The present disclosure relates to a recording apparatus and a wiping method.
Known is an ink-jet recording apparatus that wipes an ejection port surface using a blade for wiping the ejection port surface to maintain an ejection state of ink from an ejection port.
Japanese Patent Application Laid-Open No. 2013-144460 discusses an ink-jet recording apparatus provided with a wiping mechanism having a plurality of blades that is arranged side by side and that is different in rigidity. In this configuration, using the blades that are different in rigidity depending on a wipe direction enables prevention of re-adherence of a sticking substance on a blade to a nozzle.
However, the configuration discussed in Japanese Patent Application Laid-Open No. 2013-144460 requires arrangement of the plurality of blades that is different in rigidity, and becomes complicated. Depending on a configuration of a recording head, there may be a step portion in an area in which an ejection port is not formed on an ejection port surface. In such a configuration, ink may be accumulated in the step portion in some cases. Ink accumulated in the step portion is extracted by a blade coming into contact with the step portion at the time of wiping, and there is a possibility that adherence of ink to the vicinity of the ejection port occurs and causes defective ejection.
The present disclosure is directed to prevention of adherence of ink accumulated in a step portion on an ejection port surface of a recording head to the vicinity of an ejection port at the time of wiping.
According to an aspect of the present disclosure, a recording apparatus includes a recording head having an ejection port surface and a step portion, wherein an ejection port configured to eject ink is arranged on the ejection port surface and the step portion (i) is at a position different from an area in which the ejection port is arranged on the ejection port surface side and (ii) is formed of at least one of a raised portion that is raised with respect to the ejection port surface or a recessed portion that is recessed with respect to the ejection port surface, a wiper configured to wipe the ejection port surface, and a moving unit configured to relatively move the wiper and the recording head so that the wiper moves with respect to the recording head in a first direction along the ejection port surface, wherein, in a first wiping, the relative movement of the wiper and the recording head by the moving unit causes the wiper to stop at or in vicinity of the step portion, or pass at or in the vicinity of the step portion at a speed lower than a speed at which the wiper wipes the area in which the ejection port is arranged, and wherein, in a second wiping performed after the first wiping, the relative movement of the wiper and the recording head by the moving unit causes the wiper to pass through the step portion of the recording head and wipe the recording head in the first direction toward the area in which the ejection port is arranged, and thereafter wipe the area in which the ejection port is arranged.
Further features of the present disclosure will become apparent from the following description of exemplary embodiments with reference to the attached drawings.
Exemplary embodiments of the present disclosure will be described specifically below with reference to drawings.
A first exemplary embodiment of the present disclosure will now be described specifically with reference to the drawings. An identical reference sign represents an identical part or a corresponding part throughout the drawings.
Description about Overview of Ink-Jet Recording Apparatus
As illustrated in
The recording material P loaded on the paper feed unit 101 is separated one sheet by one sheet by a paper feed roller driven by a paper feed/conveyance motor 205 to be sent out, and then fed to the conveyance unit 102. The recording material P fed to the conveyance unit 102 is conveyed onto a platen 126 while being pinched by a conveyance roller 121 and a pinch roller 122 that are driven by the paper feed/conveyance motor 205.
The recording material P conveyed onto the platen 126 is subjected to recording by the recording mechanism unit 103. The recording mechanism unit 103 drives, based on image information, a carriage 6 on which a recording head 5 (refer to
The recording mechanism unit 103 includes the carriage 6 capable of reciprocally moving in the main scanning direction, and a recording cartridge mounted on the carriage 6. The carriage 6 is guided and supported so as to be capable of reciprocally moving along a guide rail arranged in the apparatus main body. The reciprocal movement of the carriage 6 is driven by a carriage motor 204 via a carriage belt 124. The reciprocal movement of the carriage 6 is controlled by an encoder sensor mounted on the carriage 6 and an encoder scale 125 stretched on the apparatus main body side detecting a position and speed of the carriage 6. An image for an entire recording material P is recorded by repetition of the following operation. An image for one-time scanning is recorded by recording operation of the recording head 5 in synchronization with the movement (main scanning) of the carriage 6, and the recording material P is conveyed by a predetermined pitch (sub-scanning is performed) after completion of the recording for one-time scanning.
The recovery mechanism unit 104 is arranged to eliminate clogging or the like in the ejection port of the recording head 5 and thereby maintain or recover quality of an image to be recorded to a normal state. The recovery mechanism unit 104 includes a wiping mechanism for wiping the ejection port surface, a capping mechanism for covering the ejection port surface, and a pump mechanism for sucking ink from the ejection port. The recovery mechanism unit 104 according to the present exemplary embodiment includes a slider 7 that is movable within a predetermined range following the movement of the carriage 6 when the carriage 6 moves toward the recovery mechanism unit 104. This will be described below with reference to
Description about Block Diagram
The recording head 5 is controlled by a recording head driver 207. The carriage motor 204 that drives the carriage 6 is controlled by a carriage motor driver 208. A paper feed roller 120, the conveyance roller 121, the paper discharge roller driven in synchronization with the conveyance roller 121 are driven by the paper feed/conveyance motor 205. The paper feed/conveyance motor 205 is controlled by a paper feed/conveyance motor driver 209.
The host computer 214 is provided with a printer driver 2141 for communicating recording information such as a recorded image and quality of the recorded image with the recording apparatus 1 when execution of recording operation is instructed by a user. The MPU 201 communicates the recorded image or the like with the host computer 214 via an interface (I/F) unit 213.
A configuration of the ejection port arrays of the recording head 5 is not limited thereto. For example, a plurality of ejection port arrays that ejects ink in different colors may be formed also in the recording head 5B. In addition, a configuration in which the recording head 5 and the ink tank are formed separately may be employed, instead of an ink cartridge method.
The blade 8 for wiping the ejection port surface 51 of the recording head 5A for colors and the blade 9 for wiping the ejection port surface 52 of the recording head 5B for black are attached to the slider 7. The caps 1A and 1B for capping the ejection port surfaces 51 and 52, respectively, are attached to cap holders 2A and 2B, respectively. Each of the cap holders 2A and 2B is attached to the slider 7 with four claw portions. A cap spring is arranged between each of the cap holders 2A and 2B and the slider 7, and the cap holders 2A and 2B to which the caps 1A and 1B are attached, respectively, are urged in a positive Z-direction toward the ejection port surfaces 51 and 52, respectively. The blade 8, the cap 1A, the blade 9, and the cap 1B are arranged in this order from a recording area side toward the positive X-direction.
As illustrated in
The carriage 6 moves to the recording area side during the wiping operation. The carriage 6 is provided with a protruding portion for unlocking 67 that is capable of coming into contact with an upper end portion 16b of the lock lever 16 (refer to
As a result, capping of the cap 1B is released, and only the cap 1A is caused to cap the ejection port surface 51. Driving the pump mechanism, which is not illustrated, at the stand-alone suction position enables suction of ink from the ejection port on the ejection port surface 51 capped by the cap 1A.
Similarly to the recording head 5A, the recording head 5B includes a platen facing surface 1032 that faces the platen 126.
The ejection port surface 52 of the recording head 5B similarly includes a first recessed portion 63 and a second recessed portion 64 in the X-direction with respect to the ejection ports.
In a case where the accumulated total number of dots is the threshold or more, the wiping sequence is executed before the start of recording of the next page. Alternatively, a mode in which the wiping sequence is infallibly executed between pages may be employed. Besides the above, the wiping sequence may be executed after the recording mechanism unit 103 performs recording operation, after the recovery mechanism unit 104 performs suction, before capping is performed, or after uncapping is performed.
The sequence is executed by the MPU 201 controlling each unit in accordance with a program stored in the ROM 202.
First, in step S101, the MPU 201 moves the carriage 6 in the Z-direction so that the recording heads 5A and 5B and the blades 8 and 9 have respective heights that allow the platen facing surface 1031 of the recording head 5A and the platen facing surface 1032 of the recording head 5B to come into contact with the blades 8 and 9, respectively. The movement of the carriage 6 in the Z-direction is performed by driving of the paper feed/conveyance motor 205 and the carriage motor 204. A lever, which is not illustrated, is coupled to the carriage 6 by the paper feed/conveyance motor 205, and driving the carriage motor 204 in a coupled state moves the carriage 6 in the Z-direction. In a case where the height of the carriage 6 at the time of the start of the processing in
Subsequently, in step S102, the MPU 201 moves the carriage 6 in the positive X-direction using the carriage motor 204 to the wiping start position at which the blade 8 comes into contact with the platen facing surface 1031. The wiping start position is a position of the carriage 6 when the recovery mechanism unit 104 comes into the state illustrated in
In step S104, when the blades 8 and 9 move to respective positions at or in the vicinity of the first recessed portion 61 and 63, respectively, the MPU 201 stops the relative movement of the blades 8 and 9 and the carriage 6 for 0.2 seconds. With this processing, ink accumulated in the first recessed portions 61 and 63 falls along the blades 8 and 9, respectively, and is removed from the first recessed portions 61 and 63.
The positions in the vicinity of the first recessed portions 61 and 63 are positions that enable extraction of ink accumulated in the first recessed portions 61 and 63 of the respective recording heads 5A and 5B wiped by the blades 8 and 9 when the relative movement is stopped, and fall within, for example, a range of 0.5 mm from the end portion of each of the first recessed portions 61 and 63 in the X-direction. The positions are preferably where leading ends of the blades 8 and 9 enter the inside of the first recessed portions 61 and 63, respectively.
Thereafter, in step S105, the MPU 201 relatively moves the blades 8 and 9 with respect to the carriage 6 at constant speed, and wipes the remaining portions of the platen facing surfaces 1031 and 1032 including the ejection port surfaces 51 and 52, respectively.
Finally, in step S106, the MPU 201 moves the carriage 6 in the Z-direction to have a predetermined height. For example, the MPU 201 moves the carriage 6 to have a height appropriate for the next recording operation. After completion of the above-mentioned steps, the wiping sequence in
In this manner, temporarily stopping the relative movement of the blades 8 and 9 and the carriage 6 to remove ink accumulated in the first recessed portions 61 and 63, respectively, enables reduction of an amount of ink to be extracted by the blades 8 and 9 from the first recessed portions 61 and 63, respectively, and applied to the ejection port surfaces 51 and 52, respectively.
Time during which the relative movement is stopped in step S104 is 0.2 seconds in the above-mentioned example, but time is not limited thereto. The time can be time during which ink extracted from the first recessed portions 61 and 63 when the blades 8 and 9 wipe the ejection port surfaces 51 and 52, respectively, falls down to portions other than portions where the blades 8 and 9 are in contact with the platen facing surfaces 1031 and 1032, respectively. However, the relative movement is preferably stopped for 0.2 seconds or more.
The relative speed is assumed to be constant speed in steps S103 and 105, but is not limited thereto. The MPU 201 may perform wiping while accelerating or decelerating in a range of such speed as to enable removal of ink on the platen facing surfaces 1031 and 1032.
A second exemplary embodiment is now described. A description of parts similar to those in the first exemplary embodiment will be omitted.
In addition, the MPU 201 performs temporary stop wiping at or in the vicinity of the first recessed portions 61 and 63 while shifting respective temporary stop positions of the blades 8 and 9 in a wiping direction (X-direction) forward and backward. With this operation, even in a case where a contact position between each of the blades 8 and 9 and the recording head 5 is changed or in a case where a dimension tolerance of each component, an electronic control error, or the like exists, the MPU 201 can temporarily stop the blades 8 and 9 at almost accurate respective positions where the first recessed portions 61 and 63 are. Hence, it is possible to infallibly extract and remove ink accumulated in the first recessed portions 61 and 63.
Performing the wiping operation in accordance with the flow as described above enables more infallible removal of ink from the first recessed portions 61 and 63, and reduction of possibility for application of ink to the ejection port surfaces 51 and 52.
A third exemplary embodiment will now be described. A description of parts similar to those in the above-mentioned exemplary embodiment will be omitted.
In the above-mentioned exemplary embodiments, the description has been given of the configuration in which the blades 8 and 9 stop at respective positions corresponding to the first recessed portions 61 and 63 of the respective recording heads 5A and 5B wiped by the blades 8 and 9, respectively, when the relative movement is stopped.
In the present exemplary embodiment, a description will be given of a case where timings at which the blades 8 and 9 stop at respective positions corresponding to the first recessed portions 61 and 63 are different from each other, and only one of the blades 8 and 9 is stopped one time at or in the vicinity of a corresponding one of the first recessed portions 61 and 63.
As illustrated in
In such a configuration, as described in the second exemplary embodiment, stopping the relative movement multiple times enables removal of ink from the first recessed portions 61 and 63 of the respective recording heads 5A and 5B. The third exemplary embodiment is different from the second exemplary embodiment in that a location in which the first recessed portion 61 of the recording head 5A and the blade 8 correspond to each other and a location in which the first recessed portion 63 of the recording head 5B and the blade 9 correspond to each other each serves as a stop position.
The description has been given of the case where the direction in which the first recessed portions 61 and 63 are formed is the Y-direction and the wiping direction of the blade is the X-direction. However, also in a case where the direction in which the first recessed portions 61 and 63 are formed is the X-direction and the wiping direction of the blade is the Y-direction, it is possible to obtain similar effects in the first to third exemplary embodiments.
The description has been given of the case where ink is accumulated in the respective portions that are recessed with respect to the platen facing surfaces 1031 and 1032 in the above-mentioned exemplary embodiments. However, also in a case where there are respective raised portions on the platen facing surfaces 1031 and 1032, ink is similarly accumulated in the raised portions, and thus the configuration can be applied to the above-mentioned exemplary embodiments.
While the above-mentioned exemplary embodiments employ the configuration of performing wiping by stopping the blades 8 and 9 and moving the carriage 6, a configuration of moving the blades 8 and 9 and stopping the carriage 6 may be employed. Alternatively, a configuration of moving both the blades 8 and 9 and the carriage 6 may be employed.
While the above-mentioned exemplary embodiments employ the configuration in which the step portion into which ink enters is formed on each side of the ejection ports 60 in the main scanning direction (X-direction) and wiping is performed by relative movement of the blades 8 and 9 and the carriage 6 in the X-direction, a configuration is not limited thereto. For example, a configuration in which the step portion is formed on each side of the ejection ports 60 in the sub-scanning direction (Y-direction) and wiping is performed by relative movement of the blades 8 and 9 and the carriage 6 in the Y-direction may be employed.
The description has been given of the configuration in which the blades 8 and 9 stop at or in the vicinity of the first recessed portions 61 and 63, respectively. However, the blades 8 and 9 are only required to exist at or in the vicinity of the first recessed portions 61 and 63, respectively, only for time during which ink accumulated in the first recessed portions 61 and 63 is extracted. For this reason, the blades 8 and 9 may be configured to move at or in the vicinity of the first recessed portions 61 and 63, respectively, at low speed. At this time, the speed at which the blades 8 and 9 pass at or in the vicinity of the first recessed portions 61 and 63, respectively, is lower than speed at which the blades 8 and 9 pass the area in which the ejection ports 60 are formed. Wiping the area in which the ejection ports 60 are formed at higher speed enables removal of ink on the ejection port surfaces 51 and 52, and also enables reduction of time required for wiping.
The present exemplary embodiment can prevent ink accumulated in the step portions on the ejection port surfaces 51 and 52 of the respective recording heads 5A and 5B from adhering to the vicinity of the ejection ports 60 at the time of wiping.
Embodiment(s) of the present disclosure can also be realized by a computer of a system or apparatus that reads out and executes computer executable instructions (e.g., one or more programs) recorded on a storage medium (which may also be referred to more fully as a ‘non-transitory computer-readable storage medium’) to perform the functions of one or more of the above-described embodiment(s) and/or that includes one or more circuits (e.g., application specific integrated circuit (ASIC)) for performing the functions of one or more of the above-described embodiment(s), and by a method performed by the computer of the system or apparatus by, for example, reading out and executing the computer executable instructions from the storage medium to perform the functions of one or more of the above-described embodiment(s) and/or controlling the one or more circuits to perform the functions of one or more of the above-described embodiment(s). The computer may comprise one or more processors (e.g., central processing unit (CPU), micro processing unit (MPU)) and may include a network of separate computers or separate processors to read out and execute the computer executable instructions. The computer executable instructions may be provided to the computer, for example, from a network or the storage medium. The storage medium may include, for example, one or more of a hard disk, a random-access memory (RAM), a read only memory (ROM), a storage of distributed computing systems, an optical disk (such as a compact disc (CD), digital versatile disc (DVD), or Blu-ray Disc™ (BD)), a flash memory device, a memory card, and the like.
While the present disclosure has been described with reference to exemplary embodiments, it is to be understood that the disclosure is not limited to the disclosed exemplary embodiments. The scope of the following claims is to be accorded the broadest interpretation so as to encompass all such modifications and equivalent structures and functions.
This application claims the benefit of Japanese Patent Application No. 2021-140199, filed Aug. 30, 2021, which is hereby incorporated by reference herein in its entirety.
Number | Date | Country | Kind |
---|---|---|---|
2021-140199 | Aug 2021 | JP | national |