The present invention relates to a recording device which includes a recording section that performs recording on a medium and a curl determination method for determining the generation of curls in a medium such as paper.
In the related art, as one kind of a recording device, an ink jet type printer is known that includes a recording section which performs recording on sheet-shaped paper, which is an example of a medium, and that performs printing (recording) of an image on the paper by discharging ink as a liquid (recording liquid) to the paper, which is supported and transported to a support pedestal, from the recording section. In such a printer, there is a phenomenon in which paper curls due to ink which is discharged to and adheres to the paper.
In particular, in a printer in which the recording section includes a liquid discharge head (recording head) that is capable of simultaneously discharging ink over the paper in the transport direction and in the width direction, which is perpendicular to the transport direction, ink adheres over the entirety of the paper in the width direction substantially at the same time, and thus the liquid volume of the ink which adheres to the paper in a short time increases. In addition, in accordance that printing time becomes short, a drying time of a large amount of liquid, which adheres to a recording region, becomes short. For these reasons, the paper is in a state in which it tends to become curled. As a result, the curled paper comes into contact with the liquid discharge head in the middle of transport, and thus friction may be generated. Further, when friction is generated between the paper and the liquid discharge head, there is a problem in which it is difficult to print a high-quality image on the paper.
Therefore, in the related art, a recording device is provided that calculates (detects) the total liquid volume of ink (total amount of ink) which adheres to paper based on the image data of a printing image on the whole paper (medium), that is, based on ink (liquid) discharge data, and that adjusts a gap between a liquid discharge head (recording section) and the paper based on the calculated total liquid volume of the ink, and a recording device is provided that detects the curl (wave) of paper based on calculated total liquid volume of ink (for example, refer to JP-A-2006-150798).
However, it is found that, when the total liquid volume of ink to be discharged to the whole paper is large, there is a case in which the degree of curls is low, that is, the quantity of curves (the amount of curls) of the paper is small in the actual curled paper according to the regions to which the ink adheres. In this manner, when the actual amount of curls is small, originally, it is not necessary to cause the recording section to retreat such that the recording section keeps away from the support pedestal and does not come into contact with the paper. However, in the recording device according to the related art, the recording section goes away from the support pedestal. As a result, deviation of the ink, discharged from the recording section which goes away, from an impact position to the paper increases in accordance with the increased distance from the recording section to the paper. Therefore, there is a problem in that it is difficult to record a high-quality image on the paper. In addition, when the actual amount of curls is small, originally, paper is smoothly transported along the medium transport path without increasing a dryness degree. However, in the recording device according to the related art, there may be a case in which unnecessary drying is performed in order to increase the dryness degree of the paper.
Meanwhile, such a situation is generally common to a recording device that includes a transport section which transports a medium along a medium transport path, and a recording section which performs recording on the medium by discharging liquid and causing the liquid to adhere to the recording region of the medium which is transported by the transport section.
An advantage of some aspects of the invention is to provide a recording device which is capable of recording a high-quality image on a medium by appropriately preventing friction between a transported medium and a recording section. In addition, another advantage of some aspects of the invention is to provide a recording device which is capable of smoothly transporting the medium along a medium transport path by appropriately drying the medium according to the curl, which is actually generated in the medium, which is accurately determined by a curl determination method which is capable of accurately determining whether or not curls are actually generated in the medium.
Hereinafter, means of the invention and the operation effects thereof will be described.
According to an aspect of the invention, there is provided a recording device including: a support pedestal that supports a medium which has four side edges on a support surface; a transport section that transports the medium along the support surface; a recording section that performs recording on the medium by discharging liquid corresponding to a liquid volume based on discharge data to a recording region of the medium, which is transported by the transport section and causing the liquid to adhere to the medium; a determination region setting section that divides the recording region into a plurality of regions, and sets a continuous region, in which the plurality of regions are continued, as a determination region, the plurality of regions including an end part region which is the closest region to a corner section, in which two side edges are connected, of the medium; a liquid volume ratio calculation section that calculates an average value of liquid volume ratios of the liquid, which is discharged from the recording section to the determination region based on the discharge data, to the maximum liquid volume of the liquid which is capable of being discharged from the recording section; a determination section that determines whether or not the average value of the liquid volume ratios, which are calculated for the determination region, is larger than a predetermined threshold; and a recording position adjustment section that, when the determination section determines that the average value is larger than the threshold, adjusts the distance from the support surface of the recording section to a distance which is longer than in a case in which the average value is not larger than the threshold.
According to the aspect, the liquid volume ratios of the continuous regions, which include the end part region that is close to the corner section in the recording region, have a strong correlation with the generation of the curls, and thus it is possible to accurately determine the generation of the curl by acquiring the average value of the liquid volume ratios while it is assumed that the continuous region as the determination region. As a result, friction between the medium, which is transported according to the accurately determined generation of the curl, and the recording section is appropriately prevented, and thus it is possible to record a high-quality image on the medium.
In the recording device, it is preferable that the determination region setting section sets the plurality of determination regions in the recording region of the medium, and the determination section determines whether or not the largest average value of the average values of the liquid volume ratios of the liquid, which is discharged to the plurality of determination regions, is larger than the threshold.
According to the aspect, a part of the region, which has the largest average value of the liquid volume ratios, of the determination regions, which include the end part region, in the recording region has a strong correlation with the generation of the curl, and thus it is possible to accurately determine the generation of the curl based on the largest average value of the liquid volume ratios of the determination regions.
In the recording device, it is preferable that the determination region is a region which is positioned in a fixed distance from the side edges in the recording region.
According to the aspect, the liquid volume ratios of the determination regions in the fixed distance from the side edges of the medium in the recording region have a strong correlation with the generation of the curl, and thus it is possible to accurately determine the generation of the curl based on the average value of the liquid volume ratios of the determination regions in the fixed distance from the side edges of the medium.
In the recording device, it is preferable that the determination region setting section sets the determination regions such that the determination regions reach over the center of the one side edges from the side of the corner section along at least one of the side edges.
According to the aspect, the liquid volume ratios of the determination regions have a strong correlation with the generation of the curl by setting the determination region up to the region which reaches over the center of the side edge of the medium, and thus it is possible to accurately determine the generation of the curl based on the average value of the liquid volume ratios of the determination regions.
It is preferable that the recording device further includes a temperature and humidity detection section that detects temperature and humidity of the medium acquired before the recording is performed, and the determination section performs determination by using the threshold which is predetermined according to the detected temperature and humidity of the medium.
According to the aspect, the temperature and the humidity have a strong correlation with the generation of the curl in the recording region, and thus it is possible to accurately determine the generation of the curl according to the detected temperature and humidity of the medium.
According to another aspect of the invention, the recording device includes a transport section, a recording section, a determination section, and a dryness degree adjustment section. The transport section transports a medium, which has four side edges, along a medium transport path. The recording section performs recording on the medium by discharging liquid corresponding to a liquid volume based on discharge data to a recording region of the medium, which is transported by the transport section, and causing the liquid to adhere to the medium. The determination section determines whether or not curls are generated in the medium by dividing the recording region of the medium into a plurality of regions, and setting a continuous region, in which the plurality of regions are continued, as a determination region, the plurality of regions including an end part region which is the closest region to a corner section, in which two side edges are connected, of the medium, calculating an average value of liquid volume ratios of the liquid, which is discharged from the recording section to the determination region based on the discharge data of the liquid which is discharged from the recording section to the medium, to a maximum liquid volume of the liquid which is configured to be discharged from the recording section, and determining whether or not the average value of the liquid volume ratios, which are calculated for the determination region, is larger than a predetermined threshold, and determining that curls are generated in the medium when determining that the average value is larger than the threshold. When the determination section determines that the curl is generated, the dryness degree adjustment section performs adjustment such that the medium, which is transported by the medium transport section, is dried at a higher dryness degree than in a case in which it is determined that the curl is not generated.
According to the aspect, the liquid volume ratio of the continuous region, which includes the end part region in the recording region, has a strong correlation with the curl, and thus it is possible to accurately determine the generation of the curl based on the average value of the liquid volume ratios by assuming that the continuous region is the determination region. As a result, when the medium is appropriately dried according to the curl which is actually generated in the medium, it is possible to smoothly transport the medium along the medium transport path.
In the recording device, it is preferable that the dryness degree adjustment section adjusts the dryness degree of the medium by adjusting a transport speed of the medium which is transported by the transport section.
According to the aspect, it is possible to dry the medium at a dryness degree according to the amount of curls actually generated in the medium without additionally providing a heating device such as a heater.
In the recording device, it is preferable that, when the transport section successively transports a plurality of media, the determination section determines whether or not the curls are generated for each of the plurality of media which are transported along the medium transport path; and the dryness degree adjustment section adjusts the transport speed of the media, which are transported by the transport section, according to each of the plurality of media.
According to the aspect, when the transport speed on the medium transport path is adjusted according to curls which are respectively generated in the plurality of media, it is possible to dry the media at the dryness degrees according to the curls which are generated in the media.
In the recording device, it is preferable that, when the transport section successively transports the plurality of media, the transport section adjusts the transport speed of the medium such that a previously transported medium does not come into contact with a subsequently transported medium on the medium transport path.
According to the aspect, it is possible to prevent the quality of an image or the like, which is recorded on the medium, from being deteriorated due to contact, on the medium transport path.
The invention will be described with reference to the accompanying drawings, wherein like numbers reference like elements.
Hereinafter, as an example of a recording device according to an embodiment, an ink jet type printer that includes a recording section for discharging ink, which is an example of liquid, and that prints (records) an image which includes letters and patterns by discharging ink to the paper, which is an example of a sheet-shaped medium, with reference to the accompanying drawings.
As illustrated in
The printer 11 transports the paper P over the support pedestal 13 along the medium transport path 20 while setting the direction of the front and rear sides of paper in
The printed paper P is transported from the recording section 14 to the medium transport path 20 by a pair of paper ejection rollers 18 or a plurality of other pair of transport rollers 19, and is emitted to the outside of the medium transport path 20 from the medium outlet 26 which is provided at the end part of the medium transport path 20. As illustrated by a two-dot chain line in
In the embodiment, the medium transport path 20 includes a medium ejection path 25 which transports the paper P from the recording section 14 to the medium outlet 26, and a medium supply path which supplies the paper P to the recording section 14. The medium supply path includes a first medium supply path 21, a second medium supply path 22, and a third medium supply path 23.
In the first medium supply path 21, the paper P which is inserted from an insertion opening 12a, which is exposed when a cover 12F provided on one side surface of the housing 12 is open, is transported to the recording section 14. That is, the paper P, which is inserted into the insertion opening 12a, is pushed to a first driving roller 41a by a hopper 12b, is transported through rotation driven by the first driving roller 41a, is interposed between the first driving roller 41a and a first following roller 41b, and is transported toward the recording section 14 through rotation driven by the first driving roller 41a.
In the second medium supply path 22, the paper P, which is mounted in a laminated manner on a paper cassette 12c that is provided at the bottom on the gravity direction side of the housing 12, is transported to the recording section 14. That is, the upper-most paper P of the paper P, which is mounted on the paper cassette 12c in a laminated state, is sent by a pick-up roller 16a, separated one by one by a pair of separation rollers 16b, interposed between the second driving roller 42a and the second following roller 42b, and transported toward the recording section 14 through rotation driven by the second driving roller 42a.
In the third medium supply path 23, when duplex printing is performed on both-side sheet surfaces of the paper P (paper surface), the paper P, in which one side of a sheet surface is completely printed by the recording section 14, is transported to the recording section 14 again. That is, on the downstream side of the paper P rather than the recording section 14 in the transport direction, a branched transport path 24 is provided which branches from the medium ejection path 25 due to the operation of a branching mechanism 27 which is provided in the middle of the medium ejection path 25. On the branched transport path 24, a pair of branched transport path rollers 44, which are capable of performing rotation in both directions, that is, rotation in the normal direction and in the reverse direction, are provided on the downstream side of the branching mechanism 27.
The paper P, in which one side of the sheet surface is printed, is transported once to the branched transport path 24 toward the side of the mounting pedestal 60 from the side of the recording section 14 by the pair of branched transport path rollers 44 and the plurality of transport rollers 19 which rotate in the normal direction when the duplex printing is performed. Thereafter, the pair of branched transport path rollers 44 rotate in the reverse direction, and thus the paper P is transported in the reverse direction through the branched transport path 24 from the side of the mounting pedestal 60 to the side of the recording section 14. At this time, the paper P, which is transported in the reverse direction, is transported to the third medium supply path 23, and is transported toward the recording section 14 by a plurality of pair of transport rollers 19. When transport to the third medium supply path 23 is performed, the paper P is reversed such that a sheet surface which is not printed to face the recording section 14, interposed between the third driving roller 43a and the third following roller 43b, and transported toward the recording section 14 through rotation driven by third driving roller 43a.
The paper P, which is transported such that each of the medium supply paths faces toward the recording section 14, is transported to a pair of alignment rollers 15 which are arranged on the upper stream side of the recording section 14 in the transport direction, and the tip of the paper comes into contact with the pair of alignment rollers 15 which stops rotation. Further, the inclination of the paper P for the transport direction is corrected (skewing is removed) by being in a state of coming into contact with the pair of alignment rollers 15. Further, the paper P, in which inclination is corrected, is in the alignment state and then transported to the side of the recording section 14 through rotation driven by the pair of alignment rollers 15 thereafter.
The paper P, which is transported to the side of the recording section 14 by the pair of alignment rollers 15, is transported while facing the recording section 14 by a pair of paper feeding rollers 17 which is installed on the upper stream side of the transport direction of the paper P for the recording section 14, a pair of paper ejection rollers 18 which is installed on the downstream side of the transport direction, and the pair of transport rollers 19. Printing is performed in such a way that ink is discharged to the transported paper P from the facing recording section 14 based on the discharge data.
The printer 11 includes a control section that has a computer function, and a storage section that stores a program which controls the printing operation and that is not shown in the drawing. Further, when the control section operates according to the program which is stored in the storage section, the operations of the recording section 14 and the transport section 29 are controlled based on the printing data which is input to the printer 11, and an image is printed (recorded) in a printing region E (refer to
As illustrated in
For example, as illustrated by a two-dot chain line in
The movement mechanism prints a high quality image on the paper P. Therefore, when ink is discharged from the recording section 14 to the paper P, dispersion of the impact positions (adhere positions) of ink should be prevented. Therefore, normally, the position of the recording section 14 is adjusted to be in a state in which a distance GP from the support surface 13a of the recording section 14, that is, the gap between the liquid discharge head and the support surface 13a is small.
In contrast, as illustrated by a broken line in
Here, in the printer 11 according to the embodiment, when a printing process is performed on the paper P, the position of the recording section 14 is adjusted according to the curls which are actually generated in the paper P. Otherwise, the medium is dried at a dryness degree according to the amount of actually generating curl of the medium. Meanwhile, the amount of curls generated in the paper P depends on the temperature and the humidity of the paper P before printing is performed. Here, in the embodiment, a temperature and humidity detection section 70, which detects the temperature and the humidity in the vicinity of the paper P transported by the pair of paper feeding rollers 17, is provided in the printer 11 (refer to
An operation performed by the printer 11, that is, a process of dealing with the curls of the paper P, which is performed when printing is performed, will be described with reference to
That is, in the process of dealing the curls, the control section functions as a determination region setting section 51 that sets determination regions for determining the generation of curls, a liquid volume ratio calculation section 52 that calculates a liquid volume ratio for the set determination regions, and a determination section 53 which determines the generation of the curls. In addition, the control section functions as a recording position adjustment section 54 that adjusts the position of the recording section 14 by controlling the movement mechanism, and a dryness degree adjustment section 55 that adjusts the dryness degree of the paper P by controlling the transport section 29 and drying ink adheres to the paper P (refer to
As illustrated in
Subsequently, in step S2, the division region of the printing region is set with reference to a setting table, which is stored in the storage section, according to the size of the paper P and the orientation for the transport direction, which are acquired, that is, the attribute data of the paper P.
A process in step S2 will be described with reference to
As illustrated in
As a result of the division performed in both directions, that is, the width direction and the transport direction, the printing region E is divided into nine rectangular regions that includes a division region R5 which is positioned at the center, and a plurality of division regions R1, R2, R3, R4, R6, R7, R8, and R9 which are positioned at the regional edges of the printing region E, as illustrated in
The four division regions R1, R3, R7, and R9 are positioned between the division regions, and form a peripheral region along the edge of the printing region E, together with the four division regions R2, R4, R6, and R8 which do not include the corners of the printing region E. Further, the peripheral region forms a circular belt-shaped region which is included in a fixed distance from the respective side edges PE1 to PE4 of the paper P in the printing region E.
As illustrated in
Meanwhile, in the embodiment, “0 mm” may be set as the values of the dimension La and the dimension Lb. “0 mm” is set when, for example, so-called margin-less printing, in which the blank region W, which has the same width and which is the non-printing region, to which the ink does not adhere, in the paper P, is not provided. Further, in this case, the division regions R1, R3, R7, and R9 are regions which respectively include the corner sections PK1, PK2, PK4, and PK3 of the paper P.
Meanwhile, in the embodiment, the division regions are set based on the dimension (paper width) in the width direction, which is perpendicular to the transport direction, of the paper P. That is, when the paper P has a paper width which is shorter than a prescribed length and when a paper size has the paper width corresponding to the prescribed length and the dimension in the transport direction is longer than the dimension in the width direction, the values of the dimension Lc and the dimension Ld are respectively set to values which cause the respective division regions R1 to R9 to be the regions which are acquired by dividing the printing region E into nine parts. In contrast, in a case in which the paper width is equal to or larger than a prescribed length and the paper size is longer than the dimension (paper length) in the transport direction, the values of the dimension Lc and the dimension Ld are set in the setting table such that the respective regions of the division regions R1 to R4 and R6 to R9 are smaller than the size of the division region R5 which is positioned at the center.
Incidentally, in the embodiment, in a case in which the prescribed length is set to 250 mm and the dimension of the paper P in the width direction is smaller than 250 mm and in a case of the paper size in which the dimension of the paper P in the width direction is 250 mm and the dimension in the transport direction is larger than the dimension in the width direction, the value of the dimension Lc is set to a dimension corresponding to one third of a dimension acquired by subtracting the blank region W from the paper width. In addition, the value of the dimension Ld is set to a dimension corresponding to one third of a dimension acquired by subtracting the blank region W from the paper length. In contrast, for a paper size “A4 landscape” and “B5 landscape” in which the dimension (paper width) of the paper P in the width direction is equal to or larger than 250 mm and is larger than the dimension (paper length) in the transport direction, the values of the dimension Lc and the dimension Ld are set to “12 mm”.
Returning to
Subsequently, in step S4, a process of calculating the average value of printing duties indicative of the liquid volume ratios of ink which is discharged to the determination region is performed based on the discharge data of the ink. Here, the control section functions as the liquid volume ratio calculation section 52, and calculates the average value of the liquid volume ratios of the ink, which is discharged to the plurality of division regions that are set as the determination region from the recording section 14, to the maximum liquid volume of the ink which is capable of being discharged to the plurality of division region from the recording section 14 based on the discharge data of the ink acquired from the printing data (liquid volume ratio calculation step). That is, the average value of the liquid volume ratios which are calculated here is a value which is acquired by taking an average of the liquid volume ratios of the respective division regions. Meanwhile, here, the maximum liquid volume of the ink is the liquid volume of the ink, which is discharged from the recording section 14 when the largest dot is formed with the maximum number of dots on the paper P.
A process performed in steps S3 and S4 will be described with reference to
As illustrated in
In the embodiment, the determination regions HR1, HR2, HR3, and HR4 are regions at fixed distances from the side edge PE1 and the side edge PE3 which are respectively positioned on the both sides of the width direction which is perpendicular to the transport direction, and are regions which have a strong correlation with the generation of the curls. In addition, for example, the respective determination regions HR1, HR2, HR3, and HR4 are present beyond the centers of the side edge PE1 and the side edge PE3 from the sides of the corner sections PK1, PK4, PK2, and PK3 along the side edge PE1 and the side edge PE3 such that the determination region HR1 is present beyond the center C1 of the side edge PE1 from the side of the corner section PK1 along the side edge PE1.
In the same manner, the determination regions HR5, HR6, HR7, and HR8 are regions at the fixed distances from the side edge PE2 and the side edge PE4 which are respectively positioned on the both sides in the transport direction. In addition, for example, the respective determination regions HR5, HR6, HR7, and HR8 are present beyond the centers of the side edge PE4 and the side edge PE2 from the sides of the corner sections PK1, PK2, PK4, and PK3 along the side edge PE4 and the side edge PE2 such that the determination region HR5 is present beyond the center C4 of the side edge PE4 from the side of the corner section PK1 along the side edge PE4.
Meanwhile, in the embodiment, the eight determination regions are not established, and the four determination regions HR1, HR2, HR3, and HR4 which include four corner sections PK1 to PK4 or the four determination regions HR5, HR6, HR7, and HR8 which include four corner sections PK1 to PK4 may be established. For example, when the curl is differently generated depending on the alignment direction of fibers which are included in the material of the paper P, it is preferable to establish determination regions such that the division regions are continued along the side edges which tend to be curled.
As illustrated in
For example, when the coefficient of the weight of “low” is set to “1”, the average value of the printing duties is calculated with regard to the determination region HR1 in such a way that the liquid volume of the ink which is discharged to the division region R1 is multiplied by “1.3” as the coefficient of the weight “high” and that the liquid volume of the ink which is discharged to the division region R2 is multiplied by “1.2” as the coefficient of the weight “intermediate”. In step S4, the liquid volume of the ink which is discharged is multiplied by each of the coefficients of the weighting in the division regions. Therefore, in each of the eight determination regions HR1 to HR8, the average value of the printing duties is calculated.
Returning to
Subsequently, a process of setting the thresholds of the printing duties according to the discharge data of the ink, the size of the paper, the orientation for the transport direction, the temperature, and the humidity is performed in step S6. In the embodiment, the thresholds are set according to the sizes and shapes of the determination regions. For example, the thresholds are set in such a way that the control section input the numerical values (thresholds) acquired in advance through examination or the like to a user using an input section which is not shown in the drawing, and stores the input numerical values in the storage section as the threshold table. Otherwise, the thresholds are set by storing the threshold table, which is input together with a program for controlling the printing operation, in the storage section.
In the embodiment, in the case of the paper in which the paper width is shorter than the prescribed length 250 mm (threshold table TA), the thresholds of the printing duties, which have values larger than the case of the paper in which the paper width is equal to or larger than the prescribed length 250 mm (threshold table TB), are set to the respective division regions R1 to R9 in the printing region E. That is, in the case of the paper in which the paper width is equal to or larger than the prescribed length 250 mm, the curl is easily generated, and thus the thresholds of the printing duties are small compared to the case of the paper in which the paper width is shorter than 250 mm.
Meanwhile, the curl which is generated in the paper P depends on the temperature and the humidity. Therefore, in the embodiment, six states are detected by the temperature and humidity detection section 70, that is, a temperature state is divided into a low temperature, a room temperature, and a high temperature, and, in each of the temperatures, a humidity state is divided into a low humidity and a high humidity. Further, in the detected six states, respective thresholds are set.
In addition, the curl which is generated in the paper P depends on the resolution of a printing image, that is, the maximum number of dots which are formed through adhesion of the ink, and thus the thresholds are set for respective cases in which the resolution is high and the resolution is low for the respective paper sizes. For example, the respective thresholds are set in such a way that a maximum number of dots 600×1200 corresponds to a low resolution and a maximum number of dots 600×2400 corresponds to a high resolution.
In addition, in the embodiment, in the respective division regions R1 to R9, the thresholds are small in a case of a low temperature and a low humidity compared to other cases, and the thresholds of the paper P having some kind of paper sizes are large in a case of a high temperature and a high humidity compared to other cases. The reason for this is that it is difficult that the curls are generated in the case of the high humidity compared to the low humidity. Further, the threshold in a case in which the resolution of the printing image is low is set to be larger than the threshold in a case in which the resolution is high. The reason for this is that the maximum number of dots which can be formed through the adhesion (impact) of the ink is small in a case in which the resolution is low, and thus it is difficult that the curls are generated.
Returning to
In contrast, as the result of the determination process in step S7, when the largest average value of the average values of the printing duties of the respective determination regions HR1 to HR8 is equal to or larger than the set threshold of the printing duties (step S8: YES), it is determined that the curls are generated, and a process of adjusting the distance from the support surface 13a of the recording section 14 is performed in subsequent step S8.
A process in step S8 will be described with reference to
As illustrated in a thick dashed line in
As illustrated in
By the way, in the embodiment, when the resolution of the printing image is low and the paper P is thin and when the calculated printing duty is smaller than the set threshold, the distance GP is adjusted to the smallest 1.3 mm. When the calculated printing duty is smaller than the set threshold in the other cases, the distance GP is adjusted to 1.5 mm. In addition, when the resolution of the printing image is low and the paper P is thin and when the calculated printing duty is equal to and larger than the set threshold, the distance GP is adjusted to 2 mm which is larger than 1.3 mm by 0.7 mm. When the calculated printing duty is equal to or larger than the set threshold in the other cases, the distance GP is adjusted to 2.2 mm which is larger than 1.5 mm by 0.7 mm.
Meanwhile, in the embodiment, the thickness of the paper P is set when, for example, a user inputs the type of the paper P to be accommodated in the paper cassette 12c to the storage section. Otherwise, the thickness of the paper P is input after being included in the printing data, and is set to the storage section. Further, the control section reads the thickness of the paper P, which is set to the storage section, and performs a process in step S8.
Returning to
As illustrated in
Meanwhile, in the paper P, the curls are generated due to bimetal effects between a paper layer, to which the ink adheres and permeates, and a paper layer to which the ink does not permeate. Therefore, the ink may be evaporated and dried in order to correct the curl, and thus it is possible to rapidly dry the ink by sending the paper P at a high speed by raising the transport speed such that the ink is easily dried, regardless of the long and short drying time. However, when the paper P is rapidly transported, time in which the paper P moves from the recording section 14 to the medium outlet 26 becomes short, and thus the dryness degree of the paper P is low when being mounted on the mounting pedestal 60. By the way, it is found that the amount of evaporation of the ink on the paper P is larger in a case in which the paper P is transported at a speed of one half of the highest speed than a case in which the paper P is transported at the highest speed. Further, the amount of evaporation of the ink is further larger in a case in which the paper P is transported at a speed of one fourth of the highest speed. Therefore, in the embodiment, the drying time is caused to be long by causing the transport speed to be slow, and thus the medium transport path 20 is adjusted such that the transported paper P is dried at a high dryness degree.
Meanwhile, in the embodiment, when the transport section 29 successively transports a plurality of pieces of sheet-shaped paper P, the determination section 53 determines whether or not the curls are generated for each of the plurality of pieces of paper P which are transported through the medium transport path 20. Further, although the detailed adjustment method thereof is not described here, the dryness degree adjustment section 55 adjusts the transport speed of the paper P, which is transported by the transport section 29, according to each of the plurality of pieces of paper P by adjusting the rotation speed of the pair of transport rollers 19 in, for example, the medium ejection path 25.
In addition, when the plurality of pieces of paper P are successively transported, the transport section 29 adjusts the transport speed of the paper P such that the paper P which is previously transported along the medium transport path 20 does not come into contact with the paper P which is transported later on the medium transport path 20. For example, when the transport speed of the paper P, which is printed and previously transported on the medium ejection path 25, is adjusted to be slow such that a dryness degree becomes high, contact between the pieces of paper P is prevented in such a way that the transport speed of the paper P, which is subsequently printed and transported, is also adjusted to be slow or such that time until transport starts become late.
According to the embodiment, it is possible to acquire the following advantages.
(1) since the liquid volume ratios (printing duties) of the continuous region, which includes an end part region close to the corner section of the paper P in the printing region E, have a strong correlation with the generation of the curls, it is possible to accurately determine the generation of the curls based on the average value of the printing duties while it is assume that the continuous region as the determination region. As a result, the friction between the paper P, which is transported according to the accurately determined generation of the curls, and the recording section 14 is appropriately avoided, and thus it is possible to record a high-quality image on the paper P.
(2) Since a part of the region, which has the largest average value of the printing duties, of the determination regions, which include the end part region, in the printing region E has the strong correlation with the generation of the curls, it is possible to accurately determine the generation of the curls by comparing the largest average value of the printing duties of the determination regions with the threshold.
(3) Since the printing duties of the determination regions in the fixed distance from the side edges of the paper P in the printing region E have the strong correlation with the generation of the curls, it is possible to accurately determine the generation of the curls based on the average value of the printing duties of the determination regions in the fixed distance from the side edges of the paper P.
(4) When the determination regions are set up to the region which reaches over the center of the side edges of the paper P, the printing duties of the determination regions have the strong correlation with the generation of the curls, and thus it is possible to accurately determine the generation of the curls based on the average value of the printing duties of the determination regions.
(5) Since the temperature and the humidity have the strong correlation with the generation of the curls in the printing region E, it is possible to accurately determine the generation of the curls according to the temperature and the humidity of the detected paper P.
(6) Since the printing duties of the continuous regions, which include the end part region, in the printing region E have the strong correlation with the generation of the curls, it is possible to accurately determine the generation of the curls based on the average value of the printing duties while the continuous regions are set to the determination regions. As a result, when the paper P is appropriately dried according to the curl which is actually generated in the paper P, it is possible to smoothly transport the paper P along the medium transport path 20.
(7) It is possible to dry the paper P at a dryness degree according to the actually generated amount of curls of the paper P without additionally providing heating device such as a heater.
(8) When the transport speed on the medium transport path 20 is adjusted according to the curl which is respectively generated in the plurality of pieces of paper P, it is possible to dry the paper P at the dryness degree according to the generated curl of the paper P.
(9) It is possible to prevent deterioration in the quality of the image or the like, which is recorded on the paper P, accompanying with the contact between the pieces of paper P.
Meanwhile, the embodiment may be modified by additional embodiment as below.
In the embodiment, one of the process of adjusting the distance of the recording section 14 from the support surface 13a (step S8) and the process of adjusting the dryness degree of the paper P which is printed by the recording section 14 (step S9) may be performed. For example, when the distance of the recording section 14 from the support surface 13a is set to be large and there is no problem in that curled paper P comes into contact, only the process of adjusting the dryness degree may be performed. Otherwise, when there is a problem in that the curled paper P is in a jam state on the transport path, only the process of adjusting the distance of the recording section 14 from the support surface 13a may be performed.
In the embodiment, the division regions R1 to R9 may not be necessarily regions which are acquired by dividing the whole part of the region up to the regional edges Ea and Eb of the printing region E. For example, the division regions R1 to R9, to which the determination regions are set, may be regions which are acquired by dividing a region inside the regional edges Ea and Eb of the printing region E. The modification example will be described with reference to the drawings.
As illustrated in
As in the modification example, in the printing region E, when the division regions R1 to R9 are formed by dividing the internal region of the printing region E, the division regions as the determination regions do not include the regional edges Ea and Eb of the printing region. For example, ink which adheres to the vicinity of the regional edges Ea and Eb of the printing region disperse to a blank region W to which ink does not adhere, and thus there is a case in which a dispersion state is different from an ink dispersion state inside the printing region E which is an ink adhesion region. In such a case, the correlation of the average value of the printing duties with the generation of the curls may change. Here, when a region, which does not include the regional edges Ea and Eb of the printing region, is set to the division regions (determination regions), it is possible to expect a high possibility that the average value of the printing duties in the determination regions is correlated with the amount of curls which is actually generated in the paper P.
In the embodiment, the number of divisions performed on the printing region E may be large. In addition, a plurality of continuous regions, which includes the end part region that is the closest to the corner section of the paper P and which are continued along the at least one side edge of the paper P for the end part region, may be set as the determination regions. As one of the modification example, a case in which the determination regions are set as the continuous regions, which are continued along two side edges, will be described with reference to the drawing.
As illustrated in
For example, as illustrated in a determination region HR1, the determination region according to the modification example may be set with total five division regions such as the division region R11 which is an end part region that is the closest to the corner section PK1, one division region R12 which is continued along the side edge PE1, and three division regions R21, R31, and R41 which are continued along the side edge PE4. Otherwise, as illustrated in a determination region HR2, the determination region may be set with total five division regions, that is, a division region R16 which is an end part region that is the closest to the corner section PK2, two division regions R15 and R14 which are continued along the side edge PE1, and two division regions R26 and R36 which are continued along the side edge PE2. Otherwise, as illustrated in a determination region HR3, the determination region may be set with total five division regions, that is, a division region R66 which is an end part region that is the closest to the corner section PK3, one division region R56 which is continued along the side edge PE3, and two division regions R65 and R64 which are continued along the side edge PE3, and a division region R55 which is continued to both the division region R56 and the division region R65. Meanwhile, in
As illustrated in
In the embodiment, division regions may be not necessarily regions which are equally divided in the printing region E. For example, division may be performed such that the ratio of the regional area is in inverse proportion to the weight according to the strength of the correlation between the liquid volume of the ink, which is actually discharged, and the generation of the curls of the paper P. The modification example will be described with reference to the drawings. Meanwhile, here, in order to provide easy description, the printing region E is divided into 36 parts similarly to the division illustrated in
As illustrated in
Originally, it is preferable that the division ratios of the respective lengths on both the sides, that is, the width direction, which is perpendicular to the transport direction, and the transport direction in the printing region E are set according to the number of divisions performed on the printing region E and the strength of the correlation between the liquid volume of the ink, which is actually discharged, and the generation of the curls of the paper P.
In the embodiment, the determination region may not be necessarily set to the continuous region which is continued from the end part region along one side edge of the paper P. The modification example will be described with reference to the drawings. Meanwhile, in the modification example, a case in which the printing region E is divided into 36 parts will be described similarly to
As illustrated in
Otherwise, as illustrated in the determination region HR3, the determination region may be set with total four division regions, that is, a division region R66 which is the end part region, a division region R55 which is continued to the division region R66 in the point contact state, and two division regions R46 and R64 which are continued to the division region R55 in the point contact state. That is, the determination region may be in a state in which regions, which are printing duty calculation targets, are arranged in a mosaic state in the division regions.
In addition, as illustrated in the determination region HR2, the determination regions may be set with total four division regions, that is, a division region R16 which is the end part region, a division region R15 which is continued along one side edge PE1, a division region R25 which is continued to the division region R15 along another side edge PE2, and a division region R24 which is continued to the division region R25 along the side edge PE1. That is, the determination region may be in a state in which regions, which are the printing duty calculation targets, are curved in the division regions.
In the embodiment, the determination region may be not necessarily a region which is present inside a fixed distance from the side edge in the paper P. For example, as in the determination regions HR1, HR2, and HR3 corresponding to the case of the modification example illustrated in
As above, even when the determination region is a region in which the distance from the side edges PE1 to PE4 in the paper P changes, the determination region is a continuous region which is continued from the end part region. Therefore, the correlation with the generation of the curls which is generated in the paper P is maintained. In other words, it is preferable to set the determination region according to a region, in which the correlation with the generation of the curls is strong, without setting the distance from the side edge of the paper P to be fixed.
In the embodiment, the division region may be not necessarily divided as a rectangular shape. The modification example will be described with reference to the drawings.
As illustrated in
A division region R11, which is the end part region that is the closest to, for example, the corner section PK1 in the 35 division regions, has a region which is present inside a fixed distance from the corner section PK1 and has a “high” correlation with the corner section PK1 for the generation of the curls. In addition, the division regions R21, R12, and R13 are present inside the fixed distances from the corner section PK1, becomes a region which is further separated from the corner section PK1 than the division region R11, and has an “intermediate” correlation with the corner section PK1 for the generation of the curls.
Although the other corner sections PK2, PK3, and PK4 will not be described here, division regions, which have the correlation with the generation of the curls, are set inside fixed distances from the corner sections PK2, PK3, and PK4, similarly to the corner section PK1. Therefore, in the modification example, for example, the division region R12 has a correlation “intermediate” with the corner section PK1 and has a correlation “intermediate” with the corner section PK1. In addition, division region R21 has a correlation “intermediate” with both the corner section PK1 and the corner section PK4. In addition, the division region R23 has a correlation “low” with each of the corner sections for the generation of the curls.
Meanwhile, in the modification example, division may be performed such that the division regions are separated from the corners of the printing region E by a fixed distance instead of the corner sections of the paper P. That is, the division lines of the concentric circles may be arcs which have the corners of the printing region E as centers. In brief, the division regions, which are included in the determination region, may be regions which are acquired through division such that the printing duty of the determination region has the correlation with the amount of curls which is actually generated in the paper P.
In the embodiment, the determination regions may be not necessarily set to all of the corner section of the paper P. For example, in a case of header printing or the like in which ink adheres approximately uniformly to the paper P, the average values of the printing duties in the determination regions of the respective corner sections are the same. In such a case, the determination region may be set in at least one corner section.
Otherwise, when determination regions are set in a plurality of corner section, whether or not the largest average value of the average values of the printing duties in the plurality of determination regions is larger than the threshold may not be necessarily determined. For example, with regard to the average value of the printing duties of the plurality of determination regions, whether or not a value acquired by further averaging the plurality of average values is larger than the threshold may be determined.
In the embodiment, the determination region setting section 51 may not necessarily set the determination regions such that the determination regions are present over the center of one side edge from the side of the corner section along the one side edge. For example, the determination region HR1 may be set to a region, which does not reach over the center C1 of the side edge PE1 (refer to
In the embodiment, the temperature and humidity detection section 70, which detects the temperature and the humidity of the paper P before recording is performed, may be not provided. For example, when the change in the temperature and the humidity of the paper P is prevented as in a case in which the printer 11 is installed in an atmosphere at constant temperature and humidity, it is not necessary to necessarily detect the temperature and the humidity.
In the embodiment, a timing in which the curl is determined may include a case of front surface printing, a case of rear surface printing, or the other cases.
In the embodiment, for example, when the printing data includes data of a plurality of pages (plural sheets), all of the pages corresponding to the printing data may be printed by evacuating (adjusting) the recording section 14 to a distance which is the most separated from the support surface 13a in the plurality of pages. In this manner, the adjustment movement is not performed on the recording section 14 (line head) when the printing is being performed, and the transport of the paper P for the adjustment movement is not delayed, thereby preventing the deterioration of the throughput of printing.
Meanwhile, when the recording section 14 is adjusted from the support surface 13a, a slider cam, which performs adjustment by causing a carriage to slide, and a cam which performs adjustment by rotating a shaft that supports the recording section 14.
Otherwise, after printing of one page, which should be most separated, in the printing data corresponding to the plurality of pages, adjustment may be performed such that the position of the recording section 14 is gradually close to the support surface 13a according to the printing data of the page corresponding to the printing target from the subsequent page of the one page. That is, a configuration is made such that, when the printing data corresponding to one page, which should be the most separated in remaining pages, is finished, the position of the recording section 14 is caused to be close to the support surface 13a again. In this manner, it is possible to prevent the movement distance of the recording section 14 from being long when adjustment is performed, and thus it is possible to suppress the deterioration of the throughput.
In the embodiment, when the transport section 29 successively transports a plurality of (pieces of) paper P, the transport section 29 may not necessarily adjust the transport speed of the paper P such that a previously transported paper P does not come into contact with a subsequently transported paper P on the medium transport path 20. For example, even when printing is performed in the central regions of the pieces of paper P and the pieces of paper P overlap with each other, the contact between the pieces of paper P on the medium transport path 20 is allowable if the printing parts do not exist in the overlapping parts.
In the embodiment, the dryness degree adjustment section 55 may not necessarily adjust the dryness degree of the paper P by adjusting the transport speed of the paper P which is transported by the transport section 29. For example, the dryness degree of the paper P may be adjusted by transporting the printed paper P to the branched transport path 24 once, causing the printed paper P to wait in the branched transport path 24 during a prescribed time, causing the printed paper P to return to the third medium supply path 23 and to pass through the recording section 14 again, and transporting the printed page p to the medium ejection path 25.
Otherwise, although description is not performed here with reference to the drawings, for example, the dryness degree of the paper P may be adjusted by adjusting a thermal dose in such a way that a heating device, such as a heater, is provided in the middle of the medium transport path 20. Otherwise, the dryness degree of the paper P may be adjusted by adjusting the amount of applied air (air flow) or the temperature of the air in such a way that a ventilator which is capable of apply the air to the paper P which is transported through the medium transport path 20. Otherwise, the dryness degree of the paper P may be adjusted by adjusting the length of the medium transport path 20 through which the paper P is transported.
In the embodiment, the recording section 14 is not limited to the configuration of a so-called line head which includes a liquid discharge head that is capable of discharging ink over approximately the entirety of the area of the paper P in the width direction. For example, the recording section 14 may have a configuration of a so-called serial head which includes a liquid discharge head for discharging ink to a carriage that reciprocates in the direction which is perpendicular to the transport direction of the paper P.
In the embodiment, the transport section 29 is not limited to perform transport using the rollers, and may perform transport using a belt. In such a case, the support surface 13a is a surface in which the belt comes into contact with the paper.
In the embodiment, a supply source, which supplies ink that is recording liquid discharged from the recording section 14, may be, for example, an ink container which is provided inside the housing 12 of the printer 11. Otherwise, the supply source may be a so-called external type ink container which is provided on the outside of the housing 12. In particular, the capacity of ink is large in a case of the external type ink container, and thus it is possible to discharge a larger amount of ink from the recording section 14.
Meanwhile, when ink is supplied to the recording section 14 from the ink container which is provided on the outside of the housing 12, it is necessary to draw an ink supply tube for supplying ink inside from the outside of the housing 12. Accordingly, in this case, it is preferable to provide a hole or a notch, which is capable of inserting the ink supply tube, in the housing 12. Otherwise, a gap may be provided in the housing 12 and the ink supply tube may be drawn from the outside to the inside of the housing 12 through the gap. In this manner, it is possible to easily supply ink to the recording section 14 using the ink flow path of the ink supply tube.
In the embodiment, the printer 11 as the recording device may be a fluid discharge device which performs recording by spraying or discharging fluid (which includes liquid, a liquid matter which is formed in such a way that the particles of a functional material are dispersed or mixed in the liquid, a fluid matter such as gel, and solid which is capable of flowing as fluid and being discharged) other than the ink. Further, the printer 11 may include, for example, a liquid matter discharge device which performs printing by discharging a liquid matter including a material, such as an electrode material or a color material (pixel material), used to manufacture a liquid crystal display, an Electro-Luminescence (EL) display, and a surface light emitting display by dispersing or melting the material. In addition, the printer 11 may include a fluid matter discharge device which discharges the fluid matter, such as gel (for example, physical gel), or a powder matter discharge device (for example, toner jet type printing device) which discharges solid which includes power (powder matter), such as toner, as an example. Further, it is possible to apply the invention to any one type of the fluid discharge devices. Meanwhile, in the specification, the “fluid” does not include fluid which is formed of only gas, and the fluid includes, for example, liquid (which includes an inorganic solvent, an organic solvent, a solution, a liquid resin, a liquid metal (a metallic melt) or the like), a liquid matter, a fluid matter, a powder matter (which includes grains and powder), and the like.
According to another aspect of the embodiment, there is provided a curl determination method including dividing a recording region of a medium, which includes four side edges, into a plurality of regions, and setting a continuous region, in which the plurality of regions are continued, as a determination region, the plurality of regions including an end part region which is the closest region to a corner section, in which two side edges are connected, of the medium; calculating an average value of liquid volume ratios of the liquid, which is discharged from the recording section to the determination region based on the discharge data of the liquid which is discharged from a recording section to the medium, to the maximum liquid volume of liquid which is capable of being discharged from the recording section; and determining whether or not the average value of the liquid volume ratios, which are calculated for the determination region, is larger than a predetermined threshold, and determines that curls are generated in the medium when it is determined that the average value is larger than the threshold.
In the method, the liquid volume ratios of the continuous regions, which include the end part region that is closest to the corner section in the recording region, of the medium have a strong correlation with the curl, and thus it is possible to accurately determine the generation of the curl by assuming that the continuous region as the determination region and by using the average value of the liquid volume ratios.
In the curl determination method, it is preferable that the dividing and setting includes setting the plurality of determination regions in the recording region of the medium, and the determining includes determining whether or not the largest average value of the average values of the liquid volume ratios of the liquid, which is discharged to the plurality of determination regions, is larger than the threshold.
In the method, a region part corresponding to the largest liquid volume ratio of the determination region which includes the end part region in the recording region has a strong correlation with the curl, and thus it is possible to accurately determine the generation of the curl by comparing the largest average value of the liquid volume ratios of the determination regions with the threshold.
In the curl determination method, it is preferable that the determination region is a region which is positioned in a fixed distance from the side edges in the recording region.
In the method, the liquid volume ratios of the determination regions in the fixed distance from the side edges of the medium in the recording region have a strong correlation with the generation of the curl, and thus it is possible to accurately determine the generation of the curl based on the average value of the liquid volume ratios of the determination regions in the fixed distance from the side edges of the medium.
In the curl determination method, it is preferable that the dividing and setting includes setting the determination region such that the determination region reaches over the center of the one side edge from the corner section side along at least one of the side edges.
According to the aspect, when the determination regions are set up to the region which reaches over the center of the side edges of the medium, and thus the liquid volume ratios of the determination regions have a strong correlation with the generation of the curl. Therefore, it is possible to accurately determine the generation of the curl based on the average value of the liquid volume ratios of the determination regions.
It is preferable that the curl determination method further includes detecting temperature and humidity of the medium acquired before the recording is performed, and the determining includes performing determination by using the threshold which is predetermined according to the detected temperature and humidity of the medium.
According to the aspect, the temperature and the humidity in the recording region have a strong correlation with the generation of the curl degree, and thus it is possible to accurately determine the generation of the curl based on the detected temperature and humidity of the medium.
According to this aspect of the embodiment, another advantage of the curl determination method, which is capable of accurately determining whether or not curls are actually generated in the medium, can be provided.
Number | Date | Country | Kind |
---|---|---|---|
2014-223664 | Oct 2014 | JP | national |
2014-223665 | Oct 2014 | JP | national |
This application is a divisional application of U.S. patent application Ser. No. 14/918,810 filed on Oct. 21, 2015. This application claims priority to Japanese Patent Application No. 2014-223664 filed on Oct. 31, 2014 and Japanese Patent Application No. 2014-223665 filed on Oct. 31, 2014. The entire disclosures of U.S. patent application Ser. No. 14/918,810 and Japanese Patent Application Nos. 2014-223664 and 2014-223665 are hereby incorporated herein by reference.
Number | Date | Country | |
---|---|---|---|
Parent | 14918810 | Oct 2015 | US |
Child | 15704486 | US |