Information
-
Patent Grant
-
6814436
-
Patent Number
6,814,436
-
Date Filed
Monday, March 24, 200321 years ago
-
Date Issued
Tuesday, November 9, 200420 years ago
-
Inventors
-
Original Assignees
-
Examiners
Agents
- Penny, Jr.; John J.
- Edwards & Angell, LLP
-
CPC
-
US Classifications
Field of Search
US
- 347 16
- 347 104
- 347 105
- 347 8
- 347 4
- 347 101
- 400 641
-
International Classifications
-
Abstract
A recording apparatus includes: a feeder, provided in an upstream in a transfer path for transferring a medium, for feeding the medium to a downstream in the transfer path one by one, the medium being stacked at an angle; a recording head, provided in the downstream of the feeder, for performing recording for the medium; a carriage, on which the recording head is mounted, for reciprocating in a main scanning direction along a carriage guide axis; a transfer roller for transferring the medium by rotating, the transfer roller including a transfer-driving roller and a transfer-driven roller; a stacker having a medium-placed surface, the stacker being positioned at a first position allowing the medium to be substantially horizontally fed from the medium-placed surface to a position under the recording head and be substantially horizontally discharged from the position under the recording head onto the medium-placed surface, or a second position for receiving and stacking the medium fed by the feeder, the second position being on a lower level than the first position, the medium-placed surface being arranged substantially horizontally when the stacker is positioned at the first position and is arranged at an angle when the stacker is positioned at the second position; and a first link mechanism for displacing the stacker to cause the carriage guide axis to displace. The carriage guide axis can be displaced upward and is prevented from moving downward when the stacker is positioned at the first position.
Description
This patent application claims priority from Japanese patent applications Nos. 2002-82990 filed on Mar. 25, 2002 and 2003-60688 filed on Mar. 6, 2003, the contents of which are incorporated herein by reference.
BACKGROUND OF THE INVENTION
1. Field of the Invention
The present invention relates to a recording apparatus for performing recording for recording medium or paper by emitting ink on the recording medium, such as an ink-jet type recording apparatus, and a liquid emitting apparatus for emitting liquid onto a medium to make the liquid adhere to the medium.
The term “liquid emitting apparatus” is used for referring not only to a recording apparatus, having an ink-jet type recording head for emitting ink from the recording head so as to perform recording for a recording medium, such as a printer, a copier and a facsimile machine, but also to an apparatus that causes liquid to adhere to a medium, corresponding to the recording medium in the above recording apparatus, by emitting the liquid selected depending on the use of the apparatus in place of the ink toward the medium from a liquid emitting head corresponding to the recording head in the above recording apparatus.
As the liquid emitting head, the following heads can be considered other than the above recording head: a color-material emitting head used for fabrication of a color filter for a liquid crystal display or the like, an electrode-material (conductive paste) emitting head used for forming an electrode in an organic EL display or a field-emission display (FED), a bioorganic compound emitting head used for fabrication of a bio-chip and a sample spraying head as a precision pipette.
2. Description of the Related Art
As an exemplary recording apparatus or liquid emitting apparatus is known an ink-jet type printer (hereinafter, referred to as a “printer”). A typical printer is shown in
FIGS. 10A and 10B
. The printer
200
includes a medium feeder
2
provided in the upstream of a transfer path for medium, as shown in
FIGS. 10A and 10B
. The medium feeder
2
holds one or more units of a medium, such as cut sheet or paper, that are stacked thereon to be at a certain angle with respect to the body of the printer and feeds one or more units of the medium one by one to the downstream of the feeding path. The printer
200
also includes: a carriage (not shown), arranged in the downstream of the feeder
2
, for carrying a recording head mounted thereon that performs recording for the medium; and a transfer roller (not shown) for transferring the medium by rotating, which includes a transfer-driving roller and a transfer-driven roller.
The printer
200
is arranged to have the first and second transfer paths. On the first transfer path, one of more units of the medium, for example, one or more sheets of paper, that are stacked on the feeder
2
to be at a certain angle with respect to the body of the printer, are transferred toward the front side of the printer
200
one by one while being bent, so as to be discharged from the front side of the printer
200
in a substantially horizontal direction. On the second transfer path, a rigid medium that cannot be transferred on the above-mentioned first transfer path is substantially horizontally fed from the front side of the body
3
of the printer
200
so as to be discharged from the front side of the printer
200
.
The second transfer path is used, for example, for performing recording for a rigid medium such as a CD-R (recordable compact disc). In this case, it is necessary to attach an exclusive discharge tray
202
that serves as a feeder tray used for manually feeding the rigid medium from the front side of the printer
200
toward the recording head and also serves as a discharge tray for receiving the rigid medium discharged after the recording, on the upper side of a discharge tray
201
that receives paper discharged after the recording.
Moreover, in order to perform recording for the rigid medium, it is necessary to adjust a distance between the rigid medium and the recording head by displacing the carriage for mounting the recording head thereon upward, thereby ensuring that the recording head is not in contact with the rigid medium. For achieving this object, the printer
200
includes a PG operation lever
203
for displacing a carriage guide axis to adjust a gap between the recording head and the recording medium. The PG operation lever
203
has to be operated by a user depending on the type of the medium, thus causing a trouble. In addition, even during a recording operation for the rigid medium, the PG operation lever
203
is operative. Thus, the PG operation lever
203
may be operated by an unexpected force so as to bring the carriage down, thereby bringing the recording head into contact with the rigid medium. In this case, the recording head may be damaged, as disclosed in Japanese Patent Application Laying-Open 2002-192782, for example.
SUMMARY OF THE INVENTION
Therefore, it is an object of the present invention to provide a recording apparatus and a liquid emitting apparatus, which are capable of overcoming the above drawbacks accompanying the conventional art. The above and other objects can be achieved by combinations described in the independent claims. More specifically, it is an object of the present invention to provide a recording apparatus and a liquid emitting apparatus that can ensures a distance between a recording head and a medium for which recording is performed in an appropriate manner and can perform high-quality printing. The dependent claims define further advantageous and exemplary combinations of the present invention.
According to the first aspect of the present invention, a recording apparatus comprises: a feeder, provided in an upstream in a transfer path for transferring a medium, operable to feed the medium to a downstream in the transfer path one by one, the medium being stacked at an angle; a recording head, provided in the downstream of the feeder, operable to perform recording for the medium; a carriage, on which the recording head is mounted, operable to reciprocate in a main scanning direction along a carriage guide axis; a transfer roller operable to transfer the medium by rotating, the transfer roller including a transfer-driving roller and a transfer-driven roller; a stacker having a medium-placed surface, the stacker being positioned at a first position allowing the medium to be substantially horizontally fed from the medium-placed surface to a position under the recording head and be substantially horizontally discharged from the position under the recording head onto the medium-placed surface, or a second position operable to receive and stack the medium fed by the feeder, the second position being on a lower level than the first position, the medium-placed surface being arranged substantially horizontally when the stacker is positioned at the first position and is arranged at an angle when the stacker is positioned at the second position; and a first link mechanism operable to displace the stacker to cause the carriage guide axis to displace, wherein the carriage guide axis is arranged to be displaced upward when the stacker is positioned at the first position, and is prevented from moving downward as long as the stacker is positioned at the first position.
According to the second aspect of the present invention, a recording apparatus for performing recording for a first type of medium and a second type of medium comprises: a feeder, provided in an upstream in a transfer path for transferring the first type of medium, operable to feed the first type of medium to a downstream in the transfer path one by one, the first type of medium being stacked at an angle; a recording head, provided in the downstream of the feeder, operable to perform recording for the first type of medium and the second type of medium; a carriage, on which the recording head is mounted, operable to reciprocate in a main scanning direction along a carriage guide axis; a transfer roller operable to transfer the first type of medium by rotating, the transfer roller including a transfer-driving roller and a transfer-driven roller; a stacker having a medium-placed surface, the stacker being positioned at a first position allowing another transfer path for the second type of medium to be formed or at a second position, located on a lower level than the first position, operable to receive and stack the first type of medium, the medium-place surface being arranged substantially horizontally when the stacker is at the first position and is arranged at an angle when the stacker is at the second position, the another transfer path allowing the second type of medium to be straightly fed from the medium-placed surface to a position under the recording head and be straightly discharged from the position under the recording head onto the medium-placed surface; and a first link mechanism operable to displace the stacker to cause the carriage guide axis to displace, wherein the carriage guide axis is displaced upward when the stacker is positioned at the first position, and is prevented from moving downward as long as the stacker is positioned at the first position, and the second type of medium is suitable for substantially straight transfer.
According to conventional techniques, in order to perform for a rigid medium that cannot be fed by a feeder for feeding paper as a recording medium, such as a CD-R, it is necessary to attach an exclusive feed-discharge tray for rigid medium, that serves not only as a feed tray used for manually feeding the rigid medium from the front side of a printer toward a recording head but also as a discharge tray used for receiving the rigid medium discharged after recording, above a discharge tray for paper that is used for receiving the paper discharged after recording.
Moreover, in a case of recording for the rigid medium, it is necessary for a user to operate a PG operation lever for displacing the carriage guide axis so as to adjust a gap between the medium and the recording head. However, operating the PG operation lever depending on the type of recording medium causes a trouble. In addition, during the recording for the rigid medium, the PG operation lever may be operated by an unexpected force externally applied, causing a carriage to move down so as to come into contact with the rigid medium. This may leads to a damage of the recording head.
According to the present invention, the first link mechanism for displacing the carriage guide axis by displacing the stacker for the medium is provided. Thus, the recording for the rigid medium such as a CD-R can be performed easily without fail. More specifically, by displacing the stacker to the first position, that is a position for recording for the rigid medium, the carriage guide axis is also displaced upward. Therefore, the recording head and the rigid medium cannot be brought into contact with each other, eliminating the necessity of the conventional PG operation lever. This reduces the operations that the user has to do.
Moreover, according to the present invention, the carriage guide axis is displaced upward with the movement of the stacker to the first position, and is arranged not to move downward as long as the stacker is positioned at the first position. Thus, the contact between the rigid medium and the recording head can be prevented during the recording operation. Therefore, the recording head can be prevented from being damaged and the carriage guide axis can be prevented from being moved down by the unexpected force externally applied.
Furthermore, the stacker has a function of the conventional feed-discharge tray for rigid material. Thus, it is unnecessary to use the feed-discharge tray, reducing the cost. In addition, since it is unnecessary to store the feed-discharge tray when the tray is not used, eliminating the trouble required for storing the feed-discharge tray.
The recording apparatus may further comprise a transfer-driven roller switching mechanism operable to switch the state of the transfer-driven roller between a contact state in which the transfer-driven roller is in contact with the transfer-driving roller and a cleared state in which the transfer-driven roller is moved upward, by operating an operating unit to cause the transfer-driven roller to be displaced.
According to this feature, since the transfer-driven roller switching mechanism is provided for switching the state of the transfer-driven roller between the contact state and cleared state by operating the operating unit, in a case of recording for paper, the paper can be transferred without fail by bringing the transfer-driven roller into the contact state. Moreover, in a case of recording the rigid medium, the rigid medium can be supplied to the position under the recording head by bringing the transfer-driven roller into the cleared state, thereby performing the recording without fail.
The transfer-driven roller switching mechanism may be arranged to be driven only when the stacker is positioned at the first position.
In a case of recording for the rigid medium such as CD-R, the stacker is placed at the first position first. Then, a CD-R tray in which the CD-R is mounted is placed on the medium-placed surface that is the top surface of the stacker. The CD-R is then fed manually from the front side of the printer. However, if the transfer-driven roller is in the contact state where it is in contact with the transfer-driving roller at this time, it is not possible to transfer the CD-R because the rollers of the transfer roller cannot sandwich the CD-R tray.
According to the present invention, the transfer-driven roller switching mechanism can be driven only when the stacker is positioned at the first position. Thus, after the stacker has been displaced to the first position, the transfer-driven roller switching mechanism is driven to place the transfer-driven roller in the cleared state and thereafter the CD-R is manually fed. Then, at least after the transfer roller has been placed in a state where the rollers of the transfer roller can sandwich the CD-R tray, the transfer-driven roller switching mechanism is driven to bring the transfer-driven roller into the contact state. As a result, the CD-R tray can be transferred without fail, while being sandwiched by the rollers of the transfer roller.
The recording apparatus may further comprise a regulating mechanism operable to regulate the driving of the discharge-driven roller switching mechanism in accordance with the position of the stacker.
According to this feature, since the regulating mechanism is provided for regulating the driving of the transfer-driven roller switching mechanism depending on the position of the stacker, it is possible to prevent wrong operation by the user. Also, it is possible to perform recording under the optimum condition for each of many types of recording media without fail.
The regulating mechanism may be arranged to place the discharge-driven roller only in the contact state when the stacker is positioned at the second position.
When the stacker is positioned at the second position, the medium for which recording is performed is fed from the feeder provided on the backside of the printer, is transferred to be subjected to the recording. After the recording, the medium is discharged and stacked onto the medium-placed surface of the stacker. In other words, as long as the stacker is positioned at the second position, it is not necessary to place the transfer-driven roller of the transfer roller in the cleared state.
According to the present invention, the transfer-driven roller can be in the contact state only, when the stacker is positioned at the second position. Thus, the transfer-driven roller can be prevented from being placed in the cleared state by mistake. If the transfer-driven roller is placed in the cleared state by mistake, the medium fed from the feeder cannot be transferred because the rollers of the transfer roller cannot sandwich the medium. That is, according to the present invention, the medium fed from the feeder, i.e., paper, can be transferred toward the stacker without fail.
The recording apparatus may further comprise a returning mechanism operable to affect the transfer-driven roller switching mechanism to bring the transfer-driven roller in the contact state when the stacker is displaced to the second position, in a case where the stacker is positioned at the first position and the transfer-driven roller is in the cleared state.
When the stacker is positioned at the second position, paper as the medium is fed from the feeder is stacked onto the medium-placed surface of the stacker after recording. That is, as long as the stacker is positioned at the second position, the transfer roller cannot transfer the rigid medium. Thus, it is necessary to place the transfer-driven roller in the contact state, not in the cleared state.
Therefore, according to the present invention, since the aforementioned returning mechanism is provided for affecting the transfer-driven roller switching mechanism, the transfer-driven roller can be placed in the contact state without fail as long as the stacker is positioned at the second position.
For example, a case is considered where the stacker is moved to the second position in order to perform recording for the medium from the feeder after the stacker was positioned at the first position and the recording was performed for the rigid medium. In this case, when the transfer-driven roller is in the cleared state, the transfer of this medium from the feeder may not be performed in an appropriate manner. However, according to the present invention, such a disadvantage can be prevented, and it is possible to place the transfer-driven roller in the contact state without fail when the stacker is displaced to the second position.
The returning mechanism may be formed by the same component as that forming the regulating mechanism. According to this feature, the recording apparatus can be formed by a simple arrangement and a reduced number of parts, thereby making the design easier and reducing the cost.
The carriage guide axis may be supported at its axis ends by a frame via an eccentric mechanism, the first link mechanism may include an actuation member engaged with the stacker; and a power transmission member operable to be driven together with the actuation member to cause the eccentric mechanism to pivotally move, and a gap between the recording head and the first or second type of medium may be adjusted by displacing the carriage guide axis together with the displacement of the stacker. According to this feature, the carriage can be displaced without fail by a simple arrangement.
The transfer-driven roller may be supported by a roller holder in such a manner that a downstream part of the transfer-driven roller is pivotable around an upstream portion of the transfer-driven roller as a pivot center, and the transfer-driven roller switching mechanism includes a cam rotation axis having a cam capable of coming into contact with the roller holder, and switches the cleared state and the contact state of the transfer-driven roller in accordance with the pivot of the roller holder by means of a cam mechanism operable to bring the cam into contact with a cam follower and to move the cam away from the cam follower by operating the operating unit, the cam follower being arranged in the upstream of the roller holder. According to this feature, the state of the transfer-driven roller can be switched between the cleared state and the contact state without fail by the simple arrangement.
The actuation member may include a space therein and has an U-shape that becomes convex upward seen from the downstream of the transfer path, the operating unit being arranged within the space.
According to this feature, the space in the recording apparatus can be reduced. Moreover, it is possible to cause the actuation member to serve as the regulating mechanism for regulating the driving of the operating unit without fail by the simple arrangement.
The transfer-driven roller switching mechanism may be capable of being driven together with the movement of the first link mechanism. According to this feature, only by displacing the position of the stacker by the user, for example, it is possible to appropriately set the recording condition.
According to the third aspect of the present invention, a liquid emitting apparatus comprises: a feeder operable to feed one or more units of a medium onto which liquid is to be emitted, one by one toward a downstream in a transfer path for transferring the medium, the feeder being provided in an upstream in the transfer path, the one or more units of the medium being stacked on the feeder at an angle; a liquid emitting head, provided in the downstream of the feeder, operable to emit the liquid; a carriage, on which the liquid emitting head is mounted, operable to reciprocate in a main scanning direction along a carriage guide axis; a transfer roller operable to transfer the medium by rotating, the transfer roller including a transfer-driving roller and a transfer-driven roller; a stacker, having a medium-placed surface, operable to be positioned at a first position allowing the medium from the medium-placed surface to be substantially horizontally fed to a position under the liquid emitting head and be substantially horizontally discharged from the position under the liquid emitting head onto the medium-placed surface, or at a second position for receiving the medium when the medium was fed by the feeder, the second position being located on a lower level than the first position, the medium-placed surface being arranged substantially horizontally when the stacker is positioned at the first position and is arranged at an angle when the stacker is positioned at the second position; and a first link mechanism operable to displace the stacker to cause the carriage guide axis to be displaced with the displacement of the stacker, wherein the carriage guide axis is arranged to be displaced upward when the stacker is positioned at the first position, and is prevented from moving downward as long as the stacker is positioned at the first position.
The summary of the invention does not necessarily describe all necessary features of the present invention. The present invention may also be a sub-combination of the features described above. The above and other features and advantages of the present invention will become more apparent from the following description of the embodiments taken in conjunction with the accompanying drawings.
BRIEF DESCRIPTION OF THE DRAWINGS
FIG. 1
is a cross-sectional view of a printer according to the present invention, seen from the side of the printer.
FIG. 2
is a cross-sectional view of the printer that performs recording on paper in a case where the first transfer path is used.
FIG. 3
is a cross-sectional view of the printer that performs recording on rigid recording medium in a case where the second transfer path is used.
FIG. 4
is a perspective view of a main part of the printer seen from the front side of the printer.
FIG. 5
is a perspective view of the main part of the printer seen from approximately the same direction as that in FIG.
4
.
FIG. 6
is a perspective view of the main part of the printer seen from the backside of the printer.
FIG. 7
is a cross-sectional view of the printer for explaining the first and second link mechanisms according to the present invention.
FIG. 8
shows an operation of the printer according to the present invention.
FIG. 9
shows an operation of the printer according to the present invention.
FIG. 10A
is a front view of a conventional printer; and
FIG. 10B
is a perspective view of the conventional printer with a discharge tray for rigid medium attached thereto.
DETAILED DESCRIPTION OF THE INVENTION
The invention will now be described based on the preferred embodiments, which do not intend to limit the scope of the present invention, but exemplify the invention. All of the features and the combinations thereof described in the embodiment are not necessarily essential to the invention.
In the following description, an embodiment of a liquid emitting apparatus according to the present invention is described referring to an ink-jet type printer that is an exemplary liquid emitting apparatus of the present invention, based on the drawings.
<Entire Arrangement of the Ink-Jet Type Printer>
Referring to
FIGS. 1-3
, an ink-jet type printer
100
(hereinafter, referred to as a “printer”) as an exemplary recording apparatus according to an embodiment of the present invention is described.
FIG. 1
is a cross-sectional view of the printer
100
seen from the side thereof;
FIG. 2
is a cross-sectional view of the printer
100
showing a state in which printing is performed for paper by using the first transfer path (1); and
FIG. 3
is a cross-sectional view of the printer
100
showing a state in which the printing is performed for a rigid medium by the second transfer path (2).
In this description, the term “paper P” is used for referring to a recording medium that can be fed by a feeder
2
as an exemplary feeding device while being bent; and the term “rigid medium G” is used for referring to a recording medium that cannot be fed while being bent. Moreover, in order to refer to both the paper P and the rigid medium G, the term “medium” may be used.
The printer
100
includes the first and second transfer paths (1) and (2). On the first transfer path (1), the feeder
2
for supplying paper P is provided in the upstream part of the printer
100
. The feeder
2
holds one or more sheets of paper P stacked thereon at a certain angle with respect to the body of the printer
100
and feeds the paper P to the downstream one by one while bending the paper P, as shown in
FIGS. 1 and 2
. The paper P transferred on the first transfer path (1) is discharged from the front side of the printer
100
in a substantially horizontal direction. On the second transfer path (2), as shown in
FIG. 3
, a rigid medium G, that cannot be transferred on the first transfer path (1) because it cannot be bent, is substantially horizontally fed from the front side of the printer
100
and is then discharged from the front side of the printer
100
.
First, a feeding operation using the first transfer path (1) is described referring to
FIGS. 1 and 2
. Operations of other components are also described referring to
FIG. 3
, if necessary.
The feeder
2
includes a hopper
16
on which one or more sheets of paper P are stacked. The hopper
16
holds the paper P at a certain angle with respect to the body of the printer
100
. The hopper
16
has a pivot center (not shown) in the upstream part of the hopper
16
, and can come into contact with a feeding roller
14
having a substantially D-shaped cross section and can move away from the feeding roller
14
, by pivoting around the pivot center. When the hopper
16
pivots toward the feeding roller
14
to be in contact with the feeding roller
14
, the paper P on the hopper
16
is pushed up, so that the uppermost sheet of the paper P is brought into contact with the feeding roller
14
while being pressed against the roller
14
. The uppermost sheet of the paper P is then transferred toward the downstream in the first transfer path (1) by rotation of the feeding roller
14
.
A paper guide
15
in form of plate is substantially horizontally arranged at a portion in the downstream of the feeding roller
14
under the first transfer path (1). When a top end of the paper P fed from the feeder
2
comes into contact with the paper guide
15
, the paper P is bent smoothly so as to be directed toward the downstream in the transfer path (1).
A transfer roller
19
is arranged in the downstream of the paper guide
15
, which includes a transfer-driving roller
19
a
that is driven to rotate by a driving section (not shown) and a transfer-driven roller
19
b
that is in contact with the transfer-driving roller
19
a
so as to be rotated by the rotation of the transfer-driving roller
19
a
. The paper P is sandwiched between the rollers
19
a
and
19
b
so as to be transferred toward the downstream by rotation of the rollers
19
a
and
19
b
. The transfer-driving roller
19
a
is formed by a bar-like roller extending in a main scanning direction. On the other hand, the transfer-driven roller
19
b
is relatively short in the main scanning direction. A plurality of transfer-driven rollers
19
b
are arranged in the main scanning direction at predetermined intervals.
The transfer-driven roller
19
b
is held by its axis by means of a roller holder
18
at the downstream part of the roller holder
18
. The roller holder
18
is arranged to be pivotable around a pivot axis
18
a
, and is biased by a torsion coil spring (not shown) to be placed in a contact state where the transfer-driven roller
19
b
is always in contact with the transfer-driving roller
19
a
while being pushed toward the roller
19
a
. The contact state is described later.
The transfer-driven roller
19
b
is arranged to be placed in the contact state (see
FIG. 2
) where the transfer-driven roller
19
b
is in contact with the transfer-driving roller
19
a
or another state, i.e., a cleared state (see
FIG. 3
) where the transfer-driven roller
19
b
is moved upward so as to be away from the transfer-driving roller
19
a
. The two states of the transfer-driven roller
19
b
are switched by driving the second link mechanism as a roller-holder switching portion, detailed later, to cause the roller holder
18
to pivot around the pivot center
18
a.
More specifically, a cam
36
is provided to a cam rotation axis
31
so as to be brought into contact with a cam follower
18
b
that is the upstream part of the roller holder
18
, by rotation of the cam rotation axis
31
. When the cam rotation axis
31
is rotated, the cam
36
comes into contact with the cam follower
18
b
from above, thereby pivotally moving the roller holder
18
around the pivot center
18
a
. Thus, the transfer-driven roller
19
b
is moved upward. This state is the cleared state shown in FIG.
3
. When the cam
36
is moved away from the cam follower
18
b
by the rotation of the cam rotation axis
36
, the roller holder
18
is caused to pivot by the torsion coil spring (not shown) in such a manner that the transfer-driven roller
19
b
is in contact with the transfer-driving roller
19
a
while being pressed against the roller
19
a
. This state is the contact state shown in FIG.
2
. The arrangement of the second link mechanism for rotating the cam rotation axis
31
is detailed later in more detail.
On the downstream side of the transfer roller
19
, a recording portion
26
for performing recording for a medium such as paper or a rigid medium is provided. In the recording portion
26
, a platen
28
and a recording head
13
are arranged to be opposed to each other. The platen
28
is arranged to extend in the main scanning direction, thereby supporting the paper P transferred into the recording portion
26
from beneath the paper P.
The recording head
13
is provided at the bottom of a carriage
10
which can reciprocate in the main scanning direction while being guided by a carriage guide axis
12
extending in the main scanning direction. The carriage
10
also includes ink cartridges
11
storing a plurality of colors of ink, for example, yellow, magenta, cyan, black and the like, for realizing full-color printing.
A distance between the platen
28
and the recording head
13
(hereinafter, referred to as “PG”) is a critical parameter that affects recording precision. Therefore, it is necessary to adjust that distance depending on the thickness of the recording medium. In order to achieve this, according to the present invention, the first link mechanism as a PG adjuster for displacing the carriage guide axis
12
in upward and downward directions is provided. The arrangement of the first link mechanism is described later.
A part of the printer
100
in the downstream of the recording portion
26
forms a discharging portion including a discharge roller
20
. The discharge roller
20
has a discharge-driving roller
20
a
that is driven to rotate by a driving section (not shown) and a discharge-driven roller
20
b
that is in contact with the discharge-driving roller
20
a
so as to be rotated by rotation of the roller
20
a
. When the discharge-driving roller
20
a
is rotated in a normal direction (clockwise direction in
FIG. 1
) while sandwiching the paper P between the rollers
19
a
and
19
b
, the paper P is discharged onto a stacker
50
.
The discharge-driven roller
20
b
is a toothed roller having teeth on its outer circumference, and is supported by a roller holder
23
in a rotatable manner. The roller holder
23
is fixed to a discharge-sub frame
25
in form of a plate elongated in the main scanning direction. The discharge-sub frame
25
extends substantially horizontally from a position in the vicinity of the recording head
13
in the downstream of the head
13
toward the downstream. The discharge-sub frame
25
is attached to a discharge main frame
24
that is a plate elongate in the main scanning direction and extends substantially horizontally from a position in the vicinity of the recording head
13
in the downstream of the head
13
toward the downstream, in such a manner that the frame
25
is pushed toward the frame
24
from above by means of a coil spring
27
.
A discharge-assisting roller
22
is provided in the upstream of the discharge-driven roller
20
b
so as to press the paper P down. Moreover, the transfer-driven roller
19
b
is arranged in such a manner that the axis thereof is placed in the downstream of the axis of the transfer-driving roller
19
a
, and the discharge-driven roller
20
b
is arranged in such a manner that the axis thereof is placed in the upstream of the axis of the discharge-driving roller
20
a
. According to this arrangement, the paper P is bent to become convex downward between the transfer roller
19
and the discharge roller
20
. Thus, the paper P located at a position opposed to the recording head
13
is pressed against the platen
28
, thereby preventing the paper P from being lifted up. As a result, the recording operation is performed normally.
The discharge-assisting roller
22
is formed by a toothed roller, like the discharge-driven roller
20
b
, and is supported by a roller holder
21
. The roller holder
21
is fixed to the discharge-sub frame
25
in a similar manner to that of the discharge-driven roller
23
b
described above.
The discharge-sub frame
25
is arranged to be pivotable around a portion
25
c
in the upstream part of the frame
25
as a pivot center by rotation of a cam
29
a
provided to a holder rotation axis
29
described later, as shown in
FIGS. 2 and 3
. When the cam
29
a
is rotated to come into contact with the discharge-sub frame
25
from beneath the frame
25
, the frame
25
is pivotally moved so that the downstream part of the frame
25
is elevated, as shown in FIG.
3
. On the other hand, when the cam
29
a
is rotated to move away from the discharge-sub frame
25
, the frame
25
is placed immediately above the frame
24
in such a manner that the frame
25
is parallel to the discharge main frame
24
, as shown in FIG.
2
.
According to this arrangement, the roller holder
23
for discharge-driven roller and the roller holder
21
for discharge-assisting roller are moved together with the discharge-sub frame
25
, thereby moving the discharge-driven roller
20
b
and the discharge-assisting roller
22
upward to be cleared. Therefore, the following disadvantage that may be caused in a case where the recording medium is thick (rigid medium G), for example, a CD-R can be prevented. Since the discharge-driven roller
20
b
and the discharge-assisting roller
22
are toothed rollers as mentioned above, teeth of these rollers may come into contact with a recording surface of the CD-R to damage an information storage area of the CD-R formed immediately below the recording surface. However, according to the above arrangement for clearing the discharge-driven roller
20
b
and the discharge-assisting roller
22
, the rollers
20
b
and
22
are moved upward to be cleared from the transfer path of the medium in a case of CD-R, thereby preventing the rollers
20
b
and
22
from coming into contact with the recording surface of the CD-R. In other words, depending the type of the medium, the state of the rollers
20
b
and
22
can be changed.
Then, the discharged paper P is stacked on the stacker
50
having a medium-placed surface
51
that is arranged at a certain angle with the body of the printer
100
(at the second position). This stacker
50
is arranged at the first position where the medium-placed surface
51
is substantially horizontal, in a case of recording for a rigid medium G. Arrangement and structure of the stacker
50
are described later.
<Arrangement of the First and Second Link Mechanisms>
Next, the arrangement of the first and second link mechanisms is described referring to
FIGS. 2-9
.
FIG. 4
is a perspective view showing a main part of the printer
100
seen from the front side of the printer
100
;
FIG. 5
is also a perspective view showing the main part of the printer
100
seen from approximately the same direction as that in
FIG. 4
; and
FIG. 6
is a perspective view of the main part of the printer
100
seen from the backside of the printer
100
. Moreover,
FIG. 7
is a perspective view for explaining the first and second link mechanisms according to the present embodiment; and
FIGS. 8 and 9
show operations of the first and second link mechanisms.
The printer
100
includes the first link mechanism for displacing the stacker
50
so as to displace the carriage guide axis
12
together with the stacker
50
. Also, the printer
100
includes the second link mechanism for displacing the transfer-driven roller
19
b
by operation by an operation lever
32
as an operating portion, so as to switch the state of the transfer-driven roller
19
b
between the contact state (see
FIG. 2
) where the transfer-driven roller
19
b
is in contact with the transfer-driving roller
19
a
and the cleared state (see
FIG. 3
) where the transfer-driven roller
19
b
is cleared.
First, the first link mechanism is described.
The stacker
50
provided on the front side of the printer
100
is arranged at the first position (see
FIG. 3
) or the second position (see FIG.
2
). When the stacker
50
is positioned at the first position, a straight transfer path can be formed in which a rigid medium G that cannot be fed by the feeder
2
is straightly fed from the medium-placed surface
51
that is substantially horizontal to a position under the recording head
13
, and is then discharged from the position under the recording head
13
onto the medium-placed surface
51
straightly, as shown in FIG.
3
. On the other hand, the second position is on the lower level than the first position. When positioned at the second position, the stacker
50
receives paper P that can be fed by the feeder
2
after the paper P was discharged, and stacks the paper P on the medium-place surface
51
at a certain angle with respect to the body of the printer
100
, as shown in FIG.
2
.
An engagement axis
52
is provided in the upstream part of the stacker
50
so as to project toward the side of the printer
100
. The engagement axis
52
is engaged with a side of an actuation member
40
formed to have an U-shape that becomes convex upward when seen from the downstream side thereof. Thus, when the position of the stacker
50
is changed, the actuation member
40
is also displaced vertically with the displacement of the stacker
50
. The actuation member
40
is guided at both sides thereof by a guide plate
60
fixed to a main frame (not shown), and can be displaced vertically along the inner surfaces of the guide plate
60
.
Another side of the actuation member
40
, that is an opposite side of the side engaged with the stacker
50
, is engaged with the first transmission part
41
as a power transmission member for transmitting a power to a body of rotation
43
having an eccentric bush
44
that supports the carriage guide axis
12
. The first transmission part
41
can pivot with respect to the actuation member
40
around an engaged portion
41
a
at which the part
41
is engaged with the actuation member
40
. Moreover, the first transmission part
41
is engaged at an engaged portion
42
a
with the second transmission part
42
for connecting the first transmission part
41
to the body of rotation
43
.
The body of rotation
43
supports the carriage guide axis
12
via the eccentric bush
44
at a position away from its center of rotation. Thus, when the body of rotation
43
is rotated by the switching operation by the stacker
50
, the carriage guide axis
12
is displaced vertically, so that PG is adjusted.
More specifically, when the stacker
50
is positioned at the first position, the carriage guide axis
12
is displaced upward in the vertical direction so as to make PG larger. On the other hand, when the stacker
50
is positioned at the second position, the carriage guide axis
12
is displaced downward in the vertical direction so as to make PG smaller.
Next, the second link mechanism is described.
In the present embodiment, the transfer-driven roller
19
b
can be displaced substantially vertically by operating the operation lever
32
as an operating unit, so that the state of the transfer-driven roller
19
b
can be switched between the contact state where the roller
19
b
is in contact with the transfer-driving roller
19
a
(see
FIG. 2
) and the cleared position in which the roller
19
b
is moved upward to be cleared (see FIG.
3
).
The operation lever
32
is arranged to be pivotable around an axis
32
a
as a pivot center and is engaged with the third transmission part
33
at an engaged portion
33
a
that is located in the upstream part of the operation lever
32
. Moreover, the operation lever
32
is arranged to pivot with respect to the third transmission part
33
at the engaged portion
33
a
, when the operation lever
32
is pivotally moved around the axis
32
a.
The third transmission part
33
is engaged in the upstream part thereof with the fourth transmission part
34
that supports a cam rotation axis
31
. According to this arrangement, when the operation lever
32
is pivotally moved toward the downstream (in the clockwise direction), the third transmission part
33
is pulled toward the downstream side of the printer
100
so as to pivotally move the fourth transmission part
34
that supports the cam rotation axis
31
. As a result, the cam
36
comes into contact with the roller holder
18
for supporting the transfer-driven roller
19
b
, thereby placing the transfer-driven roller
19
b
in the cleared state.
The operation lever
32
is arranged in a space within the actuation member
40
and therefore the rotation of the operation lever
32
is regulated when the stacker
50
is positioned at the second position. Only when the actuation member
40
is displaced upward, that is, only when the stacker
50
is positioned at the first position, the operation lever
32
can be operated.
More specifically, when the stacker
50
is positioned at the first position, the operation lever
32
can be operated, as shown in
FIGS. 7 and 8
, and therefore the transfer-driven roller
19
b
can be placed in the contact state or the cleared state. On the other hand, when the stacker
50
is positioned at the second position, the operation lever
32
is inoperative, as shown in
FIG. 9
, and therefore the transfer-driven roller
19
b
is placed in the contact state.
Next, driving of the first and second link mechanisms is described. For convenience, the driving of the first and second link mechanisms is described based on the operation of the stacker
50
. The description is made referring to a case where the stacker
50
is moved from the second position (see
FIG. 9
) to the first position (see
FIGS. 7 and 8
) and another case where the stacker
50
is moved from the first position (see
FIGS. 7 and 8
) to the second position (see FIG.
9
).
As shown in
FIG. 9
, when the stacker
50
is positioned at the second position, a top surface thereof, i.e., the medium-placed surface
51
is inclined. At this time, the carriage guide axis
12
is lifted down and the stacker
50
can receive and stack paper P that was discharged onto the medium-placed surface
51
. Therefore, it is possible to perform printing for paper P transferred from the feeder
2
through the first transfer path, and the transfer-driven roller
19
b
is in the contact state where it is in contact with the transfer-driving roller
19
a
. Thus, the paper P is transferred to the recording portion
26
while being sandwiched by the rollers of the transfer roller
19
, and is then stacked onto the medium-placed surface
51
.
As described above, when the stacker
50
is positioned at the second position, the operation lever
32
is inoperative, that is, cannot be pivotally moved because of the actuation member
40
. At this time, the upstream part of the operation lever
32
, that is in the upstream of the axis
32
a
, is regulated to be inoperative by the actuation member
40
from above the operation lever
32
. Therefore, it is impossible to operate the operation lever
32
to drive the second link mechanism. Thus, when the stacker
50
is positioned at the second position, the transfer-driven roller
19
b
is always placed in the contact state in which the transfer-driven roller
19
b
is in contact with the transfer-driving roller
19
a.
By moving the stacker
50
upward to change the position of the stacker
50
to the first position (see FIG.
7
), the actuation member
40
is also displaced upward. Thus, the engaged portion
41
a
at which the actuation member
40
and the first transmission part
41
are engaged with each other is also displaced upward, causing the first transmission part
41
to pivot toward the upstream side (in the counter-clockwise direction). This power is transmitted by the second transmission part
42
so as to rotate the body of rotation
43
. As a result, the carriage guide axis
12
, that is supported by the body of rotation
43
at the position away from the rotation center of body
43
, is displaced upward in the vertical direction, thereby adjusting PG.
As described above, the upward displacement of the carriage guide axis
12
makes the distance between the recording head
13
and the platen
28
larger as compared with a case where the stacker
50
is positioned at the second position.
In addition, with the movement of the stacker
50
to the first position, the actuation member
40
is also displaced upward so that the regulation for the operation lever
32
by the actuation member
40
is released. Thus, the operation lever
32
becomes operative (see FIG.
7
).
Then, by pivotally moving the operation lever
32
around the axis
32
a
as the pivot center toward the upstream side (in the clockwise direction), as shown in
FIG. 8
, the third transmission part
33
is pulled toward the downstream side, so that the fourth transmission part
34
that supports the cam rotation axis
31
is pivotally moved. As a result, the cam
36
comes into contact with the roller holder
18
for supporting the discharge-driven roller
19
b
, thereby moving the discharge-driven roller
19
b
to be placed in the cleared state.
In this manner, it becomes possible to manually feed a rigid medium G by using the second transfer path (2) on which the medium G is substantially horizontally fed from the medium-placed surface
51
of the stacker
50
to the recording portion
26
and is substantially horizontally discharged to the medium-placed surface
51
. Moreover, by driving the second link mechanism to bring the transfer-driven roller
19
b
into the contact state after it became possible to sandwich the rigid medium G between the rollers of the transfer roller
19
, the rigid medium G can be transferred while being sandwiched between the rollers of the transfer roller
19
.
After the recording, the rigid medium G is discharged onto the medium-placed surface
51
of the stacker
50
through the second transfer path (2). In a case of successive recording for one or more units of rigid medium G, after one unit of rigid medium G was discharged, since the transfer-driven roller
19
b
is in the contact state, the second link mechanism is driven again to move the transfer-driven roller
19
b
to be placed in the cleared state. Then, next unit of rigid medium G is manually fed. Thus, when the stacker
50
is positioned at the first position, the printer
100
is arranged to allow the change of the state of the transfer-driven roller
19
b
appropriately by operating the operation lever
32
alone.
Next, when the stacker
50
is moved downward to change its position from the first position to the second position, this movement affects the first link mechanism. That is, the movement of the stacker
50
causes the actuation member
40
to move downward. Therefore, the engaged portion
41
a
at which the actuation member
40
and the first transmission part
41
are engaged with each other is also displaced downward, so that the first transmission part
41
pivotally moves toward the downstream side (in the clockwise direction) around the engaged portion
41
a
as its pivot center. This power generated by the pivot is transmitted to the second transmission part
42
so as to cause the body of rotation
43
to rotate, finally displacing the carriage guide axis
12
that is supported by the body of rotation
43
at the position away from the rotation center of the body
43
, downward in the vertical direction.
When the stacker
50
is displaced from the first position to the second position, in a case where the operation lever
32
is in a state where it pivoted toward the upstream side, that is, where the transfer-driven roller
19
b
is placed in the cleared state, the displacement of the stacker
50
to the second position causes the actuation member
40
to affect as a returning mechanism on the second link mechanism, so that it is possible to place the transfer-driven roller
19
b
in the contact state.
More specifically, in a case where the stacker
50
is positioned at the first position and the transfer-driven roller
19
b
is in the cleared state, the operation lever
32
of the second link mechanism is at a position where the operation lever
32
reaches after it pivoted toward the upstream side, as shown in FIG.
8
. At this time, the actuation member
40
as the returning mechanism is located above the upstream part
32
b
of the operation lever
32
. When the stacker
50
is displaced from this state to be positioned at the second position, the actuation member
40
is also moved downward, so as to bias the upstream part
32
b
of the operation lever
32
from above the part
32
b
. Thus, the upstream part
32
b
of the operation lever
32
is also moved downward with the downward movement of the actuation member
40
, thereby causing the operation lever
32
to pivotally move toward the upstream direction (in the counter-clockwise direction).
As described above, the actuation member
40
can affect the second link mechanism as the returning mechanism for returning the operation lever
32
and the regulating mechanism for regulating the driving of the second link mechanism, so as to bring the transfer-driven roller
19
b
in the contact state. In other words, when the stacker
50
is positioned at the second position, the transfer-driven roller
19
b
is always in the contact state where it is in contact with the transfer-driving roller
19
a.
Moreover, it is possible to arrange the second link mechanism as the transfer-driven roller switching mechanism in such a manner that the second link mechanism works with the first link mechanism. In this case, it is possible for the user to appropriately set an optimum recording condition depending on the type of the medium for which the recording is performed only by operating the stacker
50
.
As described above, according to the present invention, the first link mechanism for displacing the carriage guide axis together with the displacement of the stacker is provided. Therefore, it is possible to adjust PG depending on the type of the recording medium only by operating the stacker.
Although the present invention has been described by way of exemplary embodiments, it should be understood that those skilled in the art might make many changes and substitutions without departing from the spirit and the scope of the present invention which is defined only by the appended claims.
Claims
- 1. A recording apparatus comprising:a feeder, provided in an upstream in a transfer path for transferring a medium, operable to feed said medium to a downstream in said transfer path one by one, said medium being stacked at a certain angle; a recording head, provided in the downstream of said feeder, operable to perform recording for said medium; a carriage, on which said recording head is mounted, operable to reciprocate in a main scanning direction along a carriage guide axis; a transfer roller operable to transfer said medium by rotating, said transfer roller including a transfer-driving roller and a transfer-driven roller; a stacker having a medium-placed surface, said stacker being positioned at a first position allowing said medium to be substantially horizontally fed from said medium-placed surface to a position under said recording head and be substantially horizontally discharged from said position under said recording head onto said medium-placed surface, or a second position operable to receive and stack said medium fed by the feeder, said second position being on a lower level than said first position, said medium-placed surface being arranged substantially horizontally when said stacker is positioned at said first position and is arranged at an angle when said stacker is positioned at said second position; and a first link mechanism operable to displace said stacker to cause said carriage guide axis to displace, wherein said carriage guide axis is arranged to be displaced upward when said stacker is positioned at said first position, and is prevented from moving downward as long as said stacker is positioned at said first position.
- 2. A recording apparatus as claimed in claim 1, wherein said carriage guide axis is supported at its axis ends by a frame via an eccentric mechanism,said first link mechanism includes an actuation member engaged with said stacker; and a power transmission member operable to be driven together with said actuation member to cause said eccentric mechanism to pivotally move, and a gap between said recording head and said first or second type of medium is adjusted by displacing said carriage guide axis together with the displacement of said stacker.
- 3. A recording apparatus for performing recording for a first type of medium and a second type of medium comprising:a feeder, provided in an upstream in a transfer path for transferring said first type of medium, operable to feed said first type of medium to a downstream in said transfer path one by one, said first type of medium being stacked at an angle; a recording head, provided in the downstream of said feeder, operable to perform recording for said first type of medium and said second type of medium; a carriage, on which said recording head is mounted, operable to reciprocate in a main scanning direction along a carriage guide axis; a transfer roller operable to transfer said first type of medium by rotating, said transfer roller including a transfer-driving roller and a transfer-driven roller; a stacker having a medium-placed surface, said stacker being positioned at a first position allowing another transfer path for said second type of medium to be formed or at a second position, located on a lower level than said first position, operable to receive and stack said first type of medium, said medium-place surface being arranged substantially horizontally when said stacker is at said first position and is arranged at an angle when said stacker is at said second position, said another transfer path allowing said second type of medium to be straightly fed from said medium-placed surface to a position under said recording head and be straightly discharged from said position under said recording head onto said medium-placed surface; and a first link mechanism operable to displace said stacker to cause said carriage guide axis to displace, wherein said carriage guide axis is displaced upward when said stacker is positioned at said first position, and is prevented from moving downward as long as said stacker is positioned at said first position, and said second type of medium is suitable for substantially straight transfer.
- 4. A recording apparatus as claimed in claim 1 or 2, further comprising a transfer-driven roller switching mechanism operable to switch the state of said transfer-driven roller between a contact state in which said transfer-driven roller is in contact with said transfer-driving roller and a cleared state in which said transfer-driven roller is moved upward, by operating an operating unit to cause said transfer-driven roller to be displaced.
- 5. A recording apparatus as claimed in claim 4, wherein said transfer-driven roller switching mechanism is arranged to be driven only when said stacker is positioned at said first position.
- 6. A recording apparatus as claimed in claim 5, further comprising a regulating mechanism operable to regulate the driving of said discharge-driven roller switching mechanism in accordance with the position of said stacker.
- 7. A recording apparatus as claimed in claim 6, wherein said regulating mechanism is arranged to place said discharge-driven roller only in said contact state when said stacker is positioned at said second position.
- 8. A recording apparatus as claimed in claim 5, further comprising a returning mechanism operable to affect said transfer-driven roller switching mechanism to bring said transfer-driven roller in said contact state when said stacker is displaced to said second position, in a case where said stacker is positioned at said first position and said transfer-driven roller is in said cleared state.
- 9. A recording apparatus as claimed in claim 8, wherein said returning mechanism is formed by the same component as that forming said regulating mechanism.
- 10. A recording apparatus as claimed in claim 5, wherein said transfer-driven roller is supported by a roller holder in such a manner that a downstream part of said transfer-driven roller is pivotable around an upstream portion of said transfer-driven roller as a pivot center, andsaid transfer-driven roller switching mechanism includes a cam rotation axis having a cam capable of coining into contact with said roller holder, and switches said cleared state and said contact state of said transfer-driven roller in accordance with the pivot of said roller holder by means of a cam mechanism operable to bring said cam into contact with a cam follower and to move said cam away from said cam follower by operating said operating unit, said cam follower being arranged in the upstream of said roller holder.
- 11. A recording apparatus as claimed in claim 10, wherein said actuation member includes a space therein and has an U-shape that becomes convex upward seen from the downstream of said transfer path, said operating unit being arranged within said space.
- 12. A recording apparatus as claimed in claim 5, wherein said transfer-driven roller switching mechanism is capable of being driven together with the movement of said first link mechanism.
- 13. A liquid emitting apparatus comprising:a feeder operable to feed one or more units of a medium onto which liquid is to be emitted, one by one toward a downstream in a transfer path for transferring said medium, said feeder being provided in an upstream in said transfer path, said one or more units of said medium being stacked on said feeder at an angle; a liquid emitting head, provided in the downstream of said feeder, operable to emit said liquid; a carriage, on which said liquid emitting head is mounted, operable to reciprocate in a main scanning direction along a carriage guide axis; a transfer roller operable to transfer said medium by rotating, said transfer roller including a transfer-driving roller and a transfer-driven roller; a stacker, having a medium-placed surface, operable to be positioned at a first position allowing said medium from said medium-placed surface to be substantially horizontally fed to a position under said liquid emitting head and be substantially horizontally discharged from said position under said liquid emitting head onto said medium-placed surface, or at a second position for receiving said medium when said medium was fed by said feeder, said second position being located on a lower level than said first position, said medium-placed surface being arranged substantially horizontally when said stacker is positioned at said first position and is arranged at an angle when said stacker is positioned at said second position; and a first link mechanism operable to displace said stacker to cause said carriage guide axis to be displaced with the displacement of said stacker, wherein said carriage guide axis is arranged to be displaced upward when said stacker is positioned at said first position, and is prevented from moving downward as long as said stacker is positioned at said first position.
Priority Claims (2)
Number |
Date |
Country |
Kind |
2002-082990 |
Mar 2002 |
JP |
|
2003-060688 |
Mar 2003 |
JP |
|
US Referenced Citations (3)
Number |
Name |
Date |
Kind |
5980011 |
Cummins et al. |
Nov 1999 |
A |
6007194 |
Yokoyama et al. |
Dec 1999 |
A |
6074053 |
Kawaura |
Jun 2000 |
A |
Foreign Referenced Citations (1)
Number |
Date |
Country |
2002-192782 |
Jul 2002 |
JP |