Information
-
Patent Grant
-
6249501
-
Patent Number
6,249,501
-
Date Filed
Wednesday, October 7, 199826 years ago
-
Date Issued
Tuesday, June 19, 200123 years ago
-
Inventors
-
Original Assignees
-
Examiners
Agents
- Oblon, Spivak, McClelland, Maier & Neustadt, P.C.
-
CPC
-
US Classifications
Field of Search
US
- 369 751
- 369 752
- 369 771
- 369 772
- 369 9902
- 369 9906
-
International Classifications
-
Abstract
A recording apparatus of a recording medium is comprised of a lid, a lock mechanism, an operating mechanism and a transmitting mechanism. The lid is rotatably arranged at the main body of the apparatus so as to open or close an installing part for the recording medium. The lock mechanism locks the lid at a closed position against the main body of the apparatus. The operating mechanism is arranged at the main body of the apparatus. The transmitting mechanism is arranged between the operating mechanism and the lock mechanism. The transmitting mechanism has a resilient displacement member for use in transmitting an operation of the operating mechanism to the lock mechanism. The resilient displacement member is moved between a transmitting position where an operation of the operating mechanism is transmitted to the lock mechanism to release the locked state of the lid with the lock mechanism and a non-transmitting position where it is retracted from the operating mechanism and the lock mechanism.
Description
BACKGROUND
1. Field of the Invention
This invention relates to a recording apparatus of a recording medium. More particularly, this invention relates to a recording apparatus of a recording medium in which the recording medium may not be ejected until a recording operation of the recording medium is completed.
2. Background of the Invention
For example, there has been provided a recording and reproducing apparatus in which recording and/or reproducing of information signal is carried out under application of recording media such as a magneto-optic disk or an optical disk, either the magneto-optic disk or optical disk is installed at a predetermined fixing position on a chassis or ejected from the installing position under a state in which a disk cartridge having the recording media stored therein is held at a cartridge holder.
In such a recording and reproducing apparatus, as an ejecting operation for ejecting the disk cartridge is operated, a locked state at the installing position for the cartridge holder is released, resulting in that the disk cartridge can be rejected from the cartridge holder. However, if a taking-out operation of the recording medium, i.e. an ejecting operation is carried out during performing a writing (recording) or reading-out (reproduction) of information signal for the recording medium, data written into the recording medium is lost or the recording medium or the like is damaged.
There is also provided a system in which an ejection transmitting member is arranged between a member operated by an ejecting operation of an operator and a mechanism for releasing a locked state of a cartridge holder, the ejection transmitting member is retracted from between the member operated by the ejecting operation and the locked state releasing mechanism during writing or reading-out operation for the information signal in respect to the recording medium and even if the operator performs an erroneous ejecting operation, this operation is not transmitted to the locked state releasing mechanism.
However, in the case that a safety mechanism against the erroneous ejecting operation is employed, if a recording or reproducing operation is stopped during the ejecting operation and the ejection transmitting member is tried to return back to its original position, the member operated under the ejecting operation moves in advance to a return expected position of the transmitting member, resulting in that there is a possibility that the member operated by the ejecting operation and the ejection transmitting member may interfere to each other and the ejection transmitting member or the like may be damaged.
In view of the foregoing fact, it becomes necessary to provide a limiter mechanism for use in preventing the ejection transmitting member caused by interference between the ejection transmitting member and the member operated by the ejecting operation from being damaged.
In the related art, there has been provided an ejecting mechanism having the limiter mechanism described above as shown in
FIGS. 1
to
3
, for example.
There is provided a predetermined clearance (c) between an ejecting slider (a) moved toward a direction of arrow D as viewed in
FIG. 1
under an ejecting operation of an operator and a lock slider (b) moved toward a direction of an arrow E in
FIG. 1
for releasing a locked state against a cartridge holder not shown under a state in which each of them occupies its initial position, i.e. a position where the ejecting operation is not carried out. Moving forces directed toward each of a direction opposite to a direction of arrow D and another direction opposite to a direction of arrow E are resiliently biased against the ejecting slider (a) and the lock slider (b).
The ejection transmitting member (d) is supported at the extremity end of the magnetic head ascending or descending slider (e).
The magnetic head ascending or descending slider (e) is moved in a direction of an arrow F of
FIG. 1
during recording and reproducing operations and when the recording operation is carried out, a magnetic head not shown is contacted to or approached to a magneto-optic disk through a cooperating mechanism not shown.
The ejection transmitting member (d) is formed to be elongated substantially in a forward or rearward direction, and a transmitting section (g) is projected from the front end of a supported section (f). At the rear end of the supported section (f), a spring hook piece (h) is projected to a side part.
The supported section (f) is formed with supported holes (i) and (j). Supporting pins (k), (k) buried and arranged at the magnetic head ascending or descending slider (e) are passed and inserted into these supported holes (i), (j) and then the ejection transmitting member (d) is supported by them at the magnetic head ascending or descending slider (e). The supported hole (j) at the rear side is formed to be elongated in a forward or a rearward direction and its width is formed to be substantially the same as or slightly larger than an outer diameter of the supporting pin (k) The supported hole (i) at the front side has its length in a forward or a rearward direction formed to be the same as that of the supported hole (j) at the rear side, the width at the rear half section is formed to be substantially twice as that of the rear side supported hole (j).
A tensile coil spring (m) is tensioned and arranged between the spring hook piece (
1
) formed to be projected to a side part of the front end of the magnetic head ascending or descending slider (e) and a spring hook piece (h) of the ejection transmitting member (d). Then, to this ejection transmitting member (d) are biased a motion force directed toward a front side of it, i.e. a motion force directed toward the direction of arrow G in
FIG. 1 and a
rotating force directed toward the direction of arrow H in
FIG. 1
, respectively. In this way, the ejection transmitting member (d) is set such that the supporting pin (k) is abutted against the rear end of the rear side supported hole (j) and the supporting pin (k) is abutted against the right edge of the front side supported hole (i) under a state in which no external force is applied to the ejection transmitting member (d) and then under this condition, the transmitting section (g) is positioned at the clearance (c) between the ejection slider (a) and the lock slider (b). This state is an initial state shown in FIG.
1
.
When the ejecting operation is carried out from the initial state shown in FIG.
1
and the ejection slider (a) is moved in a direction of arrow D in
FIG. 1
, the transmitting section (g) is pushed by the ejection slider (a), the ejection transmitting member (d) is rotated in a direction opposite to the direction of arrow H in
FIG. 1
until the left side edge of the supported hole (i) is abutted against the supporting pin (k), its transmitting section (g) pushes the lock slider (b) toward a direction of the arrow E in FIG.
1
and then the lock slider (b) moves toward a direction of arrow E in FIG.
1
. The lock slider (b) moves in a direction of arrow E and a locked state of the cartridge holder at its installed position is released as shown in FIG.
2
.
When either a recording operation or a reproducing operation is carried out, the magnetic head ascending or descending slider (e) is retracted in a direction of arrow F in
FIG. 1
, thereby the transmitting section (g) of the ejection transmitting member (d) is retracted rearwardly from the clearance (c) between the ejecting slider (a) and the lock slider (b). Accordingly, even if an operator erroneously performs an ejecting operation when a recording operation or a reproducing operation is carried out, motion of the ejecting slider (a) in a direction of arrow D in
FIG. 1
shows a so-called non-operation and then the lock slider (b) does not move in a direction of arrow E in FIG.
1
.
However, when either the recording or reproducing is stopped during an ejecting operation and the ejection transmitting member (d) tries to return back to its original position, there sometimes occurs that the ejecting slider (a) moved in a direction of arrow D in
FIG. 1
at the return expecting position of the transmitting member (d) under an ejecting operation is moved in advance. In such a case as above, although the transmitting section (g) of the ejection transmitting member (d) strikes against the ejection slider (a), the tensile coil spring (m) is extended as shown in
FIG. 3
, the ejection transmitting member (d) is retracted relatively in respect to the magnetic head ascending or descending slider (e) so as to prevent the ejection transmitting member or the ejection slider (a) or the like from being damaged.
However, in the case of the aforesaid limiter mechanism, it was necessary to arrange two supporting pins (k), (k) and the tensile coil spring (m) in addition to the ejection transmitting member (d), resulting in that a number of component parts was required, the number of assembling steps was increased and they produced a problem of increasing cost. In addition, in correspondence with the increased number of component parts, there occurs a problem that a large space is required for installation of the component parts.
SUMMARY OF THE INVENTION
It is therefore an object of the present invention to provide a recording apparatus of a recording medium which resolves the above-mentioned problem.
According to the present invention, there is provided a recording apparatus of a recording medium including a lid member; a lock mechanism; an operating mechanism; and a transmitting mechanism. The lid is rotatably arranged at the main body of the apparatus. The lock mechanism locks the lid member at a closed position in respect to the main body of the apparatus. The operating mechanism is arranged at the main body of the apparatus. The transmitting mechanism is arranged between the operating mechanism and the lock mechanism. The transmitting mechanism has a resilient displacement member for use in transmitting an operation performed by the operating mechanism to the lock mechanism. The resilient displacement member may transmit an operation of the operating mechanism to the lock mechanism between the operating mechanism and the lock mechanism and the displacement member is moved between a transmitting position where the locked state of the lid is released by the lid member with the lock mechanism and a non-transmitting position where it is retracted from the operating mechanism and the lock mechanism.
According to the present invention, there is provided a recording apparatus of a recording medium including a recording section; a main body of the apparatus; a lid member; a releasing mechanism; an operating mechanism; and a transmitting mechanism. The recording section performs a recording at the recording medium. The main body of the apparatus is provided with the recording section. The lid member is rotatably arranged at the main body of the apparatus. The releasing mechanism releases the locked state of the lid locked at the closed position in respect to the main body of the apparatus. The operating mechanism is installed at the main body of the apparatus. The transmitting mechanism is arranged between the operating mechanism and the releasing mechanism. The transmitting mechanism has a resilient displacement member for transmitting an operation performed by the operating mechanism to the releasing mechanism. The resilient displacement member may transmit an operation of the operating mechanism between the operating mechanism and the releasing mechanism to the releasing mechanism so as to release the locked state of the lid member by the releasing mechanism. The resilient displacement member is moved up to a position where it is retracted from the operating mechanism and the releasing mechanism during a period in which at least a recording operation of the recording medium with the recording section is completed.
According to the present invention, there is provided a recording apparatus of a recording medium including a head mechanism; a main body of the apparatus; a lid member; a releasing mechanism; an operating mechanism; and a transmitting mechanism. The head mechanism performs a recording on the recording medium. The main body of the apparatus is provided with the head mechanism. The lid member is rotatably arranged at the main body of the apparatus. The releasing mechanism releases the locked state of the lid member locked at the position closed against the main body of the apparatus. The operating mechanism is arranged at the main body of the apparatus. The transmitting mechanism is arranged between the operating mechanism and the releasing mechanism. The transmitting mechanism has a resilient displacement member for transmitting an operation of the operating mechanism to the releasing mechanism. The resilient displacement member may transmit an operation of the operating mechanism between the operating mechanism and the releasing mechanism to the releasing mechanism and is moved between a transmitting position where the locked state of the lid member is released by the releasing mechanism and a non-transmitted position where it is retracted from the operating mechanism and the releasing mechanism. The resilient displacement member is moved to the non-transmitting position during a period in which the head mechanism is being moved to the recording position where a recording is carried out on the recording medium.
BRIEF DESCRIPTION OF THE DRAWINGS
FIGS. 1
to
3
illustrate top plan views for showing the related art limiter mechanism, wherein
FIG. 1
is a view for showing an initial state,
FIG. 2
is a view for showing a state in which a transmitting section is acted,
FIG. 3
is a view for showing a state in which a limiter function is performed.
FIG. 4
is a perspective view for showing an outer appearance of a recording and reproducing apparatus of the preferred embodiment of the present invention.
FIG. 5
is a perspective view for showing from above a recording and reproducing disk cartridge used in the recording and reproducing apparatus.
FIG. 6
is a perspective view for showing from below a recording and reproducing disk cartridge used in the recording and reproducing apparatus.
FIG. 7
is a schematic top plan view for showing a state in which a recording and reproducing apparatus at a mechanical chassis and a cartridge holder is stopped in operation.
FIG. 8
is a schematic top plan view for showing a state in which a recording and reproducing apparatus at a mechanical chassis and a cartridge holder is stopped in operation.
FIG. 9
is a schematic right side elevational view for showing an ejecting state at a mechanical chassis and a cartridge holder.
FIG. 10
is a schematic right side elevational view for showing a state in which a recording and reproducing apparatus at a mechanical chassis and a cartridge holder performs a recording operation.
FIG. 11
is a schematic left side elevational view for showing an ejecting state at a mechanical chassis and a cartridge holder.
FIG. 12
is a schematic left side elevational view for showing a state in which a recording and reproducing apparatus at a mechanical chassis and a cartridge performs a recording operation.
FIG. 13
is a schematic top plan view for showing a magnetic head ascending or descending slider and an optical pick-up in a stopped state of the recording and reproducing apparatus.
FIG. 14
is a schematic top plan view for showing a magnetic head ascending or descending slider and an optical pick-up in a recording state of the recording and reproducing apparatus.
FIG. 15
is a schematic left side elevational view for showing a magnetic head ascending or descending mechanism at the time of ejecting operation.
FIG. 16
is a schematic left side elevational view for showing a magnetic head ascending or descending mechanism at the time of stopped state of the recording and reproducing apparatus.
FIG. 17
is a schematic left side elevational view for showing a magnetic head ascending or descending mechanism at the time of recording operation of the recording and reproducing apparatus.
FIG. 18
is a perspective view for showing a mechanism for locking a member for ejecting a disk cartridge from a cartridge holder and a mechanism for releasing the locked state.
FIGS. 19
to
27
are right side elevational views for showing a substantial part installed at a loading position where the disk cartridge is held at the cartridge holder and for showing an operation performed until it is ejected from the cartridge holder, wherein
FIG. 19
shows a state in which the disk cartridge is started to be inserted into the cartridge holder,
FIG. 20
shows a state in which the disk cartridge is changed from the state shown in
FIG. 19
to a state in which the cartridge is further inserted into the cartridge holder,
FIG. 21
shows a state in which the disk cartridge is completely inserted into the cartridge holder and a release slider acting as a part for ejecting the disk cartridge from the cartridge holder is locked,
FIG. 22
shows a state in which the cartridge holder is in the way to turn from the ejected position to the loading position,
FIG. 23
shows a state in which the cartridge holder approaches from a state shown in
FIG. 22
to a loading position,
FIG. 24
shows a state in which the cartridge holder is reached to a loading position,
FIG. 25
shows an instant state in which the cartridge holder starts to move toward an ejecting position and a locked state in respect to the release slider is released,
FIG. 26
shows a state in which a release slider is moved in a forward direction subsequent to the state shown in
FIG. 25
,
FIG. 27
shows a state in which the release slider reaches the ejecting position.
FIG. 28
is an exploded perspective view for showing a substantial part to illustrate a mechanism for locking an upper cover to a lid closing position.
FIG. 29
is a front elevational view for showing a substantial part to illustrate a mechanism for locking an upper cover to a lid closing position.
FIG. 30
is a front elevational view for showing a substantial part to illustrate a state in the midway in which an upper cover is moved to a lid closing position.
FIG. 31
is a front elevational view for showing a substantial part to illustrate a state in which a locked state for a lid closing position in respect to an upper cover is released.
FIGS. 32
to
35
are top plan views for illustrating substantial parts of the ejection transmitting member and the magnetic head ascending or descending slider, wherein
FIG. 32
shows a state in a stopped condition of the recording and reproducing apparatus,
FIG. 33
shows a state in which the ejection transmitting member transmits a motion of the ejection slider to a lock slider,
FIG. 34
shows a state under a recording mode,
FIG. 35
shows a state in which the ejection transmitting member performs a function of limiter.
FIG. 36
is a top plan view for showing an ejection transmitting member before it is fixed to the magnetic head ascending or descending slider.
FIG. 37
is a top plan view for showing an example of modification of the ejection transmitting member.
FIG. 38
is a top plan view for showing another example of modification of the ejection transmitting member.
FIG. 39
is a top plan view for showing a still further example of modification of the ejection transmitting member.
FIG. 40
is an exploded perspective view for showing a substantial part of an upper case and a switch unit.
FIG. 41
is a sectional view for showing a substantial part of an upper case and a switch unit.
DESCRIPTION OF THE INVENTION
Referring now to the drawings, some preferred embodiments of the recording and reproducing apparatus of the present invention will be described in detail.
In the preferred embodiments described below, a recording and reproducing apparatus using a disk-like recording medium as a recording and reproducing device will be described.
A recording and reproducing apparatus
1
of the preferred embodiment of the present invention shown in
FIG. 4
is constructed to apply a disk cartridge
2
in which either a magneto-optic disk or an optical disk acting as a disk-like recording medium is rotatably stored in the main body of a cartridge.
A magneto-optic disk
3
is constructed such that a signal recording layer made of magnetic material is coated on and formed at a disk substrate made of synthetic resin such as polycarbonate with a diameter of about 64 mm. This signal recording layer is locally heated more than a so-called Curie temperature under radiation of a collected laser beam, an external magnetic field is applied to this heated section to cause information signal to be written in it. The information signal written in this way is read out by radiating a linear deflected optical flux such as a laser beam against the signal recording layer and detecting the rotation of an optical deflecting direction under a so-called car effect of the optical flux reflected by the signal recording layer.
The optical disk is constructed such that the reflecting layer made of metallic material such as aluminum is coated on and formed at a disk substrate which is similar to the disk substrate of the magneto-optic disk
3
. Some rows of fine pits corresponding to the information signal are formed on the disk substrate of the optical disk by an injection molding process. The information signal written into this optical disk is read out by radiating a coherent optical flux such as a laser beam against rows of pits and detecting a variation of optical amount caused by dispersion or interference at a signal recording layer of the reflected optical flux.
As shown in
FIGS. 5 and 6
, the magneto-optic disk
3
and the optical disk are rotatably stored in a cartridge main body
4
of the disk cartridge
2
. The magneto-optic disk
3
is stored in it. The cartridge main body
4
is formed into a thin casing member having a rectangular main plane in which a length of one side is substantially corresponded to a diameter of the magneto-optic disk
3
. As shown in
FIG. 5
, this cartridge main body
4
is made such that an opening
5
for the magnetic head is formed at the main plane of the upper surface side to cause a part of the signal recording surface of the magneto-optic disk
3
to be faced outwardly. As shown in
FIG. 6
, the cartridge main body
4
is made such that an opening
6
for the optical pick-up is formed at a position opposing against the opening
5
for the magnetic head at the main plane section of the lower plane side and then a substantial central part of the main plane part at the lower plane side is formed with an opening
7
for a chucking operation. This disk cartridge
2
for a recording and reproducing operation is inserted into the recording and reproducing apparatus
1
from a forward direction as indicated by an arrow A in FIG.
5
and loaded at a predetermined position within the apparatus
1
.
The opening
5
for the magnetic head and the opening
6
for the optical pick-up of the cartridge main body
4
the recording and reproducing disk cartridge
2
are opened or closed by a shutter member
8
. This shutter member
8
is made such that the shutter plates
8
a
,
8
b
opposing against each of the openings
5
and
6
and oppositely facing against to each other in parallel and a connecting section
8
c
connecting between side edges of these shutter plates
8
a
,
8
b
are integrally formed by synthetic resin material or metallic material. This shutter member
8
is made such that the connecting section
8
c
is slidably supported at a supporting groove
4
a
formed at one side of the cartridge main body
4
. That is, the shutter member
8
is slid along one side of the cartridge main body
4
in a direction crossing at a right angle with the direction of arrow A in
FIG. 5
, thereby the openings
5
and
6
are released, and in turn it is slid in a direction crossing at a right angle with the direction of arrow A in
FIG. 5
opposite to that of releasing operation, thereby it is returned back to the initial position and each of the openings
5
and
6
is closed by each of the shutter plates
8
a
,
8
b.
The optical disk is rotatably stored from the cartridge main body
4
in the cartridge main body not shown where the opening
5
for the magnetic head is not provided, resulting in that a cartridge for exclusively used for reproducing operation.
An outer casing
10
of the recording and reproducing apparatus
1
is comprised of a lower case
11
, an upper case
12
and an upper cover
13
as shown in FIG.
4
.
The lower case
11
shows a lateral extending shallow container, wherein a right end of a rear wall
11
a
is cut. Its front surface of a front surface wall
11
a
is applied as an operating section provided with a plurality of operating buttons. The operating section is provided with a plurality of aforesaid operating buttons for use in operating switches for changing-over an operation of the recording and reproducing apparatus
1
and with a connector connection part
14
to which a head-phone plug not shown is connected. Other surfaces of the lower case
11
are provided with an input/output jack and a power supply jack or the like.
The upper case
12
is arranged to cover an upper opening at a right end of the lower case
11
, wherein it has a top plate, side walls and a front wall, and its rear end is released. At the top plate
12
a
of the upper case
12
are arranged a plurality of operating buttons
15
.
The upper cover
13
is arranged to open or close the upper surface openings at the lower case
11
except a right end covered by the upper case
12
. A liquid crystal display
16
is arranged at the upper surface of the upper cover
13
.
The lower case
11
, the upper case
12
and the upper cover
13
are fixed to the main frame
20
. The main frame
20
is formed by a metallic plate material to have a rectangular shape as viewed in a top plan view, wherein the lower case
11
is fixed to the main frame
20
to cover it from its lower side and then the upper case
12
is fixed to the right side surface of the main frame
20
so as to be continuous with it.
The upper cover
13
is rotatably supported at its front end in such a way that the rear end of the upper cover
13
may be moved up and down at the rear end of the main frame
20
.
The rear end of the supporting arm
21
is rotatably supported at the rear end left side surface of the main frame
20
. The upper cover
13
is fixed to the left side surface of the supporting arm
21
by a screw setting or the like while an inner surface of the left side wall is being contacted with it. A pin not shown which is projected out of the outer surface of rear end part of the right side surface of the upper cover
13
is rotatably fitted to a supporting hole not shown which is formed at the left side surface of the rear end of the upper case
12
. In this way, the upper cover
13
is rotatably arranged to open or close the upper surface except the right end of the lower case
11
.
A mechanical chassis
30
is supported at the main frame
20
through a damper member not shown.
As shown in
FIG. 11
, a spindle motor
40
is arranged at the central part of the mechanical chassis
30
and a turn table
41
is integrally arranged at the rotor of the spindle motor
40
. As shown in
FIG. 13
, an optical pick-up
50
is movably arranged at a right side part from the portion where the spindle motor
40
is arranged in the lower surface of the mechanical chassis
30
in such a way that it may be moved in a direction moving to or away from the spindle motor
40
, i.e. in a radial direction of the magneto-optic disk
3
or the optical disk.
The optical pick-up
50
has an optical block not shown on a carriage
51
which is movably supported at the mechanical chassis
30
through a guide member not shown. This optical block has a laser diode acting as a light source, a light receiving element such as a photo-transistor, an optical device for guiding a laser light generated from the laser diode and an objective lens
52
for collecting laser light at a signal recording layer of the magneto-optic disk
3
or the optical disk. This optical pick-up
50
can collect the laser light from the laser diode to the signal recording layer of the magneto-optic disk
3
or the optical disk through the objective lens
52
, detect the reflected light flux reflected at the signal recording layer of the magneto-optic disk
3
or the optical disk with the light receiving element and further detect an optical amount of the reflected optical flux reflected by the signal recording layer and a rotating angle of an optical deflecting direction.
As shown in
FIG. 13
or
FIG. 14
, the objective lens
52
is placed near an upper part of the mechanical chassis
30
through a large opening
31
formed at the right side portion from the portion in the mechanical chassis
30
where the spindle motor
40
is arranged and then it is oppositely faced against the signal recording layer in the magneto-optic disk
3
or the optical disk held on the turn table
41
. As the optical pick-up
50
is moved, the objective lens
52
is also moved in a radial direction of the magneto-optic disk
3
or the optical disk.
As shown in
FIG. 9
, a cartridge holder
60
is arranged at the upper surface of the mechanical chassis
30
. As shown in
FIGS. 7
,
9
and
11
, this cartridge holder
60
is comprised of a top plate
61
, right and left side walls
62
,
63
suspended downwardly from both side edges of the top plate
61
, and supporting pieces
64
,
65
projected inwardly from the lower edges of each of these side walls
62
,
63
. This cartridge holder
60
is formed such that a metallic plate material is bent to cause each of the aforesaid portions to be integrally formed. As shown in
FIGS. 9 and 11
, the disk cartridge
2
is inserted between each of the aforesaid walls
62
,
63
at the lower side of the top plate
61
from the front side at the cartridge holder
60
, and both side portions at a main plane part of the lower side are supported and held by each of the supporting pieces
64
,
65
. At this time, a substantial entire main plane at the lower side of the disk cartridge
2
is placed at the lower side and then the opening
7
for a chucking operation and the opening
6
for the optical pick-up are placed below the cartridge holder
60
.
As shown in
FIG. 7
, at a substantial intermediate part of the right sidewall
63
of this cartridge holder
60
, a shutter releasing piece
66
is projected inwardly. When the disk cartridge
2
is inserted into the cartridge holder
60
, the shutter releasing piece
66
is abutted against the front end of the connecting part
8
c
of the shutter member
8
, and when the disk cartridge
2
is stored in the cartridge holder
60
, the openings
5
,
6
open the lid by the shutter member
8
. As shown in
FIGS. 7 and 8
, a shutter lid closing spring
67
is arranged at a portion near the front end of the right side wall
63
in such a way as it may be bulged out inwardly. When the disk cartridge
2
is inserted into the cartridge holder
60
, this shutter lid closing spring
67
is engaged with a shutter lid closing hole
8
d
formed at the connecting part
8
c
of the shutter member
8
, and in turn when the disk cartridge
2
is pulled out of the cartridge holder
60
, the openings
5
,
6
are closed by the shutter member
8
.
The cartridge holder
60
is set such that both side portions of the rear end of the holder
60
are rotatably supported at both sides of the rear end of the mechanical chassis
30
. As shown in
FIG. 9
, under a state in which the cartridge holder
60
is rotated upwardly and spaced apart from the mechanical chassis
30
, the disk cartridge
2
is inserted and after the inserted disk cartridge is held, as shown in
FIG. 10
, it is rotated downwardly and moved to a position near the mechanical chassis
30
, resulting in that the held disk cartridge
2
is installed at a predetermined loading position by a position setting mechanism not shown.
As shown in
FIGS. 9 and 10
, the right side wall
63
of the cartridge holder
60
is provided with a release slider
70
which is slidably arranged in a direction in parallel with the side surface of the holder
60
as shown in FIG.
9
. The release slider
70
is made such that a sliding supporting part
71
extending along an outer surface of the right side wall
63
and an abutting part
72
projected from the right side wall
63
into the cartridge holder
60
are integrally formed by a metallic plate material. The sliding supporting part
71
forms an elongated plate along its sliding direction, and supporting pins
63
a
,
63
a
projected at the outer surface of the right wall
63
are inserted into long holes
71
a
,
71
a
which are long along a sliding direction of the sliding supporting part
71
and spaced in a forward or rearward direction. With such an arrangement as above, the release slider
70
is movably supported in a forward or rearward direction in respect to the side wall
63
. A tensile coil spring
73
is arranged in tension between a spring hook piece
71
b
projected outwardly at a substantial central part in a sliding direction of the sliding supporting part
71
and a spring hook piece
63
b
projected at an outer surface of the right side wall
63
of a position near its front end. The release slider
70
is biased forwardly by this tensile coil spring
73
, i.e. in an ejecting direction of the disk cartridge
2
.
The tensile coil spring
73
is made such that a coil part
73
a
, a hook part
73
b
formed at the rear end of the coil part
73
a
, a straight part
73
c
extending forwardly in a linear manner from the front end of the coil part
73
a
, and a hook part
73
d
formed at the front end of the straight part
73
c
are integrally formed. The hook part
73
b
at the rear end is engaged with the spring hook piece
71
b
of the release slider
70
, and the front end hook part
73
d
is engaged with the spring hook piece
63
b
of the cartridge holder
60
.
As described above, the tensile coil spring
73
is constituted by the coil part
73
a
and the straight part
73
c
, thereby a part which may be interfered with another member is made as a straight part
73
c
, it is possible to avoid its interference with another member, i.e. the shutter lid closing sprig
67
in this recording and reproducing apparatus
1
. Accordingly, it is possible to arrange the tensile coil spring
73
near the right side wall
63
of the cartridge holder
60
and correspondingly to make a small-sized recording and reproducing apparatus
1
.
An upper edge of the rear end part of the sliding supporting part
71
is formed with an engaging piece
71
c
projected outwardly. An abutting part
72
is bent from the upper edge of the rear end of the sliding supporting part
71
toward an inside part of the cartridge holder
60
, extends from there to a rearward direction and its rear end is formed with an abutting piece
72
a
projected inwardly.
As shown in
FIGS. 9 and 10
, an outer surface at the rear end of the right side wall
63
of the cartridge holder
60
is provided with a lock member
80
. As shown in
FIG. 18
, the lock member
80
is made such that its main part
81
and a spring part
82
are integrally formed by metallic plate material having a spring resiliency. The main part
81
has a substantial <-shape as viewed from the right side, its upper end is formed with the engaging part
81
a
, and an engaged piece
81
b
is projected outwardly at its lower end. The spring part
82
extends rearwardly from the part near the upper end of the rear end of the main part
81
with its plane being directed in a vertical direction and the end part of the spring part
82
is formed with a fixing part
82
a
. The fixing part
82
a
is fixed to an outer surface of the rear end of the right side wall
63
of the cartridge holder
60
. The engaging part
81
a
of the main part
81
is positioned to traverse across a moving path of the engaging piece
71
c
of the release slider
70
.
Thus, as described above, as the disk cartridge
2
is being inserted into the cartridge holder
60
, the right side part of the extremity end surface of the cartridge main body
4
is abutted against the abutting piece
72
a
of the release slider
70
to cause the abutting piece
72
a
to be pushed in a rearward direction, so that the release slider
70
is moved in a rearward direction against a tension force of the tensile coil spring
73
. As shown in
FIGS. 19 and 20
, the release slider
70
is moved in a rearward direction, the engaging piece
71
c
pushes the front edge of the engaging part
81
a
of the lock member
80
, the main part
81
of the lock member
80
is moved downwardly due to flexing of the spring part
82
at the lock member
80
as shown in FIG.
20
and the engaging piece
71
c
is moved in a rearward direction of the engaging part
81
a
, i.e. in a forward part in an inserting direction of the cartridge main body
4
. As the engaging piece
71
c
is passed to the rear side of the engaging part
81
a
, the flexed spring part
82
is returned back to its original state as shown in
FIG. 21
, the engaging part
81
a
is positioned at a front side of the engaging piece
71
c
and engaged with the engaging piece
71
c
so as to prevent the release slider
70
from being returned in a forward direction.
When the disk cartridge
2
is to be ejected, the lock member
80
is moved downwardly in respect to the cartridge holder
60
as shown in FIG.
25
and the engaging part
81
a
of the lock member
80
is disengaged downwardly from the moving path of the engaging piece
71
c
of the release slider
70
and the abutting piece
72
a
of the release slider
70
pushes the right side of the front end surface of the disk cartridge
2
in a forward direction. With such an arrangement as above, the disk cartridge
2
is set such that the rear end portion of the cartridge main body
4
is projected out of the front end of the cartridge holder
60
.
As shown in
FIG. 9
, the lock releasing member
90
is rotatably supported at the position near the rear end of the right side part of the mechanical chassis
30
. The lock releasing member
90
is made such that a main part
91
and a spring part
92
extending from the lower end of the front end of the main part
91
have a spring resiliency and are integrally formed by metallic plate material. The main part
91
forms a substantial triangle shape as viewed from a right side and has a rear slant edge
91
a
formed by bending the rear edge of the main part
91
in a leftward direction and an engaging edge
91
b
continuous to the lower end of the rear side slant edge
91
a
and extending in a lateral direction. The main part
91
at its upper end is rotatably supported to a supporting piece
32
vertically arranged at a position near the rear end of the right side of the mechanical chassis
30
.
The spring part
92
extends from the lower part of the front end of the main part
91
in a forward direction, and the extremity end of the spring part
92
is resiliently contacted with the lower surface of the abutting piece
33
projected at a substantial intermediate position at the right side of the mechanical chassis
30
.
In addition, when the lock releasing member
90
and the member
32
supporting the lock releasing member are constructed as described above, it is possible to reduce an installing space in a width direction of the apparatus
1
, i.e. in a lateral direction in FIG.
7
. Then, as the installing space is reduced, an installing space for the tensile coil spring
73
for biasing the moving force of the release slider
70
is also reduced, so that it is necessary to reduce an outer diameter of the coil at the coil part
73
a
of the tensile coil spring
73
. Reduction in an amount of force caused by reducing an outer diameter of the coil part
73
a
may be accommodated by increasing the number of turns in a coil of the coil part
73
a.
As the cartridge holder
60
is rotated in a downward direction with the disk cartridge
2
being fed into the cartridge holder, the engaged piece
81
b
of the lock member
80
is slid downwardly while it pushes a slant edge
91
a
at the rear side of the lock releasing member
90
as shown in
FIGS. 22 and 23
. With such an arrangement as above, the main part
91
of the lock releasing member
90
is turned in a direction o an arrow B in
FIGS. 22 and 23
while the spring part
92
is being curved to be projected upwardly. As the cartridge holder
60
installs the disk cartridge
2
at a predetermined loading position, the engaged piece
81
b
of the lock member
80
reaches the lower side from the lower end of the slant edge
91
a
at the rear side of the lock releasing member
90
. As shown in
FIG. 24
, the main part
91
of the lock releasing member
90
is rotated in a direction opposite to the direction of an arrow B in
FIG. 22
with a resilient force stored in the spring part
92
while being bent to be projected upwardly, resulting in that the engaging edge
91
b
of the main part
91
comes to the upper side of the engaged piece
81
b
of the lock member
80
and is engaged with the engaged piece
81
b
so as to prevent the upward rotation of the lock member
80
.
However, the engagement between the engaged piece
81
b
of the lock member
80
and the engaging edge
91
b
of the lock releasing member
90
is set such that if an upward moving force is applied with a slight stronger force to the lock member
80
, the spring part
82
of the lock member
80
is flexed, thereby the main part
81
is rotated in a direction of an arrow C in
FIGS. 25 and 26
while moving downwardly in respect to the cartridge holder
60
, and the engaged piece
81
b
is released from the engaged state with the engaging edge
91
b
of the lock releasing member
90
. Accordingly, when an ejecting operation is carried out, the cartridge holder
60
is rotated with its front end being moved upwardly, the main part
81
of the lock member
80
is rotated in a direction of arrow C in
FIG. 25
, the locked state to the release slider
70
is released as shown in
FIG. 25
, resulting in that the release slider
70
is moved forwardly by a tension force of the tensile coil spring
73
and the front end of the disk cartridge
2
is projected out of the front end of the cartridge holder
60
. Subsequently, since the engaged piece
81
b
of the lock member
80
is released from the engaged state with the engaging edge
91
b
of the lock member
80
, the main part
81
of the lock member
80
returns back to its original position as shown in
FIG. 27
by a resilient force stored under a reflexing of the spring part
82
as shown in FIG.
27
and then the engaging part
81
a
of the lock member
80
is again positioned on a moving path of the engaging piece
71
c
of the release slider
70
.
A front end of the left side wall
62
of the cartridge holder
60
is provided with a connecting piece
62
a
projected outwardly. The connecting piece
62
a
is positioned within a connecting hole
21
a
formed at the front end of the supporting arm
21
. The connecting piece
62
a
is positioned within the connecting hole
21
a
with a surplus amount in a vertical direction being applied.
As shown in
FIGS. 29
to
31
, a pressing spring
13
b
composed of a leaf spring material is fixed to the lower surface of the front end of the upper cover
13
. The pressing spring
13
b
at its central part is fixed to the upper cover
13
. The portion extending in a lateral direction from the central part of the spring
13
b
is inclined in a downward direction. As the upper cover
13
is rotated in a downward direction and closed, the cartridge holder
60
rotated together with the upper cover
13
is also rotated in a downward direction, as the upper cover
13
is locked at the lid closing position by the lock mechanism to be described later, both right and left sides of the pressing spring
13
b
are resiliently contacted with the upper surface of the top plate
61
of the cartridge holder
60
as shown in
FIG. 29
, and the cartridge holder
60
becomes a state in which it is pushed against the installed position on the mechanical chassis
30
. At this time, the connecting piece
62
a
of the cartridge holder
60
is positioned at the upper part of the connecting hole
21
a
of the supporting arm
21
.
As shown in
FIG. 31
, when the locked state for the lid closing position for the upper cover
13
is released, the upper cover
13
is rotated upwardly. Then, if the front end of the upper cover
13
is held with a hand to move the upper cover
13
in an upward direction, the upper cover
13
is further rotated upwardly and at this time, the lower side opening edge of the connecting hole
21
a
of the supporting arm
21
rotated together with the upper cover
13
pushes the connecting piece
62
a
of the cartridge holder
60
in an upward direction and then the cartridge holder
60
is rotated in an upward direction.
As shown in
FIGS. 7 and 9
, this recording and reproducing apparatus
1
is provided with a magnetic head device
100
having a magnetic head for use in generating an external magnetic field when a recording on the magneto-optic disk
3
is carried out.
The magnetic head device
100
is provided with a connecting arm
110
, a magnetic head supporting plate
120
and a magnetic head supporting arm
130
or the like in addition to the magnetic head
101
.
As shown in
FIGS. 15
to
17
, the connecting arm
110
has a section which is formed to be bent in a substantial L-shape, a lower piece
111
is fixed to the lower surface of a carriage
51
of the optical pick-up
50
by a screw setting or the like and then the rising piece
112
is raised upwardly at the rear side of the optical pick-up
50
. The rising piece
112
of the connecting arm
110
is positioned at a more rear side of the rear end of the mechanical chassis
30
and it is moved together with the optical pick-up
50
without being abutted against the mechanical chassis
30
.
As shown in
FIGS. 7
,
8
,
15
,
16
and
17
, the upper end of the rising piece
112
is positioned at a higher location than the upper surface of the mechanical chassis
30
. A rear end of the magnetic head supporting plate
120
is rotatably attached near the upper end of the rising piece
112
of the connecting arm
110
through a supporting shaft
113
. As shown in
FIGS. 7 and 8
, the front end of the supporting plate
120
is rotatable in a vertical direction, i.e. in a direction moving toward or away from the mechanical chassis
30
. A position setting projection piece
121
is projected from a side edge of the rear end of the magnetic head supporting plate
120
toward a side part of it. In turn, a position setting projection piece
112
a
is projected from the upper end of the rising piece
112
of the connecting arm
110
in a forward direction. The position setting projection piece
121
is positioned above the position setting arm
112
a
and its motion toward a downward direction is restricted when it is abutted against a part near the extremity end of the position setting arm
112
a
, thereby a range of motion of the magnetic head supporting plate
120
in a downward direction is restricted.
As shown in
FIGS. 7
,
8
,
15
,
16
and
17
, a base end of the magnetic head supporting arm
130
is fixed to the magnetic head supporting plate
120
. This magnetic head supporting arm
130
has a concave shape extending in a forward or rearward direction as viewed from above and opened in a rightward direction.
A base end of a gimbal spring
140
is fixed to the magnetic head supporting plate
120
. A part near the front end of the gimbal spring
140
is mounted on the extremity end
131
bent toward a side of the magnetic head supporting arm
130
. A magnetic head
101
is fixed to the front end of the gimbal spring
140
.
The magnetic head
101
supported in this way is positioned above the objective lens
52
of the optical pick-up
50
and oppositely faced against the objective lens
52
. In addition, the magnetic head
101
is movable in a direction ascending or descending in respect to the mechanical chassis
30
by a method wherein the magnetic head supporting plate
120
is rotated in respect to the connecting arm
110
as shown in
FIGS. 9 and 10
and at the same time, its position setting is carried out in a descending direction through abutment between the position setting projection piece
121
and the position setting arm
112
a
as shown in
FIGS. 15
to
17
.
A twisting coil spring
114
is arranged at one end of the supporting shaft
113
. The twisting coil spring
114
is set such that its coil part
114
a
is present between a base end of the position setting arm
112
a
and a base end of the magnetic head supporting plate
120
, each of the arms
114
b
,
114
c
is engaged respectively with the position setting arm
112
a
and the magnetic head supporting plate
120
, the magnetic head supporting plate
120
is set in its position in a sidewise direction and the magnetic head
101
is biased to rotate in a downward direction in respect to the connecting arm
110
at the magnetic head supporting plate
120
.
As shown in
FIG. 8
, an electric current based on a recording signal attained through the base ends of the magnetic head
101
and of the magnetic head supporting arm
130
and the flexible substrate
102
adhered to the gimbal spring
140
is supplied to the magnetic head
101
.
As shown in
FIGS. 7 and 8
, a top plate
61
of a cartridge holder
60
is formed with an opening
61
a
in correspondence with a movable region as the magnetic head supporting arm
130
and the optical pick-up
50
of the gimbal spring
140
. That is, the magnetic head
101
is placed near the main plane part of the upper surface of the disk cartridge
2
held in the cartridge holder
60
through an opening
61
a.
There is provided a mechanism for ascending or descending the magnetic head
101
. As shown in
FIGS. 7
,
8
,
15
,
16
and
17
, the ascending or descending mechanism is comprised of a magnetic head ascending or descending plate
150
and a transmitting slider
160
arranged at the upper surface of the cartridge holder
60
, and a magnetic head ascending or descending slider
170
arranged at the lower surface of the mechanical chassis
30
and for sliding the transmitting slider
160
, thereby the magnetic head
101
is ascended or descended by these members.
The magnetic head ascending or descending plate
150
is positioned below the magnetic head supporting arm
130
and the gimbal spring
140
in such a way that the rear part of the opening
61
a
formed at the top plate
61
of the cartridge holder
60
is closed. The magnetic head ascending or descending plate
150
is rotatably supported at its rear end in respect to the top plate
61
of the cartridge holder
60
through the supporting shafts
151
,
151
. As shown in
FIG. 15
, when the magnetic head ascending or descending plate
150
is rotated upwardly, the magnetic head supporting arm
130
is pushed up toward the gimbal spring
140
and the magnetic head supporting plate
110
, the gimbal spring
140
and the magnetic head supporting arm
130
are rotated around the supporting shaft
113
and pushed up. When the magnetic head ascending or descending plate
150
is rotated in a downward direction, a part of the front end portion is abutted against the top plate
61
of the cartridge holder
60
, made in flush with the top plate
61
and its position is set. At this time, the magnetic head supporting arm
130
is rotated in a downward direction up to a position where the position setting projection piece
121
of the magnetic head supporting plate
120
is abutted against the position setting arm
112
a
. With such an arrangement as above, the gimbal spring
140
is operated such that the front end of the spring
140
is lowered to a lower position than that of the top plate
61
of the cartridge holder
60
and the magnetic head
101
supported at the front end is positioned at a lower location than that of the top plate
61
of the cartridge holder
60
.
As shown in
FIGS. 7 and 8
, an abutting piece
152
projected in a leftward direction is arranged at the left edge of the magnetic head ascending or descending plate
150
and the rear end of the abutting piece
152
is applied as a slant part
152
a
inclined in a rear upward direction. A spring abutting piece
153
is projected and arranged in a rightward direction at a part near the front end of the right edge of the magnetic head ascending or descending plate
150
, the rear end of the leaf spring
154
fixed at its front end to the top plate
61
of the cartridge holder
60
is resiliently from above contacted with the spring abutting piece
153
and the magnetic head ascending or descending plate
150
is biased at its front end to rotate in a direction moving in a downward direction.
As shown in
FIGS. 7 and 8
, the transmitting slider
160
is arranged at a side part, i.e. the left side, opposite to the part where the opening
61
a
at the upper surface of the top plate
61
of the cartridge holder
60
is formed in such a way that the slider can be slid in a forward or rearward direction. As shown in
FIG. 15
, the transmitting slider
160
has a pushing-up projecting piece
161
positioned at the right side edge of the slider
160
, i.e. a substantial central part of the cartridge holder
60
, and at a portion near the abutting piece
152
at the left edge of the magnetic head ascending or descending plate
150
. The front end of the upper edge of the pushing-up projecting piece
161
is a slant edge
161
a
inclined in a forward downward direction.
As the transmitting slider
160
is slid from the rear side to the front side, the pushing-up projecting piece
161
is advanced into a location between the abutting piece
152
of the magnetic head ascending or descending plate
150
and the top plate
61
of the cartridge holder
60
while the slant edge
161
a
is being slidably contacted with the slant part
152
a
of the magnetic head ascending or descending plate
150
. Then, as shown in
FIGS. 15 and 16
, the magnetic head ascending or descending plate
150
is rotated in an upward direction against a rotating force biased by the leaf spring
154
.
As the transmitting slider
160
is slid from its front side to its rear side, the pushing-up projecting piece
161
is retracted in a rearward side from between the abutting piece
152
of the magnetic head ascending or descending plate
150
and the top plate
61
of the cartridge holder
60
while the slant edge
161
a
is being slidably contacted with a slant part
152
a
of the magnetic head ascending or descending plate
150
. Then, as shown in
FIG. 17
, the magnetic head ascending or descending plate
150
is rotated in a downward direction and returned back to its initial position with a rotating force biased by the leaf spring
154
.
In addition, as shown in
FIGS. 15
to
17
, the transmitting slider
160
has a cooperating arm
162
vertically suspended from the rear end of the left side of the slider
160
to the mechanical chassis
30
. The lower end
162
a
of the cooperating arm
162
is inclined in such a way as it may be displaced rearwardly as it goes downwardly and it may move along a substantial arcuate path around a rotating fulcrum point of the cartridge holder. The lower end
162
a
of the cooperating arm
162
is projected to a downward side of the mechanical chassis
30
through a through-pass hole
84
arranged at the rear end of the left side of the mechanical chassis
30
.
As shown in
FIGS. 7
,
8
,
13
and
14
, the magnetic head ascending or descending slider
170
is slidably arranged at the left side of the lower surface of the mechanical chassis
30
in the directions X and Y in
FIGS. 7
,
8
,
13
and
14
. The magnetic head ascending or descending slider
170
is formed by a metallic sheet material and the rear end of the slider
170
is formed with a rack-gear part
171
extending in the directions of arrows X, Y. The rack-gear part
171
is engaged with a pinion gear
174
rotated through a row of gears
173
by a stepping motor
172
fixed to the left rear portion of the lower surface part of the mechanical chassis
30
. With such an arrangement as above, the magnetic head ascending or descending slider
170
is moved in directions indicated by arrows X, Y in response to the operation mode of the recording and reproducing apparatus
1
.
At the rear end of the magnetic ascending or descending slider
170
is provided an engaging hole
175
at a position corresponding to the through-pass hole
34
formed at the mechanical chassis
30
. A lower end
162
a
of the cooperating arm
162
of the transmitting slider
160
is inserted into and engaged with the engaging hole
175
through the through-pass hole
34
. That is, as the magnetic head ascending or descending slider
170
is slid in the directions of arrows X, Y, the transmitting slider
160
is slid in the directions of arrows X, Y in respect to the cartridge holder
60
. With such an arrangement as above, since the magnetic head ascending or descending plate
150
is rotated, the magnetic head
101
is operated to ascend or descend. In addition, the lower end
162
a
of the cooperating arm
162
extends along a substantial arcuate part around a rotating fulcrum of the cartridge holder
60
as described above, so that even if the cartridge holder
60
is rotated, it is always inserted into and engaged with the engaging hole
114
.
However, as the magnetic head ascending or descending slider
170
is slid in any one of the directions of arrows X, Y under a driving operation of the stepping motor
172
, the transmitting slider
160
is slid in any one of the directions of arrows X, Y through an engagement between the engaging hole
175
and the cooperating arm
162
and then the magnetic head ascending or descending plate
150
is rotated.
As shown in
FIGS. 29
to
31
, an engaged member
180
is projected at a substantial central part of the inner surface of the front wall
13
c
of the upper cover
13
. The engaged member
180
is provided with the engaged surface
181
at the upper surface of the member
180
. The engaged surface
181
is engaged with the lock slider
190
slidably attached to the front surface
22
of the main frame
20
and the upper cover
13
is held at its lid closed state.
As shown in
FIG. 28
, the lock slider
190
has two supporting slits
191
,
192
spaced apart in a longitudinal direction. The lock slider
190
is slidably supported in respect to the main frame
20
by an arrangement in which supporting pins
22
a
,
22
a
installed at the front surface
22
of the main frame
20
are inserted into these supporting slits
191
,
192
. The lock slider
190
at its right end is provided with a lock piece
193
projected upwardly and the upper end of the lockpiece
193
is provided with a lock claw
194
projected in a leftward direction. A lower edge of the lock claw
194
is applied as an engaging edge
194
a
and an upper edge of the claw
194
is applied as a left-downward directed slant edge
194
b
. As shown in
FIG. 29
, when the upper cover
13
is in a lid closed state, the lock slider
190
is set such that the engaging edge
194
a
is engaged with the engaged surface
181
of the engaged member
180
of the upper cover
13
so as to prevent the upper cover
13
from opening the lid.
In addition, the right slit
191
of the supporting slits
191
,
192
is set such that the right half part
191
a
is inclined in a slant upward direction. Accordingly, as shown in
FIG. 29
, a height of the engaged edge
194
a
kept at a state in which the lock slider
190
is present at the left end in the moving range is set to be lower than a state in which the lock slider
190
is present at the right end of the moving range of the lock slider
190
shown in FIG.
31
. Thus, during a step in which the lock slider
190
is moved from the right side to the left side, the engaging edge
194
a
is moved from a high position to a low position, so that it may be positively engaged with the engaged surface
181
of the upper cover
13
and then the upper cover
13
can be positively locked at the lid closing position.
A tensile coil spring
200
is arranged in tension between a spring hook piece
195
formed at the left end of the lock slider
190
and a spring hook piece
22
b
formed at the left end part of the front surface
22
of the main frame
20
. A leftward biasing force is applied to the lock slider
190
by the tensile coil spring
200
.
The lower part of the left end of the lock slider
190
is provided with a pushed piece
196
projected in a rearward direction. The pushed piece
196
is advanced into the rear side of the front surface
22
through a lateral through-pass hole
22
c
formed at the portion near the left end of the front surface
22
of the main frame
20
.
As shown in
FIG. 30
, when the upper cover
13
is closed, the slant edge
194
b
of the lock slider
190
is pushed by the engaged member
180
, and the lock slider
190
is moved in a rightward direction. Upon completion of the lid closing of the upper cover
13
, the lock slider
190
is moved in a leftward direction by a tension force of the tensile coil spring
200
shown in
FIG. 29
due to the fact that its lock claw
194
is positioned at a higher location than that of the engaged surface
181
of the engaged member
180
, and is returned back to its initial position, its engaged edge
194
a
is engaged with the engaged surface
181
of the upper cover
13
so as to lock the upper cover
13
in its lid closed state.
As shown in
FIG. 28
, an ejecting slider
210
is slidably supported in a lateral direction just below the portion of the front surface of the front surface section
22
of the main frame
20
where the lock slider
190
is arranged. The ejecting slider
210
is formed with two lateral supporting slits
211
,
211
spaced apart in a lateral direction. Supporting projections projected in a protrusion form at the front surface section
22
of the main frame
20
are inserted into the supporting slits
211
,
211
and the ejecting slider
210
is slidably supported at the main frame
20
in a lateral direction.
A right end of the ejecting slider
210
is provided with a spring fitting piece
212
projected in a rightward direction. The spring fitting piece
212
is positioned in a lateral through-pass hole
22
d
formed at the front surface section
22
of the main frame
20
. There is provided a spring fitting piece
22
e
projected from the right end of the through-pass hole
22
d
in a leftward direction. Both ends of the compression coil spring
213
is fitted to each of spring fitting pieces
212
,
22
e
under a state in which the compression coil spring
213
is being compressed, and the ejecting slider
210
is biased in a leftward direction.
A pressed piece
214
is projected from an upper edge of the right end of the ejecting slider
210
to an upward direction. Its left end is formed with a pressing piece
215
projected in a slight upward direction and projected in a rearward direction. The pressing piece
215
is advanced through the through-pass hole
22
c
formed at the front surface
22
of the main frame
20
in a rearward direction of the front surface
22
. The pressing piece
215
and the pressed piece
196
of the lock slider
190
are spaced apart and faced to be opposite to each other.
As shown in
FIG. 32
, the ejection transmitting member
220
is fixed to the front end of the magnetic head ascending or descending slider
170
. The ejection transmitting member
220
is formed by bending a wire spring material and its shape is formed in a substantial L-shape as viewed from above. A coil section
221
is formed at the L-shaped bent part, and a fixing part
222
formed in an incomplete circle at one end of the L-shaped bent part is arranged and at the same time the other end is provided with a transmitting section
223
bent into a U-shape.
The front end of the magnetic head ascending or descending slider
170
formed by metallic sheet material is formed with a supporting section
176
, a pressing section
177
and a restricting section
178
.
The supporting section
176
is formed as a cylinder punched out at its lower surface, the end part of the cylinder is fastened in an outward direction to form a larger diameter part than that of other portion. A fixing section
222
of the ejection transmitting member
220
is fitted to and inserted into the supporting section
176
while it is once flexed in an outward direction to expand its diameter, a force of flexing of the fixing section
222
under its state is removed and the fixing section
222
is fixed to a supporting part
176
.
The pressing section
177
is formed with an abutting section
177
a
made by punching-out a part of the magnetic head ascending or descending slider
170
in a downward direction, bending the end part of the punched-out section in a rearward direction and facing toward the directions of arrows X, Y in
FIG. 32
, and with a stopper
177
b
directed toward a direction substantially crossing with a plane of the slider
170
, i.e. toward a vertical direction.
The restricting section
178
is formed such that a part between the two parallel slits spaced apart in a forward or rearward direction and extending in a lateral direction is punched out in a downward direction and formed into a tunnel extending in a forward or rearward direction.
As show in
FIGS. 7
,
13
and
32
, the ejection transmitting member
220
having the fixing section
222
supported at the supporting section
176
is set to a state in which an arm section
224
at the fixing section
222
is abutted from the coil section
221
against the abutting section
177
a
of the pressing section
177
from a rear side, the arm section
225
at the transmitting section
223
is inserted into and passed through the restricting section
178
from the coil section
221
and it is abutted against the left side surface of the restricting section
178
. Under this state, the portion except the rear end of the transmitting section
223
is projected from the front end of the magnetic head ascending or descending slider
170
in a forward direction, the magnetic head ascending or descending slider
170
is positioned at the front end in its moving range, the transmitting section
223
is inserted into and passed through a part between the pressed piece
196
of the lock slider
190
and the pressed piece
215
of the ejecting slider
210
and it is projected from the main frame
20
in a forward side.
The ejection transmitting member
220
is formed to have an L-shape under a state in which it is fixed to the magnetic head ascending or descending slider
170
as described above and before it is fixed to the magnetic head ascending or descending slider
170
, an angle of the bent part is set to be larger than 90° as shown in FIG.
36
.
An ejection knob
230
is slidably supported at the front surface of the front wall
11
a
of the lower case
11
in a lateral direction as shown in
FIGS. 7 and 8
. A connecting section
231
is projected and arranged at the rear surface of the ejection knob
230
and then the pressed piece
214
of the ejection slider
210
is engaged with the connecting section
231
.
Under a stopped state of the recording and reproducing apparatus
1
, when the ejection knob
230
is slid in a rightward direction, i.e. a direction indicated by an arrow Z in
FIG. 4
, the ejection slider
210
is slid in a rightward direction, i.e. a direction indicated by the arrow Z, against a resilient force of the compression coil spring
213
, resulting in that the pressing piece
215
moved in a rightward direction pushes the transmitting section
223
of the ejection transmitting member
220
in a direction indicated by the arrow Z. The ejection transmitting member
220
in which the transmitting section
223
is pushed by the pressing piece
215
of the ejection slider
210
in a rightward direction, i.e. a direction indicated by the arrow Z is operated such that its arm
225
is flexed from the coil section
221
in a rightward direction, thereby the transmitting section
223
moved in a rightward direction in a direction indicated by the arrow Z pushes the pressed piece
196
of the lock slider
190
in a rightward direction. As shown in
FIGS. 30 and 31
, the lock slider
190
is moved in a rightward direction, i.e. a direction indicated by the arrow Z, the engaged edge
194
a
is released from the engaged surface
181
of the engaged member
180
of the upper cover
13
in a rightward direction, a direction indicated by the arrow Z, and the engaged state between the lock claw
194
of the lock slider
190
and the engaged member
180
of the cover
13
is released.
As the engaged state between the lock claw
194
of the lock slider
190
and the engaged member
180
of the upper cover
13
is released, the upper cover
13
is rotated in an upward direction with a resilient force of the pressing spring
13
b
. When a user holds the front end of the upper cover
13
and moves the upper cover
13
in an upward direction, the upper cover
13
is further rotated in an upward direction. At this time, the lower end opening edge of the connecting hole
21
a
of the supporting arm
21
rotated together with the upper cover
13
pushes the connecting piece
62
a
of the cartridge holder
60
in an upward direction and then the cartridge holder
60
is rotated in an upward direction. The cartridge holder
60
is rotated in an upward direction, the lock member
80
is moved downwardly in respect to the cartridge holder
60
, the engaged section
81
a
of the lock member
80
is released from the moving path of the engaged piece
71
c
of the release slider
70
in a downward direction, so that the release slider
70
is moved in a forward direction by a tension force of the tensile coil spring
73
, its abutting piece
72
a
pushes the right end of the front end surface of the disk cartridge
2
in a forward direction and the disk cartridge
2
is projected at its rear end from the front end of the cartridge holder
60
. If a user holds the portion projected from the front end of the cartridge holder
60
of the disk cartridge
2
and pulls it, it is possible to take out the disk cartridge
2
from the cartridge holder
When the aforesaid ejection of the disk cartridge is carried out or the aforesaid taking-out of the disk cartridge is performed during a recording or reproducing operation, there is a possibility that information written in the magneto-optic disk
2
is lost or either the disk cartridge
2
or the magnetic head
101
is damaged, so that in the case that the ejection knob
230
is erroneously slid in a direction indicated by the arrow Z in
FIG. 4
during a recording operation or during a reproducing operation, it is necessary to prevent an ejecting operation from being performed. Due to this fact, during the reproducing operation and the recording operation, the stepping motor
172
is driven as indicated in
FIGS. 8
,
14
and
34
, the magnetic head ascending or descending slider
170
is moved in a direction indicated by an arrow X in FIG.
8
and the transmitting section
223
of the ejection transmitting member
220
is moved away from the position between the pressed piece
196
of the lock slider
190
and the pressed piece
215
of the ejecting slider
210
. The state shown in
FIGS. 8
,
14
and
34
is kept until the recording operation on the magneto-optic disk
2
is completed. The completion of the recording operation as defined in the present invention is meant by a state in which recording of data in the data recording region in the magneto-optic disk is completed, the recording of monitoring data such as a starting address or an end address recorded in the data recording region under a present recording operation is finished at the region where the monitoring data of the magneto-optic disk
2
is recorded. In addition, the state shown in
FIGS. 8
,
14
and
34
is kept in the same manner as that of the aforesaid recording operation until the reproducing operation is completed. The finished reproducing operation is defined as one in which the rotation of the magneto-optic disk is stopped and the radiation of the optical beam from the optical pick-up
50
is stopped.
Accordingly, even if the ejecting slider
210
is slid in a rightward direction, i.e. a direction indicated by the arrow Z as the ejecting knob
230
is slid in a rightward direction, a direction indicated by the arrow Z in
FIG. 4
, until the reproducing operation or the recording operation is finished, the pressing piece
215
of the slider
210
is merely moved in a rightward direction in a space between it and the pressed piece
196
of the lock slider
190
producing a vacant region under a retracting motion of the transmitting section
223
of the ejection transmitting member
220
, resulting in that it does not push the pressed piece
196
in a rightward direction. Accordingly, as shown in
FIG. 34
, even if the pressed piece
215
of the ejecting slider
210
is moved in a rightward direction, i.e. a direction indicated by the arrow Z, a so-called non-operating state occurs and the lock slider
190
is not slid in such a direction as one in which the locked state of the upper cover
13
is released. Accordingly, the upper cover
13
is not opened and the ejecting operation is not carried out.
Moving amounts of the magnetic head ascending or descending slider
170
in each of the reproducing operation and the recording operation are made different. That is, in the case of reproducing operation, a moving amount of the magnetic head ascending or descending slider
170
during the reproducing operation is low, resulting in that a sliding amount of the transmitting slider
160
in a rearward direction, i.e. a direction indicated by the arrow X in
FIG. 7
, for example, and the abutting piece
152
of the magnetic head ascending or descending plate
150
is kept at its mounted state on the upper edge of the pushing-up projecting piece
161
of the transmitting slider
160
. Accordingly, as shown in
FIG. 16
, for example, the magnetic head
101
is kept at a state in which it is spaced apart in an upward direction from the upper main plane of the disk cartridge
2
held at the cartridge holder
60
.
During the recording operation, as shown in
FIGS. 8
,
14
and
17
, the magnetic head ascending or descending slider
170
is slid more rearwardly than that of the reproducing operation, i.e. in a direction indicated by the arrow X in
FIG. 8
, and accordingly the transmitting slider
160
is also slid more rearwardly than that of the reproducing operation, i.e. in a direction indicated by the arrow X and the abutting piece
152
of the magnetic head ascending or descending plate
150
is moved away from the upper edge of the pushing-up projecting piece
161
of the transmitting slider
160
. Accordingly, as shown in
FIG. 17
, the magnetic head
101
is moved from the magnetic head opening
5
of the disk cartridge
2
held at the cartridge holder
60
into the cartridge
4
and then it is contacted with or moved toward the magneto-optic disk
3
.
When the recording and reproducing apparatus
1
completes either the reproducing operation or the recording operation and its operation is changed over to a stopped state, the stepping motor
72
is driven in the opposite direction against the case in which the reproducing operation and the recording operation are carried out, thereby the transmitting section
223
of the ejection transmitting member
220
is positioned between the pressed piece
195
of the lock slider
190
and the pressed piece
215
of the ejecting slider
210
.
In addition, in the case that there is scarcely found a time difference between a stopping operation and the ejecting operation and the ejecting knob
230
has been slid in a rightward direction and the ejecting slider
210
has been moved in a rightward direction, i.e. in a direction indicated by the arrow Z in
FIG. 35
before the transmitting section
223
of the ejection transmitting member
220
is positioned between the pressed piece
195
of the lock slider
190
and the pressed piece
215
of the ejecting slider
210
, the transmitting section
223
is abutted against the rear surface of the ejecting slider
210
as shown in
FIG. 35
due to the fact that the ejection transmitting member
220
is formed by a wire spring material, resulting in that a bending state becomes deep at the location of the coil
221
by resiliency of the material constituting the transmitting member
220
, the transmitting member
220
realizes a function as the limiter and then it is possible to avoid damage of the magnetic head ascending or descending slider
170
and the ejecting slider
210
or the like. Additionally, in such a case as above, although the arm
224
of the ejection transmitting member
220
is moved away from the abutted section
177
a
of the pressing part
177
of the magnetic head ascending or descending slider
170
as shown in
FIG. 35
, the arm
224
is prevented from being moved away from the pressing part
177
due to the fact that the stopper section
177
b
is positioned at the lower side of the pressing section
177
.
In addition, as the ejection transmitting member, the member shown in
FIGS. 37
to
39
in addition to the constitution shown in
FIG. 32
can be used as the ejection transmitting member.
Each of the ejection transmitting members
220
A,
220
B and
220
C shown in
FIGS. 37
to
39
has transmitting sections
223
A,
223
B and
223
C formed by bending a wire spring material, formed into a substantial U-shape and having a predetermined width, a predetermined location of each of them is supported by or pressed by the magnetic head ascending or descending slider
170
, thereby they may provide the same actions and effects as those of the ejection transmitting member
220
shown in FIG.
32
.
As shown in
FIGS. 40 and 41
, there is provided a battery storing space
240
opened at a rear surface by the right end section of the lower case
11
and the upper case
12
of the recording and reproducing apparatus
1
and then a battery holder
241
is arranged in and fixed at the battery storing space
240
.
A switch unit
250
is arranged at the upper surface of the battery holder
241
. The switch unit
250
is comprised of a switch unit substrate in which some short-circuited plates
252
,
252
, . . . (only one of them is shown in
FIG. 41
) are arranged at positions corresponding to some switch patterns in a flexible printed substrate
251
formed with some switch patterns not shown and the pattern forming surface of the flexible printed circuit substrate
251
and the short circuited plates
252
,
252
, . . . are covered by a protection cover film
253
; and a reinforcing plate
254
laminated at the rear surface of the switch unit substrate, i.e. the surface opposite to the pattern forming surface of the flexible printed circuit substrate
251
.
The short-circuited plate
252
is formed into a substantial flat-dome shape by a metallic plate having an electrical conduction and a spring resiliency as shown in FIG.
41
, its projected portion is pressed from above to be deformed into a flat shape so as to make a short-circuited state between the switch patterns of the flexible printed circuit board. The reinforcing plate
254
is formed by material having a high rigidity, for example, SUS and this reinforcing plate prevents the flexible printed circuit board
251
from being deformed into a downward direction when the short-circuited plate
252
is depressed from above, and further prevents a short-circuiting between the switch patterns caused by the short-circuited plate
252
from becoming non-positive. Accordingly, there occurs no possibility that a location where the switch unit
250
is arranged is not limited to a location having a flat installing surface.
As shown in
FIG. 41
, an operating button
15
is constructed such that a depressed section
15
a
having a predetermined shape as seen from its top plan view and a depressing protrusion
15
b
projected from a substantial central part of a rear surface of the depressed section
15
a
are integrally formed. The depressed section
15
a
is arranged within a concave part
12
a
formed in the upper case
12
and having a shape corresponding to the depressed section
15
a
, wherein the depressing protrusion
15
b
is inserted into the insertion hole
12
b
formed at the concave part
12
a
and the extremity end of the depressing protrusion
15
b
is oppositely faced against the short-circuited plate
252
of the switch unit
250
through a cover film
253
. When the depressed section
15
a
of the operating button
15
is depressed by a user's finger, the depressing protrusion
15
b
depresses the short-circuited plate
252
of the switch unit
250
through a cover film
253
so as to cause the switch patterns of the flexible printed circuit board
251
to be short circuited. Since this switch unit
250
is provided with a reinforcing plate
254
, there is no possibility that the flexible printed circuit board
251
is deformed to eliminate a depressing force as the operating button
15
is depressed and further since the reinforcing plate
254
positively receives the depressing force applied by the operating button
15
, the short-circuited plate
252
is positively deformed from the flat dome shape to a flat state to cause the switch patterns of the flexible printed circuit board
251
to be positively short circuited and at the same time a click feeling when the short-circuited plate
252
is deformed is transmitted to an operating person through the operating button
15
, and a comfortable operating feeling can be attained.
If the reinforcing plate
254
is not provided, the flexible printed circuit board
251
is deformed when the operating button
15
is depressed. There is a possibility that a repetition of deformation of this flexible printed circuit board
251
causes the wiring patterns arranged at the flexible printed circuit board
251
to be broken. As described above, the reinforcing plate
254
is provided to prevent the flexible printed circuit board
251
from being deformed and then the wiring patterns are prevented from being cut.
As the user removes the finger from the operating button
15
to release the depressing against the depressed section
15
a
of the operating button
15
, the short-circuited plate
252
returns to its original flat dome-shape with resiliency of its material and the operating button
15
is also returned to its original position.
Although not shown in the drawings, there is provided an appropriate drop-prohibiting mechanism so as to prevent the operating button
15
from being dropped off the concave section
12
a
and the insertion hole
12
b
of the upper case
12
.
Claims
- 1. A recording apparatus for a recording medium comprising:a main body; a lid rotatably arranged at the main body of the apparatus; a lock mechanism for locking said lid against said main body of the apparatus; an operating mechanism arranged at said main body of the apparatus; and a transmitting mechanism arranged between said operating mechanism and said lock mechanism, said transmitting mechanism having a resilient displacement member for transmitting an operation performed by said operating mechanism to said lock mechanism, said resilient displacement member being moved between a transmitting position where an operation of said operating mechanism is transmitted to said lock mechanism so as to release a locked state of said lid with said lock mechanism and a non-transmitting position where said resilient displacement member is retracted from said lock mechanism and functions as a limiter mechanism.
- 2. The recording apparatus according to claim 1, wherein said resilient displacement member is provided with a resilient displacement section resiliently displaced by said operating mechanism to release the locked state of said lid with said lock mechanism.
- 3. The recording apparatus according to claim 2, wherein said apparatus is provided with a moving mechanism for use in moving said resilient displacement member between said transmitting position and said non-transmitting position.
- 4. The recording apparatus according to claim 3, wherein said moving mechanism moves said resilient displacement member from said transmitting position to said non-transmitting position at least until said apparatus completes a recording operation for the recording medium.
- 5. The recording apparatus according to claim 2, wherein said apparatus is provided with a releasing mechanism for releasing the locked state of said lid with said lock mechanism and said releasing mechanism is resiliently displaced by said operating mechanism and then the locked state of said lid with said lock mechanism is released.
- 6. The recording apparatus according to claim 1, wherein said resilient displacement member is formed of a wire spring member.
- 7. A recording apparatus for a recording medium comprising:a main body of the apparatus; a recording section for performing a recording on a recording medium; the main body of the apparatus provided with said recording section; a lid rotatably arranged on said main body of the apparatus; a releasing mechanism for releasing a locked state of said lid locked at a closed position against said main body of the apparatus; an operating mechanism arranged at said main body of the apparatus; and a transmitting mechanism arranged between said operating mechanism and said releasing mechanism, said transmitting mechanism having a resilient displacement member for transmitting an operation performed by said operating mechanism to said releasing mechanism, said resilient displacement member transmitting an operation of said operating mechanism to said releasing mechanism whereby the locked state of said lid is released by said releasing mechanism, said resilient displacement member being moved to a non-transmitting position retracted from said releasing mechanism, at least until a recording operation of said recording medium with said recording section is completed, where the resilient displacement member functions as a limiter mechanism.
- 8. The recording apparatus according to claim 7, wherein said recording section is provided with a head mechanism for performing the recording on the recording medium.
- 9. The recording apparatus according to claim 8, wherein said apparatus is provided with a moving mechanism for use in moving said head mechanism and wherein said resilient displacement member is moved by said moving mechanism between said retracted position and a position where an operation performed by said operating mechanism is transmitted to said releasing mechanism.
- 10. The recording apparatus according to claim 9, wherein said resilient displacement member is provided with a resilient displacement section resiliently displaced by said operating mechanism, and a locked state of said lid is released by said releasing mechanism under an operation in which said resilient displacement section is resiliently displaced by said operating mechanism.
- 11. The recording apparatus according to claim 7, wherein said resilient displacement member is formed by a wire spring member.
- 12. The recording apparatus according to claim 7, wherein said apparatus is provided with a lock mechanism for locking said lid at a position closed in respect to said main body of the apparatus, and said lock mechanism releases the locked state of said lid by said releasing mechanism.
- 13. A recording apparatus for a recording medium comprising:a main body of the apparatus; a head mechanism for performing a recording on the recording medium; the main body of the apparatus provided with said head mechanism; a lid rotatably arranged at said main body of the apparatus; a releasing mechanism for releasing a locked state of said lid locked at a closed position against said main body of the apparatus; an operating mechanism arranged at said main body of the apparatus; and a transmitting mechanism arranged between said operating mechanism and said releasing mechanism, said transmitting mechanism having a resilient displacement member for transmitting an operation performed by said operating mechanism to said releasing mechanism, said resilient displacement member being moved between a transmitting position where an operation of said operating mechanism is transmitted to said releasing mechanism to cause the locked state of said lid to be released by said releasing mechanism and a non-transmitting position where it is retracted from said releasing mechanism and functions as a limiter mechanism, said resilient displacement member being moved to said non-transmitting position during a period in which said head mechanism is being moved to a recording position where the recording is carried out on the recording medium.
- 14. The recording apparatus according to claim 13, wherein said apparatus is further provided with a moving mechanism for moving said head mechanism and wherein said resilient member of said transmitting mechanism is moved by said moving mechanism between said retracted position and a position where an operation performed by said operating mechanism is transmitted to said releasing mechanism.
- 15. The recording apparatus according to claim 14, wherein said resilient displacement member is provided with a resilient displacement section resiliently displaced by said operating mechanism, said resilient displacement section is resiliently displaced by said operating mechanism and the locked state of said lid is released by said releasing mechanism.
- 16. The recording apparatus according to claim 13, wherein said resilient displacement member is formed by a wire spring member.
- 17. The recording apparatus according to claim 13, wherein said apparatus is provided with a lock mechanism for use in locking said lid at a closed position against said main body of the apparatus.
Priority Claims (1)
Number |
Date |
Country |
Kind |
9-277501 |
Oct 1997 |
JP |
|
US Referenced Citations (1)
Number |
Name |
Date |
Kind |
5638351 |
Kanada et al. |
Jun 1997 |
|
Foreign Referenced Citations (1)
Number |
Date |
Country |
63-228453 |
Sep 1988 |
JP |