The present invention relates to a recording device that records on a medium.
An example of a recording device that ejects a liquid onto a medium to record is an ink jet printer. An example of the ink jet printer including a recording head that ejects ink, which is one example of a liquid, and a carriage that moves in a predetermined direction is a serial ink jet printer. Some ink jet printers include ink reservoirs, which contain ink, in the carriages, and others include the ink reservoirs outside the carriages. Examples of the ink reservoir mounted in the carriage include a cartridge ink reservoir, which is entirely replaceable, and a refillable ink reservoir, which is capable of being filled again, as described in JP-A-2006-224433.
In the configuration described in JP-A-2006-224433, an ink supplying needle is inserted into an ink fill port to supply ink to the ink reservoir. The ink fill port is closed with a label and the label is removed when ink is supplied through the ink fill port. The adhesiveness of the label decreases with the duration of use, and thus the label may lose the ability to properly seal the ink fill port. To solve the problem, a mechanical component, such as an openable cap, may be used to open and close the ink fill port. However, the mechanical component increases the overall size of the carriage, making the recording device larger. In particular, a movement area of the carriage is usually adjacent to an operation portion through which the recording device is instructed to perform various tasks. If the position of the operation portion is changed due to the increase in the size of the carriage, the size of the recording device increases accordingly.
An advantage of some aspects of the invention is that, in a recording device including a refillable liquid reservoir in a carriage, reliable opening and closing of a fill port for liquid refilling and a less increase in size of the recording device are both achieved.
A recording device according to a first aspect of the invention includes a recording unit configured to eject a liquid onto a medium to record, a carriage including the recording unit at a bottom thereof and configured to move in an X direction corresponding to a medium width direction that intersects a Y direction corresponding to a medium transport direction in which a medium is transported while the recording unit is recording, a liquid reservoir located in the carriage at a position above the recording unit, configured to contain a liquid, and having a fill port through which the liquid is supplied, a fill port unit located in the carriage at a position above the liquid reservoir and including a component for open/close operation of the fill port, and an operation unit through which the device is operated. The fill port unit and the operation unit partly overlap in a vertical direction when viewed in the X direction.
According to the aspect, in the recording device including the liquid reservoir that holds a liquid supplied through the fill port in the carriage, the fill port unit including a component for open/close operation of the fill port is disposed. With this configuration, the fill port is reliably closed. Furthermore, the fill port unit and the operation unit partly overlap in the vertical direction when viewed in the X direction corresponding to the medium width direction that interests the Y direction corresponding to the medium transport direction in which a medium is transported during the recording. This configuration reduces the size of the device in the vertical direction, preventing the size of the device from increasing in the vertical direction.
The recording device according to a second aspect of the invention includes a recording unit configured to eject a liquid onto a medium to record, a carriage including the recording unit at a bottom thereof and configured to move in an X direction corresponding to a medium width direction that intersects a Y direction corresponding to a medium transport direction in which a medium is transported while the recording unit is recording, a liquid reservoir located in the carriage at a position above the recording unit, configured to contain a liquid, and having a fill port through which the liquid is supplied, a fill port unit located in the carriage at a position above the liquid reservoir and including a component for open/close operation of the fill port, and an operation unit through which the device is operated. The fill port unit and the operation unit partly overlap in a device front-rear direction that is parallel to the medium transport direction, when viewed in the X direction.
According to the aspect, the liquid reservoir in the carriage has the fill port for liquid refilling, and the device includes the fill port unit including a component for open/close operation of the fill port. With this configuration, the fill port is reliably closed. Furthermore, the fill port unit and the operation unit partly overlap in the device front-rear direction, which is parallel to the medium transport direction, when viewed in the X direction that intersects the Y direction corresponding to the medium transport direction in which a medium is transported during the recording. This configuration reduces the size of the device in the device front-rear direction, preventing the size of the device from increasing.
In the above-described recording device, the fill port unit may include a pivotable lever-like member having a cap configured to close the fill port and a frame member supporting the lever-like member. The lever-like member is configured to pivot to switch its posture between a closing posture in which the cap closes the fill port and an open posture in which the cap does not close the fill port.
With this configuration, the cap reliably closes the fill port, and the fill port is readily opened or closed because the fill port is opened or closed by the lever-like member.
In the above-described recording device, an overhang configured to cover at least a portion of the lever-like member from above may be disposed at an end portion of a movement area of the carriage adjacent to a home position. The overhang may include a guide portion that guides the lever-like member to a position under the overhang.
In this configuration, the overhang configured to cover at least a portion of the lever-like member from above is disposed at an end portion of the movement area of the carriage adjacent to the home position. Thus, when at least a portion of the lever-like member is located under the overhang, the lever-like member is not unnecessarily operated, i.e., the fill port is not exposed.
If the lever-like member does not completely close the fill port and is in a half-opening posture, for example, the lever-like member comes in contact with the overhang when the carriage moves toward the home position. This may damage the lever-like member or the overhang. To avoid the damage, in this configuration, the overhang has a guide portion that guides the lever-like member to a position under the overhang, and thus the above-describe damage is avoided or reduced.
In the above-described recording device, the frame member may have an upper surface having a plurality of grooves that hold a liquid.
In this configuration, the upper surface of the frame member has grooves that hold a liquid. If the liquid is dropped onto the upper surface of the frame member during the liquid supply through the fill port, the liquid is held in the grooves. This configuration reduces the possibility that the liquid dropped onto the upper surface of the frame member will scatter.
The above-described recording device may further include, at a downstream side of the recording unit in a medium transport route, a discharge driving roller configured to be rotated and a discharge driven roller opposed to the discharge driving roller and configured to be rotated by rotation of the discharge driving roller. The fill port unit and a roller support supporting the discharge driven roller partly overlap in a device front-rear direction that is parallel to the medium transport direction, when viewed in the medium width direction.
In this configuration, the fill port unit and the roller support supporting the discharge driven roller partly overlap in the device front-rear direction that is parallel to the medium transport direction, when viewed in the medium width direction. Thus, the size of the recording device that includes the fill port unit and the roller support supporting the discharge driven roller is reduced in the device front-rear direction.
In the above-described recording device, the roller support may have an upper surface having a guide groove that guides the liquid in a predetermined direction, and a liquid absorber configured to absorb the liquid may be disposed adjacent to an ink guide end of the guide groove.
In this configuration, the upper surface of the roller support has a guide groove that guides the liquid in a predetermined direction and the liquid absorber configured to absorb the liquid is disposed at a liquid guide end of the guide groove. If the liquid is dropped onto the upper surface of the roller support during the liquid supply through the fill port, the liquid is guided by the guide groove to the liquid absorber and absorbed by the liquid absorber. This configuration reduces dirt and damage in the device possibly caused by the liquid.
In the above-described recording device, an overhang configured to cover at least a portion of the lever-like member from above may be disposed at an end portion of a movement area of the carriage adjacent to a home position. The control unit that controls the carriage is configured to execute a carriage stop mode in which the carriage stops at a first position where the lever-like member is located away from the overhang. The lever-like member in a posture other than the closing posture comes in contact with the overhang when the carriage moves from the first position toward a movement limit position adjacent to the home position. The control unit is configured to move the carriage from the first position toward the movement limit position when returns from the carriage stop mode and is configured to determine whether the lever-like member is open or closed based on a position where the carriage stopped.
If the lever-like member is kept opened after the liquid supply to the liquid reservoir, defects such as liquid evaporation and liquid leakage through the fill port may occur. In the above-described configuration, the control unit moves the carriage toward the movement limit position when returns from the carriage stop mode and determines whether the lever-like member is open or closed based on the position where the carriage stopped. The determination on whether the lever-like member is open or closed can eliminate the above defects. In addition, this configuration does not require a separate sensor or the like to determine whether the lever-like member is open or closed, preventing the cost of the device from increasing.
A recording device according to a third aspect of the invention includes a recording unit configured to eject a liquid onto a medium to record, a carriage including the recording unit at a bottom thereof and configured to move in an X direction corresponding to a medium width direction that intersects a Y direction corresponding to a medium transport direction in which a medium is transported while the recording unit is recording, and an operation unit through which the recording device is operated. The carriage and the operation unit partly overlap in a vertical direction or a device front-rear direction that is parallel to the medium transport direction, when viewed in the X direction.
With this configuration, the size of the device including the carriage and the operation unit is reduced in the vertical direction or the device front-rear direction, preventing the size of the device from increasing.
The above-described recording device may further include a liquid reservoir located in the carriage at a position above the recording unit, configured to contain a liquid, and having a fill port through which the liquid is supplied. The fill port and the operation unit overlap in the vertical direction or the device front-rear direction that is parallel to the medium transport direction, when viewed in the X direction.
In this configuration, the fill port and the operation unit partly overlap in the vertical direction or the device front-rear direction that is parallel to the medium transport direction, when viewed in the X direction. Thus, the size of the device is reduced in the vertical direction or the device front-rear direction, preventing the size of the device from increasing.
The invention will be described with reference to the accompanying drawings, wherein like numbers reference like elements.
Hereinafter, an embodiment of a recording device according to an aspect of the invention is described with reference to the drawings. In the following description, an ink jet printer (hereinafter, may be referred to as a “printer”) 1 that performs ink jet recording on a sheet, which is one example of a medium, is described as an example of the recording device according to an aspect of the invention. The X, Y, and Z coordinate systems are indicated in the drawings such that the X direction indicates a device width direction and a sheet width direction, the Y direction indicates a sheet transport direction and a device front-rear direction, and the Z direction indicates a device height direction and a vertical direction. A side to which a sheet is transported is referred to as a “downstream” side and a side opposite the downstream side is referred to as an “upstream” side.
Hereinafter, the overall configuration of the printer 1 is briefly described with reference to
The front cover 5, which provides a front surface of the device, is openable and may be open (
The upper cover 6, which provides a portion of an upper surface of the device, is openable and may be open (
An operation unit 10 for giving various instructions to the printer 1 is disposed at a front left portion of the upper surface of the device. Through the operation unit 10, the device is switched on and off and various settings are made. The operation unit 10 is described later further in detail. Areas indicated by Q1 to Q5 in
Hereinafter, with reference to
The sheet feeder in this embodiment sends sheets from the sheet storage 40 located at the bottom of the device. In addition to this sheet feeder, the device may further include a feeder that feeds sheets from the rear side of the device. Alternatively, the device may include the feeder that feeds sheets from the rear side instead of the feeder that sends sheets from the sheet storage 40 at the bottom of the device. Specifically described, although the upper rear cover 7, which provides the upper rear surface of the device, is not openable in this embodiment, the upper rear cover 7 is made openable to allow a sheet to be inserted from the upper side of the device onto a sheet support 43. Furthermore, a feeding roller (not illustrated) that sends the sheet set on the sheet support 43 may be disposed. In
The sheet fed by the above-described feeder is nipped between a transport driving roller 44 and a transport driven roller 45 and sent to a position below a recording head 47, which is one example of a recording unit. The transport driving roller 44 is configured to be driven by a motor (not illustrated) and the transport driven roller 45 is configured to be rotated by rotation of the transport driving roller 44. A direction in which a sheet is transported by the transport driving roller 44 and the transport driven roller 45 is a sheet transport direction for recording, which corresponds to the Y direction, which is a horizontal direction.
The recording head 47 is an ink jet recording head located at the bottom of the carriage 20. The carriage 20 is configured to reciprocate in a sheet width direction (X direction) that intersects the sheet transport direction for recording (Y direction) and discharge ink from the recording head 47 while reciprocating. A support 48 is disposed to face the recording head 47. The support 48 supports the sheet transported by the transport driving roller 44 and the transport driven roller 45 to the downstream side.
The sheet after recording by the recording head 47 is nipped between a discharge driving roller 50 and a discharge driven roller 51, which are located downstream of the recording head 47 in the sheet transport route, and the sheet is discharged to the front side of the device. The discharge driving roller 50 is configured to be driven by a motor (not illustrated) and the discharge driven roller 51 is rotated by rotation of the discharge driving roller 50. The sheet discharged to the front side of the device is received by a paper output tray 49. The paper output tray 49 is slidable between a housing position illustrated in
Next, the configurations of the carriage 20 and the operation unit 10 are described with reference to
The ink tank 30 has a fill port 31 (
As illustrated in
The fill port unit 23 includes components for open/close operation of the fill port 31. Specifically described, as illustrated in
With this configuration, the cap 27 reliably closes the fill port 31 and the fill port 31 is readily opened or closed by open/close operation of the fill port 31 through the cap lever 26. The above-described fill port unit 23 includes components for open/close operation of the fill port 31 but may include a single component.
In this embodiment, the cap 27 is formed of an elastic material such as elastomer and has an inner diameter slightly smaller than the outer diameter of the fill port 31. The cap 27 is configured to elastically deform to close the fill port 31. The cap lever 26 remains closed due to a force generated when the cap 27 elastically fits the fill port 31. However, the cap lever 26 may remain closed by using snap-fit connectors. The cap lever 26 may have a protrusion and the upper frame 24 may have a recess to fit the protrusion of the cap lever 26. Furthermore, a locking mechanism that tightly closes the cap lever 26 may be further included.
As illustrated in
Next, the operation unit 10 located adjacent to the movement area of the carriage 20 is described. As illustrated in
As illustrated in
In
Furthermore, the fill port unit 23 and the operation unit 10 partly overlap in the device front-rear direction (Y direction) when viewed in the sheet width direction (X direction). The symbol R1 indicates a region where the fill port unit 23 and the operation unit 10 overlap in the device front-rear direction (Y direction). Furthermore, the fill port unit 23 and the operation unit 10 partly overlap in the device front-rear direction (Y direction) when viewed from the upper side (Z direction). In this configuration, the fill port unit 23 and the operation unit 10 do not entirely overlap in the device front-rear direction (Y direction), and thus the size of the device in the device front-rear direction (Y direction) is reduced, preventing the size of the device from increasing.
Furthermore, as can be seen from
Since the fill port unit 23 is included in the carriage 20, it can be said that the carriage 20 and the operation unit 10 partly overlap in the vertical direction (Z direction). It can also be said that the carriage 20 and the operation unit 10 partly overlap in the device front-rear direction (Y direction).
In one embodiment, the upper frame 24 may be eliminated from the fill port unit 23 including components for open/close operation of the fill port 31, for example, and the cap lever 26 may be directly attached to the housing 21 of the carriage 20, for example. In this configuration, as can be understood from
The operation unit 10 may be located at any position where the fill port unit 23 and the operation unit 10 partly overlap in the device front-rear direction (Y direction) when viewed in the sheet width direction (X direction), other than the position in the present embodiment. For example, the operation unit 10 may be located in any one of areas Q1, Q2, Q3, Q4, and Q5 indicated in
In this embodiment, the operation unit 10 includes the push buttons 14, 15, and 16 but may further include a display such as a liquid crystal display or may include only a touch panel. Alternatively, the operation unit 10 may include a touch panel and a push button. Furthermore, the operation unit 10 may include only a user interface portion (for example, an LED display) that gives the user visual information or may include only a user interface portion (for example, a speaker) that gives the user audio information.
Next, the other components of the printer 1 are described. First, as illustrated in
Here, as illustrated in
When the carriage 20 is located at the home position, the recording head 47 is engaged with a cap unit 9 (
If the carriage 20 at the first position is moved toward the home position with the cap lever 26 being open (in a posture other than the closing posture), the cap lever 26 comes in contact with the overhang 3b, damaging the cap lever 26 or the overhang 3b.
The lower corner of the overhang 3b may have a chamfered surface (symbol 3d) as illustrated in
Next, the positional relationship between the fill port unit 23 and the other components is described. First, as can be seen from
As illustrated in
The imaginary line with the symbol P1 indicates an X-Y plane area occupied by a sheet that is supported by the open front cover 5 and the sheet storage 40 (
Next, with reference to
The operation to detect the reference position of the carriage 20 is performed when the printer 1 is powered on, for example. More specifically described, when the printer 1 is powered on, the controller 55 moves the carriage 20 to the movement limit position adjacent to the home position. When the carriage 20 arrives at the movement limit position adjacent to the home position, the driving current value of the carriage driving motor 57 increases. The controller 55 detects the increase and sets the position of the carriage 20 as a reference position. Then, the controller 55 determines the relative position of the carriage 20 relative to the reference position based on the detection signal from the linear encoder 56 to perceive the position of the carriage 20.
In
If the carriage 20 at the ink supply position is moved to the movement limit position adjacent to the home position with the cap lever 26 being open, the cap lever 26 comes in contact with the overhang 3b as can be seen from
As described above, when the controller 55 returns from the carriage stop mode, the controller 55 moves the carriage 20 at the ink supply position toward the movement limit position adjacent to the home position and determines whether the cap lever 26 is open or closed based on the position where the carriage 20 stopped. This configuration provides the following advantages. Specifically described, if the cap lever 26 is kept opened after the ink supply to the ink tank 30, defects such as ink evaporation and ink leakage through the fill port 31 may be caused. This problem is avoided by the above-described control that determines whether the cap lever 26 is closed or open. In addition, this configuration does not require a separate sensor or the like to determine whether the cap lever 26 is open or closed, preventing the cost of the device from increasing.
If the cap lever 26 is in a half-opening posture closest to the closing posture, which is one example of incomplete closing postures of the cap lever 26 (
The technical scope of the invention is not limited to the above-described embodiment. Any modifications may be suitably added to the invention without departing from the scope of the invention understood from the claims and the description. Such modifications are in the technical scope of the invention.
The entire disclosure of Japanese Patent Application No. 2018-056526, filed Mar. 23, 2018 is expressly incorporated by reference herein.
Number | Date | Country | Kind |
---|---|---|---|
2018-056526 | Mar 2018 | JP | national |
Number | Name | Date | Kind |
---|---|---|---|
6250739 | Serra | Jun 2001 | B1 |
20150360476 | Osakabe et al. | Dec 2015 | A1 |
20150363675 | Sakamoto | Dec 2015 | A1 |
20160089893 | Osakabe et al. | Mar 2016 | A1 |
20170246871 | Nakata et al. | Aug 2017 | A1 |
20180178567 | Takabayashi | Jun 2018 | A1 |
Number | Date | Country |
---|---|---|
2006-224433 | Aug 2006 | JP |
2016-000493 | Jan 2016 | JP |
2016-000504 | Jan 2016 | JP |
2016-000505 | Jan 2016 | JP |
2016-068473 | May 2016 | JP |
2017-154480 | Sep 2017 | JP |
2018-103526 | Jul 2018 | JP |
Number | Date | Country | |
---|---|---|---|
20190291445 A1 | Sep 2019 | US |