2 |
10355869 | Bisti | Jul 2019 | B2 |
10366204 | Tanner, Jr. | Jul 2019 | B2 |
10373129 | James | Aug 2019 | B1 |
10411897 | Paolini-Subramanya | Sep 2019 | B2 |
10419225 | Deery | Sep 2019 | B2 |
10438285 | Konstantinides | Oct 2019 | B1 |
10476847 | Smith | Nov 2019 | B1 |
10532268 | Tran | Jan 2020 | B2 |
10586270 | Reddy | Mar 2020 | B2 |
10628268 | Baruch | Apr 2020 | B1 |
10685399 | Snow | Jun 2020 | B2 |
10693652 | Nadeau | Jun 2020 | B2 |
10749848 | Voell | Aug 2020 | B2 |
10764752 | Avetisov | Sep 2020 | B1 |
10783164 | Snow | Sep 2020 | B2 |
10817873 | Paolini-Subramanya | Oct 2020 | B2 |
10826685 | Campagna | Nov 2020 | B1 |
10855446 | Ow | Dec 2020 | B2 |
10873457 | Beaudoin | Dec 2020 | B1 |
10915895 | Fogg | Feb 2021 | B1 |
10929842 | Arvanaghi | Feb 2021 | B1 |
10949926 | Call | Mar 2021 | B1 |
10956973 | Chang | Mar 2021 | B1 |
10958418 | Ajoy | Mar 2021 | B2 |
10965632 | Golan | Mar 2021 | B2 |
10997159 | Iwama | May 2021 | B2 |
11042871 | Snow | Jun 2021 | B2 |
11044095 | Lynde | Jun 2021 | B2 |
11044097 | Snow | Jun 2021 | B2 |
11044100 | Deery | Jun 2021 | B2 |
11063770 | Peng | Jul 2021 | B1 |
11075744 | Tormasov | Jul 2021 | B2 |
11093933 | Peng | Aug 2021 | B1 |
11134120 | Snow | Sep 2021 | B2 |
11164250 | Snow | Nov 2021 | B2 |
11164254 | Gordon, III | Nov 2021 | B1 |
11170366 | Snow | Nov 2021 | B2 |
11205172 | Snow | Dec 2021 | B2 |
11276056 | Snow | Mar 2022 | B2 |
11295296 | Snow | Apr 2022 | B2 |
11296889 | Snow | Apr 2022 | B2 |
11328290 | Snow | May 2022 | B2 |
11334874 | Snow | May 2022 | B2 |
11347769 | Snow | May 2022 | B2 |
11348097 | Snow | May 2022 | B2 |
11348098 | Snow | May 2022 | B2 |
11423398 | Mullins | Aug 2022 | B1 |
11443370 | Snow | Sep 2022 | B2 |
20010029482 | Tealdi | Oct 2001 | A1 |
20030018563 | Kilgour et al. | Jan 2003 | A1 |
20040085445 | Park | May 2004 | A1 |
20050206741 | Raber | Sep 2005 | A1 |
20060075228 | Black et al. | Apr 2006 | A1 |
20060184443 | Erez et al. | Aug 2006 | A1 |
20070027787 | Tripp | Feb 2007 | A1 |
20070094272 | Yeh | Apr 2007 | A1 |
20070174630 | Shannon | Jul 2007 | A1 |
20070296817 | Ebrahimi et al. | Dec 2007 | A1 |
20080010466 | Hopper | Jan 2008 | A1 |
20080028439 | Shevade | Jan 2008 | A1 |
20080059726 | Rozas | Mar 2008 | A1 |
20090025063 | Thomas | Jan 2009 | A1 |
20090287597 | Bahar | Nov 2009 | A1 |
20100049966 | Kato | Feb 2010 | A1 |
20100058476 | Isoda | Mar 2010 | A1 |
20100161459 | Kass et al. | Jun 2010 | A1 |
20100228798 | Kodama | Sep 2010 | A1 |
20100241537 | Kass et al. | Sep 2010 | A1 |
20110061092 | Bailloeul | Mar 2011 | A1 |
20110161674 | Ming | Jun 2011 | A1 |
20120203670 | Piersol | Aug 2012 | A1 |
20120264520 | Marsland | Oct 2012 | A1 |
20130142323 | Chiarella | Jun 2013 | A1 |
20130222587 | Roskowski | Aug 2013 | A1 |
20130275765 | Lay | Oct 2013 | A1 |
20130276058 | Buldas | Oct 2013 | A1 |
20140022973 | Kopikare | Jan 2014 | A1 |
20140201541 | Paul | Jul 2014 | A1 |
20140229738 | Sato | Aug 2014 | A1 |
20140282852 | Vestevich | Sep 2014 | A1 |
20140289802 | Lee | Sep 2014 | A1 |
20140297447 | O'Brien | Oct 2014 | A1 |
20140344015 | Puertolas-Montasnes et al. | Nov 2014 | A1 |
20150193633 | Chida | Jul 2015 | A1 |
20150206106 | Yago | Jul 2015 | A1 |
20150242835 | Vaughan | Aug 2015 | A1 |
20150244729 | Mao | Aug 2015 | A1 |
20150309831 | Powers | Oct 2015 | A1 |
20150332256 | Minor | Nov 2015 | A1 |
20150363769 | Ronca | Dec 2015 | A1 |
20150378627 | Kitazawa | Dec 2015 | A1 |
20150379484 | McCarthy | Dec 2015 | A1 |
20160002923 | Alobily | Jan 2016 | A1 |
20160012240 | Smith | Jan 2016 | A1 |
20160021743 | Pai | Jan 2016 | A1 |
20160071096 | Rosca | Mar 2016 | A1 |
20160098578 | Hincker | Apr 2016 | A1 |
20160119134 | Hakoda et al. | Apr 2016 | A1 |
20160148198 | Kelley | May 2016 | A1 |
20160162897 | Feeney | Jun 2016 | A1 |
20160217436 | Brama | Jul 2016 | A1 |
20160239653 | Loughlin-Mchugh | Aug 2016 | A1 |
20160253663 | Clark et al. | Sep 2016 | A1 |
20160260091 | Tobias | Sep 2016 | A1 |
20160267472 | Lingham et al. | Sep 2016 | A1 |
20160267558 | Bonnell et al. | Sep 2016 | A1 |
20160275294 | Irvine | Sep 2016 | A1 |
20160283920 | Fisher et al. | Sep 2016 | A1 |
20160292396 | Akerwall | Oct 2016 | A1 |
20160292672 | Fay et al. | Oct 2016 | A1 |
20160292680 | Wilson, Jr. et al. | Oct 2016 | A1 |
20160294783 | Piqueras Jover | Oct 2016 | A1 |
20160300200 | Brown et al. | Oct 2016 | A1 |
20160300234 | Moss-Pultz et al. | Oct 2016 | A1 |
20160321675 | McCoy et al. | Nov 2016 | A1 |
20160321751 | Creighton, IV et al. | Nov 2016 | A1 |
20160321769 | McCoy | Nov 2016 | A1 |
20160328791 | Parsells et al. | Nov 2016 | A1 |
20160330031 | Drego et al. | Nov 2016 | A1 |
20160330244 | Denton | Nov 2016 | A1 |
20160337119 | Hosaka et al. | Nov 2016 | A1 |
20160342977 | Lam | Nov 2016 | A1 |
20160342989 | Davis | Nov 2016 | A1 |
20160344737 | Anton et al. | Nov 2016 | A1 |
20160371771 | Serrano | Dec 2016 | A1 |
20170000613 | Lerf | Jan 2017 | A1 |
20170005797 | Lanc et al. | Jan 2017 | A1 |
20170005804 | Zinder | Jan 2017 | A1 |
20170033933 | Haber | Feb 2017 | A1 |
20170053249 | Tunnell et al. | Feb 2017 | A1 |
20170061396 | Melika et al. | Mar 2017 | A1 |
20170075938 | Black | Mar 2017 | A1 |
20170103167 | Shah | Apr 2017 | A1 |
20170124534 | Savolainen | May 2017 | A1 |
20170124535 | Juels et al. | May 2017 | A1 |
20170134162 | Code | May 2017 | A1 |
20170148016 | Davis | May 2017 | A1 |
20170161439 | Raduchel | Jun 2017 | A1 |
20170177898 | Dillenberger | Jun 2017 | A1 |
20170178237 | Wong | Jun 2017 | A1 |
20170213287 | Bruno | Jul 2017 | A1 |
20170221052 | Sheng | Aug 2017 | A1 |
20170228731 | Sheng | Aug 2017 | A1 |
20170236123 | Ali | Aug 2017 | A1 |
20170243208 | Kurian et al. | Aug 2017 | A1 |
20170243289 | Rufo | Aug 2017 | A1 |
20170244757 | Castinado et al. | Aug 2017 | A1 |
20170330279 | Ponzone | Nov 2017 | A1 |
20170344983 | Muftic | Nov 2017 | A1 |
20170346693 | Dix | Nov 2017 | A1 |
20170352031 | Collin | Dec 2017 | A1 |
20170353309 | Gray | Dec 2017 | A1 |
20170359374 | Smith | Dec 2017 | A1 |
20170364642 | Bogdanowicz | Dec 2017 | A1 |
20170373859 | Shors et al. | Dec 2017 | A1 |
20180005186 | Hunn | Jan 2018 | A1 |
20180048599 | Arghandiwal | Feb 2018 | A1 |
20180075239 | Boutnaru | Mar 2018 | A1 |
20180075527 | Nagla et al. | Mar 2018 | A1 |
20180082043 | Witchey | Mar 2018 | A1 |
20180088928 | Smith | Mar 2018 | A1 |
20180091524 | Setty | Mar 2018 | A1 |
20180097779 | Karame et al. | Apr 2018 | A1 |
20180101701 | Barinov | Apr 2018 | A1 |
20180101842 | Ventura | Apr 2018 | A1 |
20180108024 | Greco | Apr 2018 | A1 |
20180117446 | Tran | May 2018 | A1 |
20180123779 | Zhang | May 2018 | A1 |
20180139042 | Binning | May 2018 | A1 |
20180144292 | Mattingly | May 2018 | A1 |
20180157700 | Roberts | Jun 2018 | A1 |
20180158034 | Hunt | Jun 2018 | A1 |
20180167201 | Naqvi | Jun 2018 | A1 |
20180173906 | Rodriguez | Jun 2018 | A1 |
20180176017 | Rodriguez | Jun 2018 | A1 |
20180181768 | Leporini | Jun 2018 | A1 |
20180182042 | Vinay | Jun 2018 | A1 |
20180189333 | Childress | Jul 2018 | A1 |
20180189781 | McCann | Jul 2018 | A1 |
20180204213 | Zappier | Jul 2018 | A1 |
20180219683 | Deery | Aug 2018 | A1 |
20180219685 | Deery | Aug 2018 | A1 |
20180225640 | Chapman | Aug 2018 | A1 |
20180225649 | Babar | Aug 2018 | A1 |
20180225693 | Postrel | Aug 2018 | A1 |
20180241565 | Paolini-Subramanya | Aug 2018 | A1 |
20180260888 | Paolini-Subramanya | Sep 2018 | A1 |
20180260889 | Paolini-Subramanya | Sep 2018 | A1 |
20180268162 | Dillenberger | Sep 2018 | A1 |
20180268382 | Wasserman | Sep 2018 | A1 |
20180268504 | Paolini-Subramanya | Sep 2018 | A1 |
20180276270 | Bisbee | Sep 2018 | A1 |
20180276668 | Li | Sep 2018 | A1 |
20180276745 | Paolini-Subramanya | Sep 2018 | A1 |
20180285879 | Gadnis | Oct 2018 | A1 |
20180285970 | Snow | Oct 2018 | A1 |
20180285971 | Rosenoer | Oct 2018 | A1 |
20180288022 | Madisetti | Oct 2018 | A1 |
20180315051 | Hurley | Nov 2018 | A1 |
20180316502 | Nadeau | Nov 2018 | A1 |
20180356236 | Lawrenson | Dec 2018 | A1 |
20180365201 | Hunn | Dec 2018 | A1 |
20180365686 | Kondo | Dec 2018 | A1 |
20180365764 | Nelson | Dec 2018 | A1 |
20180367298 | Wright | Dec 2018 | A1 |
20190012637 | Gillen | Jan 2019 | A1 |
20190013948 | Mercuri | Jan 2019 | A1 |
20190018947 | Li | Jan 2019 | A1 |
20190028273 | Harras | Jan 2019 | A1 |
20190034459 | Qiu | Jan 2019 | A1 |
20190036887 | Miller | Jan 2019 | A1 |
20190036957 | Smith | Jan 2019 | A1 |
20190043048 | Wright | Feb 2019 | A1 |
20190044727 | Scott | Feb 2019 | A1 |
20190050855 | Martino | Feb 2019 | A1 |
20190057382 | Wright | Feb 2019 | A1 |
20190065709 | Salomon | Feb 2019 | A1 |
20190073666 | Ortiz | Mar 2019 | A1 |
20190080284 | Kim | Mar 2019 | A1 |
20190081793 | Martino | Mar 2019 | A1 |
20190081796 | Chow | Mar 2019 | A1 |
20190087446 | Sharma | Mar 2019 | A1 |
20190123889 | Schmidt-Karaca | Apr 2019 | A1 |
20190132350 | Smith | May 2019 | A1 |
20190188699 | Thibodeau | Jun 2019 | A1 |
20190197532 | Jayachandran | Jun 2019 | A1 |
20190205563 | Gonzales, Jr. | Jul 2019 | A1 |
20190236286 | Scriber | Aug 2019 | A1 |
20190251557 | Jin | Aug 2019 | A1 |
20190253240 | Treat | Aug 2019 | A1 |
20190253258 | Thekadath | Aug 2019 | A1 |
20190268141 | Pandurangan | Aug 2019 | A1 |
20190268163 | Nadeau | Aug 2019 | A1 |
20190281259 | Palazzolo | Sep 2019 | A1 |
20190287107 | Gaur | Sep 2019 | A1 |
20190287199 | Messerges | Sep 2019 | A1 |
20190287200 | Schuler | Sep 2019 | A1 |
20190288832 | Dang | Sep 2019 | A1 |
20190296915 | Lancashire | Sep 2019 | A1 |
20190303623 | Reddy | Oct 2019 | A1 |
20190303887 | Wright | Oct 2019 | A1 |
20190306150 | Letz | Oct 2019 | A1 |
20190311357 | Madisetti | Oct 2019 | A1 |
20190324867 | Tang | Oct 2019 | A1 |
20190332691 | Beadles | Oct 2019 | A1 |
20190333054 | Cona | Oct 2019 | A1 |
20190334715 | Gray | Oct 2019 | A1 |
20190334912 | Sloane | Oct 2019 | A1 |
20190340586 | Sheng | Nov 2019 | A1 |
20190340607 | Lynn | Nov 2019 | A1 |
20190342422 | Li | Nov 2019 | A1 |
20190347444 | Lowagie | Nov 2019 | A1 |
20190347628 | Al-Naji | Nov 2019 | A1 |
20190349190 | Smith | Nov 2019 | A1 |
20190349426 | Smith | Nov 2019 | A1 |
20190354606 | Snow | Nov 2019 | A1 |
20190354607 | Snow | Nov 2019 | A1 |
20190354611 | Snow | Nov 2019 | A1 |
20190354724 | Lowagie | Nov 2019 | A1 |
20190354725 | Lowagie | Nov 2019 | A1 |
20190354964 | Snow | Nov 2019 | A1 |
20190356733 | Snow | Nov 2019 | A1 |
20190361917 | Tran | Nov 2019 | A1 |
20190372770 | Xu | Dec 2019 | A1 |
20190378128 | Moore | Dec 2019 | A1 |
20190385165 | Castinado | Dec 2019 | A1 |
20190386940 | Hong | Dec 2019 | A1 |
20190391540 | Westervelt | Dec 2019 | A1 |
20190391858 | Studnicka | Dec 2019 | A1 |
20190394044 | Snow | Dec 2019 | A1 |
20190394048 | Deery | Dec 2019 | A1 |
20200004263 | Dalla Libera | Jan 2020 | A1 |
20200004946 | Gilpin | Jan 2020 | A1 |
20200005290 | Madisetti | Jan 2020 | A1 |
20200019937 | Edwards | Jan 2020 | A1 |
20200034571 | Fett | Jan 2020 | A1 |
20200034813 | Calinog | Jan 2020 | A1 |
20200042635 | Douglass | Feb 2020 | A1 |
20200042960 | Cook | Feb 2020 | A1 |
20200042982 | Snow | Feb 2020 | A1 |
20200042983 | Snow | Feb 2020 | A1 |
20200042984 | Snow | Feb 2020 | A1 |
20200042985 | Snow | Feb 2020 | A1 |
20200042986 | Snow | Feb 2020 | A1 |
20200042987 | Snow | Feb 2020 | A1 |
20200042988 | Snow | Feb 2020 | A1 |
20200042990 | Snow | Feb 2020 | A1 |
20200042995 | Snow et al. | Feb 2020 | A1 |
20200044827 | Snow | Feb 2020 | A1 |
20200044856 | Lynde | Feb 2020 | A1 |
20200044857 | Snow | Feb 2020 | A1 |
20200065761 | Tatchell | Feb 2020 | A1 |
20200067907 | Avetisov | Feb 2020 | A1 |
20200075056 | Yang | Mar 2020 | A1 |
20200089690 | Qiu | Mar 2020 | A1 |
20200099524 | Schiatti | Mar 2020 | A1 |
20200099534 | Lowagie | Mar 2020 | A1 |
20200104712 | Katz | Apr 2020 | A1 |
20200118068 | Turetsky | Apr 2020 | A1 |
20200127812 | Schuler | Apr 2020 | A1 |
20200134760 | Messerges | Apr 2020 | A1 |
20200145219 | Sebastian | May 2020 | A1 |
20200167870 | Isaacson | May 2020 | A1 |
20200175506 | Snow | Jun 2020 | A1 |
20200195441 | Suen | Jun 2020 | A1 |
20200211011 | Anderson | Jul 2020 | A1 |
20200234386 | Blackman | Jul 2020 | A1 |
20200258061 | Beadles | Aug 2020 | A1 |
20200279324 | Snow | Sep 2020 | A1 |
20200279325 | Snow | Sep 2020 | A1 |
20200279326 | Snow | Sep 2020 | A1 |
20200280447 | Snow | Sep 2020 | A1 |
20200302433 | Green | Sep 2020 | A1 |
20200314648 | Cao | Oct 2020 | A1 |
20200320097 | Snow | Oct 2020 | A1 |
20200320514 | Snow | Oct 2020 | A1 |
20200320521 | Snow | Oct 2020 | A1 |
20200320522 | Snow | Oct 2020 | A1 |
20200320620 | Snow | Oct 2020 | A1 |
20200382480 | Isaacson | Dec 2020 | A1 |
20200389294 | Soundararajan | Dec 2020 | A1 |
20210035092 | Pierce | Feb 2021 | A1 |
20210042758 | Durvasula | Feb 2021 | A1 |
20210044976 | Avetisov | Feb 2021 | A1 |
20210073212 | Conley | Mar 2021 | A1 |
20210073750 | Ledford | Mar 2021 | A1 |
20210090076 | Wright | Mar 2021 | A1 |
20210097602 | Eichel | Apr 2021 | A1 |
20210119785 | Ben-Reuven | Apr 2021 | A1 |
20210144149 | Simons | May 2021 | A1 |
20210174353 | Snow | Jun 2021 | A1 |
20210200653 | Jetzfellner | Jul 2021 | A1 |
20210201321 | Studnitzer | Jul 2021 | A1 |
20210201328 | Gunther | Jul 2021 | A1 |
20210226769 | Snow | Jul 2021 | A1 |
20210226773 | Snow | Jul 2021 | A1 |
20210241282 | Gu | Aug 2021 | A1 |
20210248514 | Cella | Aug 2021 | A1 |
20210266167 | Lohe | Aug 2021 | A1 |
20210266174 | Snow | Aug 2021 | A1 |
20210272103 | Snow | Sep 2021 | A1 |
20210273810 | Lynde | Sep 2021 | A1 |
20210273816 | Deery et al. | Sep 2021 | A1 |
20210326815 | Brody | Oct 2021 | A1 |
20210328804 | Snow | Oct 2021 | A1 |
20210342836 | Cella | Nov 2021 | A1 |
20210366586 | Ryan | Nov 2021 | A1 |
20220006641 | Snow | Jan 2022 | A1 |
20220012731 | Derosa-Grund | Jan 2022 | A1 |
20220019559 | Snow | Jan 2022 | A1 |
20220020001 | Snow | Jan 2022 | A1 |
20220023742 | Tran | Jan 2022 | A1 |
20220027893 | Snow | Jan 2022 | A1 |
20220027897 | Snow | Jan 2022 | A1 |
20220027994 | Snow | Jan 2022 | A1 |
20220027995 | Snow | Jan 2022 | A1 |
20220027996 | Snow | Jan 2022 | A1 |
20220030054 | Snow | Jan 2022 | A1 |
20220034004 | Snow | Feb 2022 | A1 |
20220040557 | Tran | Feb 2022 | A1 |
20220043831 | Douglass | Feb 2022 | A1 |
20220058622 | Snow | Feb 2022 | A1 |
20220058623 | Snow | Feb 2022 | A1 |
20220083991 | Kemper | Mar 2022 | A1 |
20220103341 | Snow | Mar 2022 | A1 |
20220103343 | Snow | Mar 2022 | A1 |
20220103344 | Snow | Mar 2022 | A1 |
20220103364 | Snow | Mar 2022 | A1 |
20220141231 | Simons | May 2022 | A1 |
20220156737 | Wright | May 2022 | A1 |
20220172207 | Cella | Jun 2022 | A1 |
20220173893 | Basu | Jun 2022 | A1 |
20220198554 | Filter | Jun 2022 | A1 |
20220215389 | Balaraman | Jul 2022 | A1 |
20220245626 | Sewell | Aug 2022 | A1 |
Number | Date | Country |
---|---|---|
107392618 | Nov 2017 | CN |
110392052 | Oct 2019 | CN |
110599147 | Dec 2019 | CN |
112329041 | Feb 2021 | CN |
10128728 | Jan 2003 | DE |
3726438 | Oct 2020 | EP |
3862947 | Aug 2021 | EP |
5383297 | Jan 2014 | JP |
2021152931 | Sep 2021 | JP |
100653512 | Dec 2006 | KR |
1747221 | May 2017 | KR |
101747221 | Jun 2017 | KR |
WO 0049797 | Aug 2000 | WO |
WO 2007069176 | Jun 2007 | WO |
WO 2015077378 | May 2015 | WO |
2017190795 | Nov 2017 | WO |
WO 2018013898 | Jan 2018 | WO |
WO 2018109010 | Jun 2018 | WO |
2018127923072018 | Jul 2018 | WO |
WO 2018127923 | Jul 2018 | WO |
WO 2019180702 | Sep 2019 | WO |
2019207504 | Oct 2019 | WO |
2020125839 | Jun 2020 | WO |
Entry |
---|
“Money in programmable applications: Cross-sector perspectives from the German economy”, Deutsche Bundesbank Eurosystem, https://www.bundesbank.de, 18 pages, 2020. |
Eberhardt et al., “ZoKrates—Scalable Privacy-Preserving Off-Chain Computations,” https://ieeeexplore.ieee.org/stamp/JSP?tp:::&arrnumber:::8726497. (Year:2018). |
Fernandez-Carames et al.; A Review on the Use of Blockchain for the Internet of Things. https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=8370027 (Year: 2018). 23 pages. |
Kroeger, T. et al., The Case for Distributed Data Archival Using Secret Splitting with Percival, 6th International Symposium on Resilient Control Systems (available at IEEE Xplore), p. 204-209 (Year: 2013). |
Muhamed et al. EduCTX: A Blockchain-Based Higher Education Credit Platform, https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=8247166. (Year: 2017). 16 pages. |
Sokolowski, R. (2011). Signed, sealed, delivered: EMortgages are protected from unauthorized alteration by something called a tamper seal. Mortgage Banking, 71(6), 108(4). Retrieved from https://dialog.proquest.com/professional/docview/1068158815? accountid=131444 (Year: 2011). |
Why offchain storage is needed for blockchain_V4_1 FINAL (Year: 2018), by IBM, 13 pages. |
Written Opinion in PCT/US2021/040207, Inventor Snow, dated Oct. 7, 2021, 14 pages. |
ZoKrates—Scalable Privacy-Preserving Off-Chain Computations, by Jacob Eberhardt, Stefan Tai , 8 pages, Nov. 3, 2011 (Year: 2011). |
Watanabe, Hiroki, et al. “Blockchain contract: Securing a blockchain applied to smart contracts.” 2016 IEEE International Conference on Consumer Electronics (ICCE). IEEE, 2016. |
Crosby, Michael et al., “BlockChain Technology, Beyond Bitcoin”, Sutardja Center for Entrepreneurship & Technology, Berkeley Engineering, Oct. 16, 2015, 35 pages. |
Alsolami, Fahad, and Terrance E. Boult. “CloudStash: using secret-sharing scheme to secure data, not keys, in multi-clouds.” Information Technology: New Generations (ITNG), 2014 11th International Conference on. IEEE, 2014. |
Unknown, “Midex”, https://promo.midex.com/Midex_EN.pdf, 25 pages. |
Unknown, Xtrade White Paper, https://xtrade1-9649.kxcdn.com/wp-content/uploads/2017/09/xtrade-whitepaper.pdf Feb. 7, 2018, 37 pages. |
Haarmann, et al., “DMN Decision Execution on the Ethereum Blockchain,” Hasso Plattner Institute, University of Potsdam, 15 pages. |
Kim et al., “A Perspective on Blockchain Smart Contracts,” Schulich School of Business, York University, Toronto, Canada, 6 pages. |
Chakravorty, Antorweep, and Chunming Rong, “Ushare: user controlled social media based on blockchain.” Proceedings of the 11th International Conference on Ubiquitous Information Management and Communication. ACM, 2017. |
Chen, Zhixong, and Yixuan Zhu. “Personal Archive Service System using Blockchain Technology: Case Study, Promising and Challenging.” AI & Mobile Services (AIMS), 2017 IEEE International Conference on. IEEE, 2017. |
Al-Naji, Nader et al., “Basis: A Price-Stable Cryptocurrency with an Algorithmic Central Bank” www.basis.io Jun. 20, 2017, 27 pages. |
Unkown, “Federated Learning: Collaborative Machine Learning without Centralized Training Data” Apr. 6, 2017, 11 pages. |
Casey, “BitBeat: Factom Touts Blockchain Tool for Keeping Record Keepers Honest”, Wall Street Journal, Nov. 5, 2014. |
Menezes, Alfred. J., et al. “Handbook of Applied Cryptography,” 1997, CRC Press, p. 527-28. |
White, Ron, “How Computers Work,” Oct. 2003, QUE, Seventh Edition (Year: 2003), 23 pages. |
Luu et al., Making Smart Contracts Smarter, 2016. |
Feng and Luo, “Evaluating Memory-Hard Proof-of-Work Algorithms on Three Processors,” PVLDB, 13(6): 898-911, 2020. |
Luther, “Do We Need A “Fedcoin” Cryptocurrency?,” ValueWalk, Newstex Global Business Blogs, Dec. 30, 2015 (Year: 2015). |
Iddo Bentov, Bitcoin and Secure Computation with Money, May 2016 (Year: 2016). |
United States: New Generation cryptocurrency, USDX Protocol, Offers Crypto Advantages and Fiat Pegging, Apr. 2, 2018 (Year: 2018). |
Ana Reyna et al.; “On blockchain and its integration with IoT. Challenges and opportunities.” Future Generation Computer Systems. vol. 88, Nov. 2018, pp. 173-190. https://www.sciencedirect.com/science/article/pii/S0167739X17329205 (Year: 2018). |
Krol, Michal et al., “SPOC: Secure Payments for Outsourced Computations” https://arxiv.org/pdf/1807.06462.pdf. (Year: 2018). |
Dai et al., “TrialChain: A Blockchain-Based Platform to Validate Data Integrity in Large, Biomedical Research Studies,” arXiv:1807.03662, Jul. 10, 2018 (Year: 2018). |
Eberhardt et al., “ZoKrates—Scalable Privacy-Preserving Off-Chain Computations,”https://ieeeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=8726497. (Year:2018). |
Merkle Mountain Ranges (MMRs)—Grin Documentation, https://quentinlesceller.github.io/grin-docs/technical/building-blocks/merkle-mountain-ranges/, 5 pages, printed Jun. 1, 2022. |
Merkle Mountain Ranges, https://github.com/opentimestamps/opentimestamps-server/blob/master/doc/merkle-mountain-range.md, 3 pages, printed Jun. 1, 2022. |
Michelson, Kyle, et al., “Accumulate: An identity-based blockchain protocol with cross-chain support, human-readable addresses, and key management capabilities”, Accumulate Whitepaper, v1.0, Jun. 12, 2022, 28 pages. |
MOF-BC: A Memory Optimized and Flexible BlockChain for Large Scale Networks. lle:///C:/Users/eoussir/Documents/e-Red%20Folder/16905961/NPL_MOF_BC_A%20Memory%20Optimized%20and%20Flexible%20Blockchain.pdf (Year:2018) 43 pages. |
On blockchain and its integration with IoT. Challenges and opportunities. file:///C:/Users/eoussir/Downloads/1-s2.0S0167739X17329205-main%20(1). pdf (Year: 2018) 18 pages. |
Number | Date | Country | |
---|---|---|---|
20220029805 A1 | Jan 2022 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 15983655 | May 2018 | US |
Child | 17450696 | US |