1. Field of the Invention
The present invention relates to a recording element substrate, a recording head including the recording element substrate, and a recording head cartridge. More specifically, the invention relates to an ink jet recording element substrate for recording by using ink.
2. Description of the Related Art
In a recording head of an ink jet system, for example, in order to operate a plurality of heat generating resistive elements provided in the recording head at different timings, time-division driving is performed, in which the plurality of heat generating resistive elements are divided into a plurality of blocks and each of the blocks is driven in sequence.
Recording data DATA input to an input terminal 107 is transferred to a shift register 104, and then transferred to a shift register 101. A latch circuit 105 latches the data of the shift register 104. A latch circuit 102 latches the data of the shift register 101.
A clock CLK for operating the shift register is input to an input terminal 110. A heat enable signal HE for controlling ON-time of the switching elements T1 to T64 from the outside is input to an input terminal 108. A latch signal LT is input to an input terminal 109. An AND circuit 103 calculates logical products of the heat enable signal HE and outputs D1 to D4 of the 4-bit latch circuit 102 to output recording data signals D1L to D4L.
The recording element substrate 111 includes a heater power (VH) input terminal for inputting a driving voltage of the heat generating resistive elements and a GND (GNDH) terminal for inputting a ground level. The recording element substrate further includes a logical power (VDD) input terminal for inputting a voltage for a logical circuit and a GND (VSS) terminal for the logical circuit.
Logical levels of the input terminals have been set to GND level by pull-down resistance. Thus, when a contact is open, a 4-bit value of the recording data (DATA) that is input to the shift register 104 becomes “0000”.
Next, a signal flow when a recording operation is performed will be described. Recording data input from a recording apparatus is input to the shift register 104, which constitutes a logical circuit, and divided into recording data signals D1L to D4L and block control signals B1L to B4L. A decoder 106 converts the block control signals into block selection signals N1 to N16. The recording element selection circuits (AND circuits) A1 to A6 receives the recording data signals D1L to D4L and the block selection signals N1 to N6, and perform logical product calculation to determine the heat generating resistive elements to be driven.
Such a recording head is mounted on a carriage of the recording apparatus. A contact pad (contact) of the recording head side and a contact pad (contact) of the carriage side are connected to each other by pressure. This connection realizes electrical connection (may simply be referred to as a contact, hereinafter) between a control unit of the recording apparatus and the recording element substrate of the recording head, thereby enabling power supplying and communication.
In the connected portion, a contact failure having no contact (hereinafter, simply referred to as contact open), or a contact failure in which adjacent contacts are electrically short-circuited (hereinafter, simply referred to as a contact short-circuit) may occur. In such a case, the recording data sent from the recording apparatus may not be correctly input to the recording head, causing deterioration in recording quality.
Numerical values 1 to 64 of recording dots correspond to numbers of heaters belonging to a heater array 406. Values (N1 to N64) of the block selection signals, signal levels and time axes (time chart) of the block control signals, and positions of dots recorded in the recording medium correspond to one another.
Then, according to logical level switching of the block control signals B1L to B4L, the decoder 106 sequentially outputs block selection signals N1 to N16.
Thus, as illustrated in
There is a method for detecting such a contact failure. A method discussed inn Japanese Patent Application Laid-Open No. 8-252909 calculates a logical product of all signals input to a recording element substrate, and detects a contact failure based on a result of the calculation. A method discussed in Japanese Patent Application Laid-Open No. 2000-141660 monitors a voltage supplied to a logical circuit for driving a heater, and detects a contact failure based on a result of the monitoring.
However, because of an increase in circuit size resulting from a higher density of the nozzles of the recording head and higher performance of the recording head, a circuit space for the circuit of detecting contact failures may be difficult to provide. An object of the present invention is to provide a recording element substrate, a recording head including the same, and a recording head cartridge, which improves the issue described above.
The present invention is directed to a recording element substrate, a recording head including the same, and a recording head cartridge in which when a contact failure occurs between the recording head and a recording apparatus body, a temperature increase caused by continuous driving of heat generating resistive elements is prevented.
According to an aspect of the present invention, a recording element substrate for driving a recording element array including a plurality of recording elements, which is divided into a predetermined number of blocks, in a time-division manner, includes an input unit configured to input data, and a control unit configured to perform time-division control by associating the predetermined number of blocks, to which the recording elements have been assigned, and blocks, to which no recording elements have been assigned, with values of the data, and selecting blocks associated with the values of the data, wherein in case that the values of the data are predetermined values, the control unit selects the blocks to which no recording elements have been assigned.
Further features and aspects of the present invention will become apparent from the following detailed description of exemplary embodiments with reference to the attached drawings.
The accompanying drawings, which are incorporated in and constitute a part of the specification, illustrate exemplary embodiments, features, and aspects of the invention and, together with the description, serve to explain the principles of the invention.
The accompanying drawings, which are incorporated in and constitute a part of the specification, illustrate exemplary embodiments, features, and aspects of the invention and, together with the description, serve to explain the principles of the invention.
Hereinbelow, a first exemplary embodiment of the present invention will be described. A recording head includes heat generating resistive elements as recording elements. The recording head includes arrays of recording elements each one of arrays arranged on the left side and right side of one ink supply port. One recording element array (heater array) includes fifty six recording elements. The fifty-six recording elements are divided into fourteen blocks (number of divided blocks N=14), and four recording elements included in each block are simultaneously driven (number of simultaneously driven elements M=4). Four block signals B1L to B4L for this block driving are assigned to the recording elements.
A conductive Tape Automated Bonding (TAB) 402 connects electrically the recording element substrate 404 and the electrode 403.
The logical circuit includes switching elements for selecting heaters, AND circuits, a shift register for latching input data, a latch circuit, and the like.
In the block diagram illustrated in
The recording element substrate 404 includes a recording signal input terminal 507 for inputting recording data, a driving signal input terminal (heat enable signal) 508, a latch signal input terminal 509, and a clock signal input terminal 510. This circuit is configured such that recording data signals D1L to D4L and block control signals B1L to B4L are generated from recording data input as a recording signal from the input terminal 507 by the shift register and the latch circuit to control driving of the heat generating resistive elements.
In
A 4 to 16 decoder 506 receives the block control signals B1L to B4L supplied from the 4-bit latch circuit 505 to generate block selection signals N1 to N16 for time-division driving.
Recording control data among the data stored in the 4-bit shift register 504 are shifted to be output according to the clock signal CLK, and serially input to a 4-bit shift register 501. A 4-bit latch circuit 502 latches data signals of 4 bits stored in the 4-bit shift register 501 according to the latch signal LT.
An AND circuit 503 calculates logical products of the heat enable signal HE and outputs D1 to D4 of the 4-bit latch circuit 502 to output recording data signals D1L to D4L.
Switching elements T1 to T56 control energization of the heat generating resistive elements H1 to H56, and recording elements selection circuits A1 to A56 are disposed corresponding to the switching elements T1 to T56. The recording element selection circuits A1 to A56 receive any one of the recording data signals D1L to D4L output from the AND circuit 503 and any one of the block selection signals N2 to N15 output from the 4 to 16 decoder 506, and execute a logical operation AND of the two signals.
Then, outputs from the recording element selection circuits A1 to A56 are input to the corresponding switching elements T1 to T56 to control energization of the connected heat generating resistive elements H1 to H56. In other words, based on any signals selected from the recording data signals D1L to D4L output from the AND circuit 503 and the block selection signals N2 to N15 output from the 4 to 16 decoder 506, driving timing and a pulse width are determined for the heat generating resistive elements.
In this circuitry, the heat enable signal HE becomes active at a negative logic to enable an operation. In other words, the heat generating resistive elements are driven when the logical level of the heat enable signal HE is “Low”.
Among the outputs of the 4 to 16 decoder 506, the block selection signals N1 and N16 are not connected to any recording element selection circuits. In other words, no heat generating resistive elements are assigned to the blocks N1 and N16.
Thus, when a logical level of the block N1 or N16 is “High”, even if the logical level of the heat enable signal HE is “Low”, no heat generating resistive element is driven.
The table illustrates that when signals HE, D*(D1L to D4L), and N* (N1 to N16) written in the fields of the recording element selection circuits are input, outputs of the corresponding recording element selection circuits become active.
In the table of
In the exemplary embodiment, a pull-down resistor 801 illustrated in
As a recording operation, with the input of the clock CLK, all bits of the input signal recording data (DATA) are input serially as Low level signals “0000” to the shift register 504. As a result, values of the block control signals B1L to B4L output from the 4-bit latch circuit 505 become “0000”, and hence the block selection signal N1 is selected as the output of the 4 to 16 decoder to be a “High” level.
However, as described above, the “High” logical level of the N1 means that no heat generating resistive element is assigned, and hence no heat generating resistive element is driven.
Further, with this configuration, when contact short-circuiting occurs between the input terminal 507 of the recording data (DATA) and the logical power source VDD, the input signal recording data (DATA) are serially input as data of “High” levels to the shift register 504.
As a result, the block control signals B1L to B4L output from the 4-bit latch circuit 505 become “1111”. In other words, the block selection signal N16 is selected as an output result of the 4 to 16 decoder to become “High”. When the logical level of N16 becomes “High”, blocks to which no heat generating resistive elements have been assigned are selected, and no heat generating resistive element is driven.
As circuitry, which is a second exemplary embodiment of the present invention, a pull-up resistor 901 illustrated in
Recording Apparatus
A transmission mechanism 4 transmits a driving force generated by a carriage motor M1 to a carriage 2 on which a recording head 3 is mounted to reciprocate the carriage 2 in an arrow direction A. The carriage 2 and the recording head 3 have coupled surfaces thereof appropriately brought into contact with each other to achieve and maintain required electrical connection.
A recording medium P is fed via a paper feeding mechanism 5 driven by a feed motor M2, and conveyed to a recording position. At the recording position, the recording head 3 discharges ink to the recording material P to perform recording. A convey roller 7 for conveying the recording medium P is driven by the feed motor M2.
Not only the recording head 3 but also an ink cartridge 6 for storing ink to be supplied to the recording head 3 are mounted on the carriage 2 of the recording apparatus 1. The ink cartridge 6 is detachable from the carriage 2.
The carriage 2 includes four ink cartridges for storing inks of magenta (M), cyan (C), yellow (Y), and black (K). These four ink cartridges are independently detachable.
The exemplary embodiments of the present invention have been described above. However, the present invention is not limited to the exemplary embodiments. For example, block assignment, the number of blocks, and the number of data bits are not limited to the numerical values described above.
The aforementioned recording apparatus is a serial type recording apparatus, which performs scanning with the recording head. However, a recording apparatus including a recording head having a width corresponding to that of a recording medium may be employed.
The recording head may employ a configuration of a recording head cartridge in which an ink tank as a liquid storage container for performing recording and a recording element substrate are integrally formed.
While the present invention has been described with reference to exemplary embodiments, it is to be understood that the invention is not limited to the disclosed exemplary embodiments. The scope of the following claims is to be accorded the broadest interpretation so as to encompass all modifications, equivalent structures, and functions.
This application claims priority from Japanese Patent Application No. 2008-291107 filed Nov. 13, 2008, which is hereby incorporated by reference herein in its entirety.
Number | Date | Country | Kind |
---|---|---|---|
2008-291107 | Nov 2008 | JP | national |
Number | Name | Date | Kind |
---|---|---|---|
5828386 | Okada et al. | Oct 1998 | A |
6471324 | Maru | Oct 2002 | B1 |
20050122373 | Katsu et al. | Jun 2005 | A1 |
Number | Date | Country |
---|---|---|
08-252909 | Oct 1996 | JP |
2000-141660 | May 2000 | JP |
Number | Date | Country | |
---|---|---|---|
20100118068 A1 | May 2010 | US |