The present invention relates to an image forming a recording material cooling device, for cooling a recording material through a belt, suitable for use an image forming with apparatus, such as a printer, a copying machine, a facsimile machine or a multi-function machine, capable of forming an image by using an electrophotographic process.
In the image forming apparatus a toner image formed on a recording material such as paper is fixed on the recording material by being heated and pressed by a fixing device. Fixing of the toner image on the recording material is carried out by nipping and feeding the recording material by a fixing roller heated by a halogen heater or the like and by a pressing roller press-contacted to the fixing roller. When the toner image is fixed, the recording material is heated, and therefore, the recording material fed from the fixing device is liable to increase in temperature when compared with the recording material before fixing. Then, when the recording materials after the toner image is fixed are stacked on a stacking portion in a high-temperature state, there is a liability that the stacked recording materials stick to each other. In order to suppress such sticking of the recording materials, a recording material cooling device for lowering a temperature of the recording material after the fixing of the toner image is provided (Japanese Laid-Open Patent Application (JP-A) 2009-181055). The recording material cooling device disclosed in JP-A 2009-181055 is a device of a belt contact type, in which a belt for nipping and feeding the recording material fed from the fixing device is cooled by a heat sink, so that the temperature of the recording material is lowered through the belt.
In the case of the belt cooling type, an endless belt is stretched by a plurality of rollers in a stretched state, and the heat sink is contacted to an inner peripheral surface of the belt. In order to efficiently and reliably cool the belt, the heat sink is provided so as to contact the belt in area larger than contact areas of the respective rollers with the belt, and the belt contacts the heat sink in a state in which predetermined pressure is applied to the heat sink. Conventionally, during exchange of the belt by an operator, due to a slide of the belt on a heat sink and first belt stretching rollers, a sliding resistance exerted on the belt was large, so that it was difficult to exchange the belt.
The present invention has been accomplished in view of the above-described problem. A principal object of the present invention is to provide a recording material cooling device which is of a belt cooling type in which a heat sink is contacted to an inner peripheral surface of an endless belt in order to cool a recording material and which is capable of easily exchanging the belt by an operator.
According to an aspect of the present invention, there is provided a recording material cooling device for cooling a recording material passed through a fixing device for fixing a toner image on the recording material by heating, the recording material cooling device comprising: a belt; a cooling member configured to cool the belt in contact with an inner peripheral surface of the belt; a first roller provided on the inner peripheral surface of the belt; a second roller rotatably supported by a bearing portion and configured to stretch the belt in cooperation with the first roller; an urging member configured to urge the bearing portion so that the second roller moves toward the inner peripheral surface of the belt; a holding member configured to hold the urging member; and a moving member configured to move the holding member between a first position for enabling rotation of the belt by stretching said belt by the first roller and the second roller and a second position for facilitating exchange of the belt.
<Image Forming System>
In the following, a recording material cooling device of an embodiment will be described.
First, a general structure of an image forming apparatus with which the recording material cooling device of this embodiment is suitably used will be described with reference to
As shown in
At a lower portion of the image forming apparatus 100, a cassette 12 in which recording materials S are accommodated. The recording material S is fed from the cassette 12 toward a registration roller pair 14 by a feeding roller 13 along a feeding passage 600 forming a path of the recording material S in the apparatus main assembly 100A. Thereafter, the registration roller pair 14 is started to be rotated in synchronism with the toner images formed on the intermediary transfer belt 8, so that the recording material S is fed toward the secondary transfer portion T2 along the feeding passage 600.
Incidentally, in this embodiment, only one cassette 12 is shown, but a plurality of cassettes 12 capable of accommodating the recording materials different in size and thickness may also be provided, and in that case, the recording material S is selectively fed from either one of the plurality of cassettes 12 to the feeding passage 600. Further, the recording material S is not limited to the recording material S accommodated in the cassette 12, but the recording material S stacked on a manual feeding portion (not shown) may also be fed to the feeding passage 600.
[Image Forming Portion]
The four image forming portions PY, PM, PC and PK included in the image forming apparatus 100 have the substantially same constitution except that development colors are different from each other. Accordingly, in this embodiment, as a representative, the image forming portion PK will be described, and other image forming portions PY, PM and PC will be omitted from description.
As shown in
A process for forming, for example, a full-color image by the image forming apparatus 100 will be described. First, when an image forming operation is started, a surface of the rotating photosensitive drum 1 is electrically charged uniformly by the charging device 2. The charging device 2 is a corona charger or the like for charging the photosensitive drum 1 to a uniform negative dark-portion potential by irradiating the photosensitive drum 1 with charge particles with corona discharge, for example. Then, the photosensitive drum 1 is subjected to scanning exposure to laser light L which is emitted from the exposure device 3 and which corresponds to an image signal. By this, an electrostatic latent image depending on the image signal is formed on the surface of the photosensitive drum 1. The electrostatic latent image formed on the photosensitive drum 1 is visualized (developed) into a visible image by toner (developer) accommodated in the developing device 4.
The resultant toner image formed on the photosensitive drum 1 is primary-transferred onto the intermediary transfer belt 8 at a primary transfer portion T1 formed between the intermediary transfer belt 8 and the photosensitive drum 1 opposing the primary transfer roller 5. At this time, to the primary transfer roller 5, a primary transfer bias (voltage) is applied. After the primary transfer, toner remaining on the surface of the photosensitive drum 1 is removed by the drum cleaning device 6.
Returning to
Then, the recording material S is fed toward the fixing device 11. The fixing device 11 includes a fixing roller 11a provided rotatably and a pressing roller 11b rotating while being press-contacted to the fixing roller 11a. In a state in which the pressing roller 11b is press-contacted to the fixing roller 11a (for example, about 784 N (about 80 kgf) in press-contact force), the fixing roller 11a is rotated at a predetermined rotational speed (for example, 400 mm/sec) by an unshown driving motor. Inside the fixing roller 11a, a halogen heater 11c is provided, and by the halogen heater, a surface temperature of the fixing roller 11a is increased (for example, 180° C.), so that the fixing device 11 is capable of heating the recording material S.
At a fixing nip T3 formed by the fixing roller 11a and the pressing roller 11b, the fixing device 11 nips and feeds the recording material S on which the full-color toner image is formed and thus heats and presses the fed recording material S, so that the full-color toner image is fixed on the recording material S. That is, the toners of the full-color toner image formed on the recording material S are melted and mixed by heating and pressing, and are fixed as a full-color image on the recording material S. Thus, a series of operations of the image forming process is ended. Then, the recording material S on which the toner image is fixed is fed toward the recording material cooling device 20 by the feeding device 90. The feeding device 90 feeds the recording material S from the fixing device 11 to the recording material cooling device 20 by rotating a belt, for carrying the recording material S through, for example, air suction or the like, at a predetermined rotational speed (for example, 400 mm/s). The recording material cooling device 20 cools the recording material S fed by the feeding device 90. A temperature of the recording material S is, for example, about 90° C. before being cooled by the recording material cooling device 20, but is lowered to about 60° C. by the recording material cooling device 20. The recording material cooling device 20 will be described later (
Incidentally, in the case of this embodiment, the feeding passage 600 includes a reverse feeding portion 600a in which for the purpose of double-side printing, the recording material S cooled by the recording material cooling device 20 is turned upside down and then is fed again to the image forming portions PY, PM, PC and PK. That is, in the case of one-side printing, the recording material S on which first surface (front surface) the toner image is fixed is cooled by the recording material cooling device 20 and thereafter is discharged to an outside of the image forming apparatus 100 and is stacked on a stacking unit 60. On the other hand, in the case of the double-side printing, the recording material S on which first surface (front surface) the image is fixed is cooled by the recording material cooling device 20, and thereafter is turned upside down by the reverse feeding portion 600a. Then, the recording material S is fed along the feeding passage 600, and thereafter, the toner image is formed and fixed on a second surface (back surface). The recording material S on which second surface the toner image is fixed is cooled by the recording material cooling device 20, and thereafter is discharged to the outside of the image forming apparatus 100, so that the recording material S is stacked on the stacking unit 60.
<Recording Material Cooling Device>
Next, the recording material cooling device 20 of this embodiment will be described using
As shown in
The roller 22b as a second roller is a steering roller which is provided so as to be capable of stretching the first belt in cooperation with the roller 22c as a first roller in contact with an inner peripheral surface of the first belt and which controls a shift of the first belt in a widthwise direction of the first belt (widthwise direction of the roller 22c). The roller 22b includes a 1 mm-thick rubber layer as a surface layer, and is capable of controlling meandering of the first belt by performing a steering operation for forming a rudder angle relative to the roller 22c as the first roller. The roller 22b is shaft-supported by a roller holder 81 so as to be rotatable and is subjected to the steering operation by a steering mechanism 400.
The steering mechanism 400 and the roller holder 81a will be described using
The steering mechanism 400 includes, as shown in
Here, the drive conversion portion 410 integrally includes a worm wheel 403 and the fork plate 404. Rotation of the worm 402 is transmitted to the worm wheel 403 engaged with the worm 402. At this time, in accordance with rotation of the worm 402 with normal/reverse rotation of the steering motor 401, the worm wheel 403 is capable of being reciprocated in the rotational axis direction of the steering motor 401. Thus, through the worm 402 and the worm wheel 403, with rotation of the steering motor 401, the drive conversion portion 410 is capable of being rotated about a rotation shaft portion 405 as a rotation center. That is, drive of the steering motor 401 is transmitted to the drive conversion portion 410 through the worm wheel 403, so that the drive conversion portion 410 is capable of swinging about a rotational shaft portion 405 so that the fork plate 404 swings.
The steering mechanism 400 includes the position flag 408 movable with movement of the drive conversion portion 410 and the position sensor 407 for detecting the position of the drive conversion position through the position flag 408. Then, steering control depending on a detection result of the position sensor 407 is capable of being carried out.
The roller holder 81a is provided, as shown in
Returning to
On an inner peripheral surface side of the first belt 21, in addition to the above-described plurality of first stretching rollers 22a to 22d and the roller supporting mechanism 81, a heat sink 30, a scraper 70 and a belt stretching mechanism portion 61 are provided. The heat sink 30, the scraper 70 and the belt stretching mechanism portion 61 will be described later.
On the other hand, the second belt 25 as a rotatable member is stretched by a plurality of second belt stretching rollers 26a to 26d and is contacted to an outer peripheral surface of the first belt 21. The second belt 25 contacts the outer peripheral surface of the first belt 21 and forms a cooling nip T4 for cooling the recording material S, on which the toner image is formed, while feeding the recording material S. In the case of this embodiment, the roller 26d is pressed by the roller 22d at pressure of, for example, about 49 N (about 6 kgf). Further, the roller 26d is connected to a driving motor for driving the roller 22d through driving gears although the driving motor is omitted from illustration, and is rotated by this driving motor, so that the second belt 25 is moved in an arrow R direction. That is, the second belt 25 is moved (rotated) together with the first belt 21. The roller 26b is a steering roller for controlling a shift of the second belt 25 with respect to the widthwise direction (rotational axis direction of the roller 26c), and controls meandering of the second belt 25 by performing a steering operation for forming a rudder angle relative to the roller 26c at a widthwise central portion as a swing center. That is, the roller 26b is subjected to the steering operation by a steering mechanism 420 similar to the above-described steering mechanism 400.
On an inner peripheral surface side of the second belt 25, a plurality of pressing rollers are provided for pressing the second belt 25 toward the heat sink 30 which is provided on the inner peripheral surface side of the first belt 21 and which is described later. In this embodiment, as an example, with respect to a recording material feeding direction (the arrow direction in
Incidentally, in this embodiment, the example in which both the first belt 21 and the second belt 25 are driven was described, but the present invention is not limited thereto. For example, only the first belt 21 is driven and the second belt 25 may also be driven by the first belt 21, or only the second belt 25 is driven and the first belt 21 may also be driven by the second belt 25.
<Heat Sink>
On the inner peripheral surface side of the first belt 21, the heat sink 30 for cooling the first belt 21 is provided. In the case of this embodiment, the heat sink 30 is contacted to the inner peripheral surface of the first belt 21 contacting the recording material S on a side where the toner image is fixed on the recording material S by the fixing device 11. That is, the recording material S on which the toner image is fixed is nipped by the first belt 21 and the second belt 25 and is fed in a recording material feeding direction (arrow R direction in the figure) in accordance with circulatory movement of these belts. During the feeding, the recording material S passes through the cooling nip T4 as a nip formed by contact between the first belt 21 and the second belt 25. In the case of this embodiment, in the cooling nip T4, the first belt 21 is cooled by the heat sink 30. In order to efficiently cool the recording material S, the heat sink 30 contacts the inner peripheral surface of the first belt 21 at a place where the cooling nip T4 is formed. When the recording material S passes through the cooling nip T4, the recording material S is lowered in temperature through the first belt 21 cooled by the heat sink 30.
The heat sink 30 as a cooling member is radiator (dissipator) plate formed of metal such as aluminum. The heat sink 30 includes a heat receiving portion 30a for taking heat from the first belt 21 in contact with the first belt 21, a heat radiating (dissipating) portion 30b for radiating (dissipating) heat, and a fin base 30c for transferring the heat from the heat receiving portion 30a to the heat radiating portion 30b. The heat radiating portion 30b is formed with many heat radiating fins in order to promote efficient radiation by increasing a contact area to the air. For example, the heat radiating fins are set at 1 mm in thickness, 100 mm in height and 5 mm in pitch, and the fin base 30c is set at 10 mm in thickness. Further, in order to forcedly cool the heat sink 30 itself, a cooling fan 40 sending the air toward the heat sink 30 (specifically the heat radiating portion 30b) is provided. An air flow rate of the cooling fan 40 is set at, for example, 2 m3/min.
[Scraper]
Further, on the inner peripheral surface side of the first belt 21, the scraper 70 as a cleaning member is provided on a side downstream of the heat sink 30 with respect to the rotational direction (arrow Q direction in
The scraper 70 is provided so as to be capable of cleaning the first belt 21 by removing, from the first belt 21, abrasion powder (called also abraded powder) deposited on the first belt 21. That is, as described above, the heat sink 30 contacts the inner peripheral surface of the first belt 21, so that the inner peripheral surface of the first belt 21 is rubbed against the heat sink 30 with rotation of the first belt 21. Then, the first belt 21 is abraded by the heat sink 30, so that the abrasion powder (abraded powder) can generate. This above-described is deposited on and carried on the first belt 21, and is liable to stagnate (accumulate) at an upstream end of the heat sink 30. Then, when an amount of the stagnated abrasion powder increases, a part of the stagnated abrasion powder enters between the heat sink 30 and the first belt 21, whereby a heat resistance increases and such a deposited matter is capable of lowering a cooling performance of the recording material S.
In order to suppress the generation of the above-described abrasion powder of the belt, as the first belt 21, for example, a belt formed of polyimide resin containing a polytetrafluoroethylene (PTFE) filler is used. A content of the PTFE filler is, for example, about 5% in terms of weight percentage. When the PTFE filler is contained in the polyimide resin which is a base material, a friction resistance with the heat sink 30 lowers, so that the first belt 21 containing the PTFE filler is not readily abraded by the heat sink 30 compared with the case where the PTFE filler is not contained in the first belt 21. However, even when the belt containing the PTFE filler is used, the abrasion powder of the belt can inevitably generate. This abrasion powder contains the PTFE filler, and therefore, does not readily deposit on the first belt 21, but even such abrasion powder can deposit on the first belt 21 when the abrasion powder passes through a sliding surface between the heat sink 30 and the first belt 21. Therefore, with a longer operation (use) time of the first belt 21, an amount of the deposited matter containing the abrasion powder stagnating at the upstream end of the heat sink becomes larger. Therefore, in order to remove the deposited matter, depositing on the first belt 21, from the first belt 21, as described above, the scraper 70 is disposed downstream of the heat sink 30 with respect to the rotational direction of the first belt 21.
Under the scraper 70 with respect to the direction of gravitation, the collecting box 71 for collecting and storing the abrasion powder scraped off from the inner peripheral surface of the first belt 21 by the scraper 70 is provided. The collecting box 71 opens upward with respect to the direction of gravitation, and is disposed so that the abrasion powder can be received through an opening thereof even on a side upstream of the first belt 21 with respect to the rotational direction than a contact portion between the scraper 70 and the first belt 21 is. Incidentally, the scraper 70 is fixed to the collecting box 71 with, for example, a double-side tape or the like.
The above-described first belt 21 is worn by being abraded by the heat sink 30 as described above, and can deteriorate with time. Further, the second belt 25 provided with no heat sink 30 is slowly worn compared with the first belt 21 but is worn with use, and an deteriorate with time. Therefore, in this embodiment, an operator is permitted to exchange the first belt 21 and/or the second belt 25. Specifically, the first belt 21 and the second belt 25 are provided so as to be capable of being inserted into and extracted from an upper frame 62 and a lower frame 63 (
<Contact-and-Separation Mechanism>
A mechanism for moving the first belt 21 and the second belt 25 relative to each other (this mechanism is referred to as a contact-and-separation mechanism) will be described.
As shown in
On the one end side (front side) of the upper frame 62 with respect to the widthwise direction, the hooking member 64 is provided, and on one end side of the lower frame 63 with respect to the widthwise direction, the pin 65 is provided. On the other end side of the lower frame 63 with respect to the widthwise direction, the compression spring 66 for urging the upper frame 62 upward with respect to the direction of gravitation is disposed. Further, the hooking member 64 is provided with a grip portion 67, and the operator is capable of engaging the hooking member 64 with the pin 65 and is capable of disengaging the hooking member 64 from the pin 65 by rotating the hooking member 64 while gripping the grip portion 67 from the front side of the recording material cooling device 20. As shown in
In the case where the operator exchanges the first belt 21 or the second belt 25, the operator release engagement between the hooking member 64 and the pin 65. When the engagement between the hooking member 64 and the pin 65 is released, as shown in
Returning to
Therefore, in the recording material cooling device 20 of this embodiment, in order to facilitate the belt exchange, the belt stretching mechanism portion 61 is provided. Incidentally, as described later, the belt stretching mechanism portion 61 is operated by the operator, but the operator cannot operate the belt stretching mechanism portion 61 when the first belt 21 and the second belt 25 are in the separated state (
<Belt Stretching Mechanism Portion>
The belt stretching mechanism portion 61 will be described. The belt stretching mechanism portion 61 as a moving means is a mechanism for moving the roller 22b (steering roller in this embodiment) between a stretch position (first position,
Here, in the case where the roller 22b is not the steering roller but is a so-called tension roller for stretching the first belt 21 with predetermined tension by a compression spring, in order to move the roller 22b between the stretch position and the non-stretch position, only the roller 22b may be moved. That is, when the roller 22b is moved from the stretch position to the non-stretch position, the roller 22 may only be required to be moved against an urging force of the compression spring. On the other hand, in the case where the roller 22b is the steering roller, a mechanism for swinging the roller 22b is provided, so that in order to move the roller 22b between the stretch position and the non-stretch position, the roller 22b is moved together with the roller supporting mechanism 81. By this constitution, compared with the case where the roller 22b is moved against the urging force of the compression spring, a movement amount of the roller 22b can be increased, and therefore, the above-described operativity during the belt exchange by the operator can be improved.
In
As shown in
In the case where the roller 22b is in the stretch position, the scraper 70 contacts the first belt 21, and the first belt 21 is in the state in which the first belt 21 contacts the heat sink 30 with predetermined pressure. In that state, tension of the first belt 21 is about 39.2 N (about 4 kgf). On the other hand, in the case where the roller 22b is in the non-stretch position, the first belt 21 is loosen relative to the first belt stretching rollers 22a to 22d. When the first belt 21 is in a loosened state, the operator is capable of preventing the scraper 70 and the heat sink 30 from contacting the first belt 21. That is, during the exchange of the first belt 21, the operator is capable of dismounting the old belt from the upper frame 62 without contacting the scraper 70 and the heat sink 30. That is, the operator can remove the old belt with no load. Then, the operator is capable of mounting a new belt in the upper frame 62 so as to be stretched around the first belt stretching rollers 22a to 22d without being contacted to the scraper 70 and without being slid on the heat sink 30. Thus, by moving the roller 22b from the stretch position to the non-stretch position during the belt exchange, it is possible to improve the operativity during the belt exchange.
By using
The position of the roller 22b in the non-stretch position e is located inside than the position of the roller 22b in the stretch position d is, i.e., it is called a position close to the heat sink 30. Further, the position of the roller 22b in the non-stretch position e is, compared with the stretch position d, a position where the roller 22b is close to at least either one of the rollers 22a, 22c and 22d. For that purpose, inclusive of the swing shaft 61c, the holding member 61a and the cam portion 61b are provided in the upper frame 62 (
After the operator mounts the new belt in the upper frame 62, the operator rotates the cam portion 61b clockwise. Then, the holding member 61a moves upward so as to be raised by the cam portion 61b with the swing shaft 61c as the swing center. Then, the cam portion 61b contacts a stopper portion 61d formed on a side opposite from the swing shaft 61c, whereby the rotation of the cam portion 61b stops. Thus, the roller 22b is moved from the non-stretch position e to the stretch position d.
Incidentally, in the case where the roller 22b is not in the stretch position d, the operator cannot press downward the upper frame 62 toward the lower frame 63, so that it is preferable that the first belt 21 and the second belt 25 cannot be put in the contact state.
As described above, in this embodiment, the first belt 21 in the stretched state is loosened with movement of the roller 22b (non-stretched state). The operator can easily loosen the first belt 21, so that when the operator exchanges the first belt 21, the first belt 21 can be inserted into and extracted from the recording material cooling device 20 without contacting the heat sink 30 and the scraper 70. That is, during the exchange of the first belt 21, the old first belt 21 which is the object to be exchanged can be easily removed (extracted) and the heat sink 30 can be made hard to contact the new first belt 21, so that it is possible to suppress occurrence of scars on the first belt 21 by contact of the first belt 21 with the heat sink 30. Further, during the exchanges of the first belt 21, the scraper 70 can be made hard to contact the first belt 21, so that it is possible to suppress that the scraper 70 is turned upside down or broken by contact of the scraper 70 with the first belt 21. Thus, in the recording material cooling device 20 of the belt cooling type in which the heat sink 30 is contacted to the inner peripheral surface of the first belt 21 in order to cool the first belt 21, the operator can easily exchange the first belt 21.
In the above-described embodiment, the belt stretching mechanism portion 61 is not provided on the second belt 25 side where the heat sink 30 and the scraper 70 are not disposed, but may also be provided on the second belt 25 side.
In the above-described embodiment, the constitution in which when the first belt 21 is exchanged, the stretched state and the non-stretched state of the first belt 21 is switched to each other by the belt stretching mechanism portion 61 was described, but the present invention is not limited thereto. For example, a constitution in which the stretched state and the non-stretched state of the first belt 21 is switched to each other by the belt stretching mechanism portion 61 when the scraper 70 is exchanged without exchanging the first belt 21 or when the abrasion powder collected in the collecting box 71 is removed may also be employed. In the case where the constitution in which the stretched state of the first belt 21 is switched to the non-stretched state when the scraper 70 is exchanged or when the abrasion powder collected in the collecting box 71 is removed is employed, the upper frame 62 and the lower frame 63 may also be not separated from each other. In this case, an increase in exchange frequency of the first belt 21 due to abrasion of the inner peripheral surface of the first belt 21 when the scraper 70 and the collecting box 71 are inserted into and extracted from the recording material cooling device 20 can be suppressed by placing the first belt 21 in the non-stretched state.
In the above-described embodiment, the case where the recording material cooling device 20 was provided in the apparatus main assembly 100A of the image forming apparatus 100 was described as an example (
As shown in
The recording material S cooled by the external cooling unit 101 is discharged from the external cooling unit 101 by a discharging roller pair 17 and is stacked on a stacking unit 60. The stacking unit 60 is provided so as to be mountable to and dismountable from the external cooling unit 101 or the image forming apparatus 100. That is, in the case where the external cooling unit 101 is not connected to the image forming apparatus 100, the stacking unit 60 is mounted to the image forming apparatus 100 (
Incidentally, as the peripheral machine, a plurality of external cooling units 101 may also be connected. By increasing the number of external cooling units 101 to be connected, the operator is capable of easily improving cooling power of the recording material S in the already-installed image forming apparatus 100.
According to the present invention, in the recording material cooling device of the belt cooling type in which the cooling member is contacted to the inner peripheral surface of the endless belt in order to cool the recording material, the operator is capable of easily exchanging the belt.
While the present invention has been described with reference to exemplary embodiments, it is to be understood that the invention is not limited to the disclosed exemplary embodiments. The scope of the following claims is to be accorded the broadest interpretation so as to encompass all such modifications and equivalent structures and functions.
This application claims the benefit of Japanese Patent Applications Nos. 2020-014115 filed on Jan. 30, 2020, and 2020-187428 filed on Nov. 10, 2020, which are hereby incorporated by reference herein in their entirety.
Number | Date | Country | Kind |
---|---|---|---|
JP2020-014115 | Jan 2020 | JP | national |
JP2020-187428 | Nov 2020 | JP | national |
Number | Name | Date | Kind |
---|---|---|---|
6085053 | Saeki | Jul 2000 | A |
6185394 | Lee | Feb 2001 | B1 |
6249662 | Lee | Jun 2001 | B1 |
8655242 | Tanaka | Feb 2014 | B2 |
8942612 | Tanaka | Jan 2015 | B2 |
9069299 | Tanaka | Jun 2015 | B2 |
9354562 | Tanaka | May 2016 | B2 |
9389554 | Tanaka et al. | Jul 2016 | B2 |
9465336 | Saito et al. | Oct 2016 | B2 |
9547262 | Hirayama et al. | Jan 2017 | B2 |
9563163 | Tanaka et al. | Feb 2017 | B2 |
10061242 | Tanaka | Aug 2018 | B2 |
10564576 | Tanaka et al. | Feb 2020 | B2 |
10719042 | Hirayama et al. | Jul 2020 | B2 |
20120199443 | Kaneyama | Aug 2012 | A1 |
20130266352 | Makino | Oct 2013 | A1 |
20140186080 | Ikeda | Jul 2014 | A1 |
20170192387 | Tanaka | Jul 2017 | A1 |
20170269548 | Kutsuwada | Sep 2017 | A1 |
20200363764 | Inoue et al. | Nov 2020 | A1 |
20210072699 | Inoue et al. | Mar 2021 | A1 |
Number | Date | Country |
---|---|---|
2009-181055 | Aug 2009 | JP |
2010-002644 | Jan 2010 | JP |
2015-094847 | May 2015 | JP |
2017-173774 | Sep 2017 | JP |
Entry |
---|
U.S. Appl. No. 17/160,071, filed Jan. 27, 2021. |
U.S. Appl. No. 17/236,787, filed Apr. 21, 2021. |
Number | Date | Country | |
---|---|---|---|
20210240113 A1 | Aug 2021 | US |