1. Field of the Invention
The present invention relates to recording and/or reproducing audio and/or video data using a rewriteable recording medium, and more particularly, to a recording medium for storing still pictures and additional audio data added thereto for effective processing, and a recording and/or reproducing method and apparatus therefor.
2. Description of the Related Art
First, terms used throughout the specification will now be described. Supposing a movie was recorded in first and second parts, the overall movie is a program chain (PGC) and the first and second parts are programs. Also, each program can be defined by further dividing the same into several cells called sub-units. The information in each cell can wholly or partially define a video object (VOB). In such an event, each cell is used as a basic accessing unit during reproduction, and the program and PGC are only the information for connectivity between a plurality of cells.
Also, since data is actually sub-divided into video object units (VOBUs) and recorded in a moving picture data file, the VOB information consists of various kinds of information relating to the VOBU data, that is, VOBU #1, VOBU #2, . . . and the VOB data in the moving picture data file 13 is accessed by the VOB information. Here, the VOB data is used as a random access unit of a disk recording/reproducing apparatus. The VOBU is based on a single GOP (Group of Pictures) in the case of an MPEG (Moving Picture Experts Group) video, and audio data corresponding to video data is collected, that is, A/V data is multiplexed into sectors, to constitute a VOBU.
The data format shown in
Generally, data errors may be generated if data is recorded on a recordable disk a predetermined number of times. Thus, there is a limit in the number of times of rewriting data on a disk. All information is stored in the memory of a controller for controlling the system for the purpose of limiting the number of recording times and rapidly accessing data. However, as described above, in the case of a still picture, if the amount of information is increased, much time is required for reading the information. Also, there is a limit to the amount of information that can be stored in a memory with a limited size. Accordingly, it is not possible to record a large-capacity still picture.
To solve the above problems, it is a first object of the present invention to provide a recording medium for effectively storing information for a large-capacity still picture by grouping the large-capacity still pictures and storing the information for the still picture groups.
It is a second object of the present invention to provide a recording medium for arranging still picture group information consisting of video information for a still picture and video and audio information for a still picture having original audio data added thereto in the recording order of recorded bitstreams and storing the same.
It is a third object of the present invention to provide a recording medium for recording additional audio data added to a still picture data and storing additional audio group information for grouping the recorded additional audio data to manage the same.
It is a fourth object of the present invention to provide a method for recording still picture group information for grouping a large-capacity still picture to manage the same, and reproduction-related cell information, and reproducing a still picture in accordance with the recorded information.
It is fifth object of the present invention to provide a method for recording still picture group information consisting of video information for a still picture and video and audio information for a still picture having original audio data added thereto, and reproduction-related cell information, and reproducing a still picture or a still picture having original audio data added thereto.
It is sixth object of the present invention to provide a method for recording still picture group information, additional audio group information for after-recording and reproduction-related cell information, and reproducing a still picture, a still picture having original audio data added thereto, or a still picture having additional audio data added thereto in accordance with the recorded information.
It is seventh object of the present invention to provide an apparatus for recording still picture group information for grouping a large-capacity still picture and managing the same, additional audio group information for after-recording separately from the still picture group information, and reproduction-related cell information, and reproducing a still picture, a still picture having original audio data added thereto, or a still picture having additional audio data added thereto in accordance with the recorded information.
Additional objects and advantages of the invention will be set forth in part in the description which follows and, in part, will be obvious from the description, or may be learned by practice of the invention.
To achieve these objects, there is provided a recording medium including a first region having a plurality of still picture data, a second region having a plurality of additional audio data added to the still picture data, and a third region having information indicating the connectivity between the still picture data in the first region and the additional audio data in the second region.
According to the present invention, there is provided a method for recording and/or reproducing audio and/or video data on a recordable and/or rewriteable recording medium including (a) recording a plurality of still pictures, (b) separating the plurality of still pictures into within a predetermined maximum number of groups and recording still picture group information and playback information related to reproduction, (c) recording additional audio data added to a desired still picture in a separate area, after the plurality of still pictures are recorded, and (d) recording additional audio group information for separating the additional audio data into within a predetermined maximum number of groups in order to manage the additional audio data at a group level, and information indicative of the additional audio data corresponding to the desired still picture, wherein the information indicative of the additional audio data is included in the still picture group information.
The method according to the present invention may further include (e) reading the still picture group information to be reproduced in accordance with the playback information, (f) calculating the position of a desired still picture in accordance with the read still picture group information and reproducing the still picture data located at the calculated position, and (g) if the information indicative of an additional audio group is present in the read still picture group information, calculating the position of the additional audio data for the corresponding still picture in accordance with the additional audio group information and reproducing the corresponding additional audio data.
In a reproduction method of a recording medium comprising a first region having data for a plurality of still pictures, a second region having data for a plurality of additional audio data added to the still pictures, and a third region having information indicating the connectivity between the still picture data in the first region and the additional audio data in the second region, the reproduction method includes reproducing the still picture data in the first region and the additional audio data added to the still picture data, based on the connectivity information in the third region.
The apparatus according to the present invention includes a recording processor for signal-processing a plurality of still picture data to be recorded in a first region of the recording medium and signal-processing a plurality of additional audio data added to the still picture data to be recorded in a second region of the recording medium, and a controller to generate connectivity information indicative of the connectivity between the still picture data in the first region and the additional audio data in the second region, and playback information related to the reproduction order, and to control the same to be recorded in a third region.
Also, the apparatus may further include a playback processor for signal-processing the still picture data in the first region and the additional audio data added to the still picture data to be reproduced based on the information in the third region.
The above objects and advantages of the present invention will become more apparent by describing in detail a preferred embodiment thereof with reference to the attached drawings in which:
Hereinafter, preferred embodiments of recording media for storing the information for a still picture, and recording and/or reproducing method and apparatus therefor, will be described, examples of which are illustrated in the accompanying drawings, wherein like reference numerals refer to the like elements throughout. The embodiments are described below in order to explain the present invention by referring to the figures.
Here, PGC general information contains information such as the number of programs in a PGC. Program general information contains information such as the number of cells in a program. The cell information designates a VOB in the case of a moving picture, as shown in
A user may add separate additional audio data to a desired still picture after recording the still picture and original audio data on a still picture file 23. At this time, only the additional audio data are collected and recorded in a separate area in the additional audio data file 24 or the still picture file 23, with the original audio data being retained. The additional audio data are also managed by grouping in the same manner as in the still picture data and the concept thereof is the same as that of the still picture data. In other words, a plurality of additional audio data having the same attributes, e.g., audio coding attributes, are grouped into an additional audio group (to be abbreviated as “GAOB”) and then additional audio group general information is recorded as common information. For the respective additional audio data AOBs, necessary data for each AOB, for example, the size information, is recorded. The additional audio group general information contains the start positions of audio data in the respective additional audio groups (GAOBs) (start positions of each additional audio group). The connection information for the additional audio data added to the specific still picture, which is indicated by thick arrows in
In order to locate a recording position of a specific still picture in the still picture group, the start position of the still picture group data contained in the still picture group general information is added to the size of the data preceding the still picture to be located. Likewise, in order to search the recording position of specific additional audio data, the start position of the additional audio group data contained in the additional audio group general information is added to the size of the data preceding the additional audio data to be located.
In the case of a still picture group, video parts and audio parts are consecutively recorded in a file or space. Thus, the video information and the audio information each containing the size thereof are also recorded in the bitstream order in which the video data and the original audio data are actually recorded. In the case of an additional audio group, there is only the additional audio data. Thus, only the additional audio information is recorded in the bitstream order in which the additional audio data is actually recorded.
Thus, as shown in
During recording, an AV codec 110 compression-codes an externally applied A/V signal by a predetermined compression scheme and supplies size information for compressed data. A digital signal processor (DSP) 120 receives A/V data supplied from the AV codec 110, adds additional data for ECC (error correction code) processing thereto and performs modulation using a predetermined modulation scheme. A radio frequency amplifier (RF AMP) 130 converts electrical data supplied from the DSP 120 into an RF signal. A pickup 140 drives a disk and records the RF signal supplied from the RF AMP 130, incorporating an actuator for focusing and tracking. A servo 150 receives information necessary for servo control from a system controller 160 and stably performs a servo function. The system controller 160 controls the overall system through interfacing with a user to thus control the still picture to be recorded on the disk and record separate information for the recorded still picture. Still picture data are managed at a group level by constructing the still picture group information of the information for the respective still pictures, including size information of still picture data, size information of original audio data, playback time information of original audio data and the like, and the position information of the respective still pictures, in the recording order of recorded still pictures and audio data. When additional audio data is added to a still picture, the added additional audio data is recorded in a different file from or in the same file as that for the still picture but in a different area from that of the still picture. Additional audio data are managed at a group level by constructing additional audio group information of the information for recorded additional audio data, including size information of additional audio data, playback time information of additional audio data and the like, and position information of the respective additional audio groups. The information for the respective still pictures includes information indicative of the added additional audio data.
Cell information concerning the reproduction order is recorded as well as the above-described information. The cell information contains information indicative of the recorded still picture group so that the recorded still picture and audio data can be reproduced.
During playback, the pickup 140 picks up the optical signal from the disk having data stored therein and the data is extracted from the optical signal. The RF AMP 130 converts the optical signal into an RF signal, and extracts a servo signal for performing a servo function, and modulated data. The DSP 120 demodulates modulated data supplied from the RF AMP 130 corresponding to the modulation scheme used during modulation, performs an ECC process to correct errors and eliminates added data. The servo unit 150 receives information necessary for servo control from the RF AMP 130 and the system controller 160 and stably performs a servo function. The AV codec 110 decodes the compressed A/V data supplied from the DSP 120 to output an A/V signal. The system controller 160 controls the overall system for reproducing the user's desired data (still picture only, still picture+original audio data or still picture+additional audio data) using the cell information and still picture group information stored on the disk while performing user interfacing such as processing of the user's key inputs.
In other words, in order to reproduce a specific still picture and audio data, the still picture group information having the still picture to be reproduced is obtained from the cell information, and information such as the size of the still picture data and the information for the data size and playback time of original audio data, if any, is obtained from the still picture group information, thereby reproducing only desired data. Also, if additional audio data is added to the still picture, desired additional audio data is reproduced using information for the data size or playback time of the additional audio data from the additional audio group information pointed to by the still picture group information.
Also, if virtually deleted still picture information is read from the still picture group information, the corresponding still picture and original audio data are not reproduced so that although the data actually exists, it seems to the user that it does not exist. Likewise, if the added additional audio data is virtually deleted, it is not reproduced.
Here, the A/V codec 110, the DSP 120, the RF AMP 130 and the pickup 140 operating during recording can be referred to as a recording processor. Also, the pickup 140, the RF AMP 130, the DSP 120 and the A/V codec 110 operating during playback can be referred to a reproduction processor.
Also, as information for the respective still pictures, still picture information having original audio data exists in the form of map information including video part information for video parts and audio part information for audio parts. Here, a video map and an audio map for a still picture have the same identification information. If the still picture information is composed of only a video part, it exists in the form of a map having only the video part information. Here, still picture data is recorded in a VOB.
The additional audio data is stored in a separate area from the still picture data, that is, in a different file or in a different area of the same file from or as that of the still picture data.
For example, in the case when the additional audio data is stored in a separate file from the still picture data, as shown in
Alternatively, in the case when the additional audio data and the still picture data are stored in one and the same file, GVOB #1, #2 and #3 and GAOB #1, #2 and #3 shown in
Also, the video map contains V_PART_SZ indicating the size of a video part, GAOB_ID which is identification information of an additional audio group, the value of which exists if a still picture has additional audio data, and the value of which is “0” if a still picture does not have additional audio data, and AOB_ID which is identification information of additional audio data in an additional audio group if a still picture has additional audio data, and the value of which is “0” if a still picture does not have additional audio data.
Here, VOB_ID and V_PART_SZ can be referred to as still picture position information, and GAOB_ID and AOB_ID can be referred to as additional audio connectivity information.
It is determined whether or not a mode set by a user is for recording both a still picture and original audio data (step S105). If yes, the audio data for the still picture is recorded following after the corresponding still picture in the still picture file and the audio size information is recorded in an audio map in the still picture group information (step S106).
It is determined whether the number of still pictures recorded is enough to constitute the information for a still picture group (e.g., 64 maximally) (step S107). If the still picture group information is completed, the procedure returns to step S102 to generate another still picture group information. Otherwise, the procedure proceeds to step S103 to determine whether a recording start signal of a still picture is input by a user or not.
If the mode set by a user is for recording only a still picture in step S105, step S106 is skipped and the procedure proceeds to step S107 to record the next still picture. If the recording start signal of a still picture is not input by a user in step S103, it is determined whether or not to terminate recording (step S108). If it is determined to terminate recording, cell information is recorded and the procedure ends (step S109). Here, the cell information is created for every still picture group to enable all still pictures to be reproduced.
It is then determined whether the recording start signal of additional audio data is input by a user or not (step S202). If the recording start signal is input, a specific still picture to which the user desires to add additional audio data is designated (step S203). The additional audio data is recorded in an additional audio file, identification information for additional audio data in the audio map of the additional audio group information is allocated, the number of additional audio parts in the additional audio group is increased by one, and the size information of the additional audio data in the audio map is recorded (step S204). Although it has been described herein that the additional audio data is recorded in a different file from that of the still picture, the additional audio data can be recorded in a separate area of the same file as that of the still picture.
Identification information for the still picture group of a predetermined still picture and identification information for the still picture are read and the information for the still picture, that is, identification information for an additional audio group for an additional audio part and identification information for additional audio data, are recorded in the video map for the predetermined still picture (step S205).
It is then determined whether the number of additional audio parts in an additional audio group reaches N, that is, enough to constitute a group (step S206). If yes, the procedure goes to step S201 to generate another additional audio group information. Otherwise, it is determined whether the recording start signal of additional audio data is input by a user (step S202). If a recording start signal of additional audio data is not input by a user in step S202, the procedure is terminated.
Here, the step of designating a specific still picture (step S203) may precede the step of determining whether or not a recording start signal of additional audio data is input by a user (step S202).
The position of a desired still picture is calculated by the read video part information and video data located at the calculated position is read and decoded to reproduce the still picture (step S304). Here, the position of a desired still picture is obtained by summing the start position of a still picture group and the size of data preceding the desired still picture. While the still picture is reproduced, it is determined whether original audio data is added to the still picture (step S305). If yes, the original audio data is read and decoded to reproduce the original audio data (step S306). Here, the reading position of the original audio data is obtained by summing the calculated position of the still picture and the size of a video part of the still picture. It is checked whether all still pictures belonging to a cell are reproduced or not using the cell information and then it is determined whether or not there is a still picture to be reproduced next (step S307). If yes, the information for the video part of a still picture to be reproduced next is read (step S303). Otherwise, the procedure is terminated. In the case when there are a plurality of series of cell information, this routine is repeated.
Here, the step of determining whether original audio data is added to a still picture (step S305) may be performed directly after the step of reading the still picture group information (step S302). This is because it is possible to determine that original audio data is added to a still picture in the case when an audio map for an audio part is added subsequently to a video map for a video part, in accordance with the still picture group information.
It is then checked whether additional audio data is present in the still picture group information or not (step S405). If not, it is checked whether there is original audio data (step S406). Here, the presence of additional audio data in the map information for a video part of the desired still picture to be reproduced can be determined using the identification information for an additional audio group and the identification information for additional audio data. The presence of original audio data can be known by determining whether there is audio information (an audio map) in the map table of the desired still picture to be reproduced.
If there is original audio data in step S406, the read position of the original audio data is calculated (step S407). Here, the read position of the original audio data is obtained by summing the calculated position of the still picture and the size of the video part of the still picture. Original audio data is read from the calculated position information of the still picture and decoded to reproduce the original audio data (step S408) and the procedure proceeds to step S411 as shown in
If additional audio data is present in step S405, that is, if the read identification information for the additional audio group designated to the still picture and identification information for the additional audio data are not “0”, the start position of the additional audio group is read from the additional audio group information to calculate the position of desired additional audio data (step S409 in
Additional audio data is read from the calculated position information for the desired additional audio data and is decoded to reproduce the additional audio data (step S410). Then, it is determined whether there is a still picture to be reproduced next (step S411). If yes, the procedure returns to step S403. Otherwise, the procedure is terminated (step S411). In the case of reproducing a plurality of cells, the overall procedure is repeated.
Alternatively, instead of step S405 of determining whether additional audio data is present or not and step S406 of determining whether original audio data is present or not, it is first determined using the still picture group information read in step S402 whether the still picture to be reproduced is a still picture having only a video part, one having original audio data added thereto, or one having additional audio data added thereto. If the still picture has only a video part, steps S403 and S404 are performed. If the still picture has original audio data, steps S403, S404, S407 and S408 are performed. If the still picture has additional audio data, steps S403, S404, S409, S410 and S411 are performed.
Further, according to another aspect of the present invention, before reproduction, a reproduction mode is set by interfacing with a user to determine whether only a still picture is to be reproduced, both a still picture and original audio data are to be reproduced, or both a still picture and additional audio data are to be reproduced.
As described above, according to the present invention, large-capacity still pictures, original audio parts added thereto and additional audio data can be recorded using minimum information. During reproduction, data can be displayed and edited in units of still pictures. Also, it is possible to cope with after-recording of the audio data using the additional audio data.
Also, video maps and/or audio maps for still pictures can be formed in a recording order of bitstreams, thereby allowing effective management of information.
Number | Date | Country | Kind |
---|---|---|---|
98-23992 | Jun 1998 | KR | national |
98-41757 | Oct 1998 | KR | national |
This application is a continuation of application Ser. No. 10/747,139 filed on Dec. 30, 2003 now U.S. Pat. No. 8,145,043, which is a continuation of application Ser. No. 09/339,191 filed on Jun. 24, 1999, now U.S. Pat. No. 6,804,456, which claims the benefit of Korean Application Nos. 98-23992 filed on Jun. 24, 1998, and 98-41757 filed on Oct. 2, 1998, in the Korean Industrial Property Office, now the Korean Intellectual Property Office. The disclosures of application Ser. Nos. 10/747,139 and 09/339,191 and Korean Application Nos. 98-23992 and 98-41757 are incorporated herein by reference.
Number | Name | Date | Kind |
---|---|---|---|
4703369 | Moriyama | Oct 1987 | A |
5032927 | Watanabe | Jul 1991 | A |
5038217 | Hayashi et al. | Aug 1991 | A |
5241399 | Kanamaru | Aug 1993 | A |
5450146 | Chedeville et al. | Sep 1995 | A |
5555098 | Parulski | Sep 1996 | A |
5581311 | Kuroiwa | Dec 1996 | A |
5603658 | Cohen | Feb 1997 | A |
5675695 | Hirayama | Oct 1997 | A |
5675737 | Horie et al. | Oct 1997 | A |
5687160 | Aotake et al. | Nov 1997 | A |
5691972 | Tsuga et al. | Nov 1997 | A |
5734787 | Yonemitsu et al. | Mar 1998 | A |
5734788 | Nonomura et al. | Mar 1998 | A |
5748585 | Tsukamoto et al. | May 1998 | A |
5771334 | Yamauchi et al. | Jun 1998 | A |
5842023 | Tsumura | Nov 1998 | A |
5863206 | Narusawa et al. | Jan 1999 | A |
5895123 | Fujii | Apr 1999 | A |
5902115 | Katayama | May 1999 | A |
5915066 | Katayama | Jun 1999 | A |
5974015 | Iizuka et al. | Oct 1999 | A |
6005679 | Haneda | Dec 1999 | A |
6023552 | Kunihiro | Feb 2000 | A |
6032096 | Takahashi | Feb 2000 | A |
6035096 | Kusakabe | Mar 2000 | A |
6047103 | Yamauchi | Apr 2000 | A |
6047292 | Kelly et al. | Apr 2000 | A |
6067400 | Saeki et al. | May 2000 | A |
6088507 | Yamauchi | Jul 2000 | A |
6125232 | Taira et al. | Sep 2000 | A |
6141385 | Yamaji | Oct 2000 | A |
6148138 | Sawabe | Nov 2000 | A |
6151634 | Glaser et al. | Nov 2000 | A |
6157769 | Yoshimura et al. | Dec 2000 | A |
6167192 | Heo | Dec 2000 | A |
6212330 | Yamamoto et al. | Apr 2001 | B1 |
6249641 | Yokota | Jun 2001 | B1 |
6283764 | Kajiyama et al. | Sep 2001 | B2 |
6285823 | Saeki | Sep 2001 | B1 |
6292449 | Kamata | Sep 2001 | B1 |
6334025 | Yamagami | Dec 2001 | B1 |
6381403 | Tanaka et al. | Apr 2002 | B1 |
6385389 | Maruyama et al. | May 2002 | B1 |
6564006 | Mori | May 2003 | B1 |
6594442 | Kageyama | Jul 2003 | B1 |
6687454 | Kuroiwa | Feb 2004 | B1 |
6701524 | Okamura | Mar 2004 | B1 |
6728474 | Moon et al. | Apr 2004 | B1 |
6738561 | Tanaka | May 2004 | B1 |
6771890 | Moon et al. | Aug 2004 | B1 |
6788880 | Fuchigami et al. | Sep 2004 | B1 |
6804456 | Moon et al. | Oct 2004 | B1 |
7747136 | Moon et al. | Jun 2010 | B2 |
8145043 | Moon et al. | Mar 2012 | B2 |
Number | Date | Country |
---|---|---|
1239303 | Dec 1999 | CN |
0 295 148 | Dec 1988 | EP |
0 689 206 | Dec 1995 | EP |
0 730 272 | Sep 1996 | EP |
0 788 101 | Aug 1997 | EP |
0 962 931 | Dec 1999 | EP |
0 965 991 | Dec 1999 | EP |
1 291 872 | Oct 2004 | EP |
1 291 873 | Oct 2004 | EP |
63-308705 | Dec 1988 | JP |
2-23057 | Jan 1990 | JP |
7-99630 | Apr 1995 | JP |
8-37638 | Feb 1996 | JP |
8-298645 | Nov 1996 | JP |
9-160899 | Jun 1997 | JP |
9-259536 | Oct 1997 | JP |
10-145726 | May 1998 | JP |
WO9738527 | Oct 1997 | WO |
Entry |
---|
Patent Abstracts of Japan, English abstract of JP 9-259536 A published on Oct. 3, 1997 (1 page, in English). |
European Search Report issued on Sep. 27, 1999, in counterpart European Application No. 99304944.4 (4 pages, in English). |
Japanese Office Action issued on Dec. 26, 2000, in counterpart Japanese Application No. 11-179075 (4 pages, in Japanese, including complete English translation). |
Korean Office Action issued on Apr. 19, 2002, in counterpart Korean Application No. 10-1998-0041757 (4 pages, in Korean, including complete English translation). |
Japanese Office Action issued on Jul. 20, 2004, in counterpart Japanese Application No. 2000-321765 (2 pages, in Japanese, no English translation). |
European Search Report issued on Sep. 13, 2004, in counterpart European Application No. 02079472.3 (4 pages, in English). |
Japanese Office Action issued on Apr. 5, 2005, in counterpart Japanese Application No. 2000-321765 (1 page, in Japanese, no English translation). |
Japanese Office Action issued on May 17, 2005, in counterpart Japanese Application No. 2002-237137 (2 pages, in Japanese, no English translation). |
Japanese Office Action issued on May 16, 2006, in counterpart Japanese Application No. 2005-248446 (2 pages, in Japanese, no English translation). |
Chinese Office Action issued on Jul. 28, 2006, in counterpart Chinese Application No. 011108061 (6 pages, in Chinese, including complete English translation of substantive portion). |
Malaysian Office Action issued on Dec. 15, 2006, in counterpart Malaysian Application No. PI20022890 (2 pages, in English). |
Malaysian Office Action issued on Dec. 28, 2006, in counterpart Malaysian Application No. PI20022896 (2 pages, in English). |
Extended European Search Report issued on Aug. 10, 2012, in counterpart European Application No. 05016182.7 (5 pages, in English). |
U.S. Appl. No. 13/244,568, filed Sep. 25, 2011, Seong-jin Moon et al, Samsung Electronics Co., Ltd. |
U.S. Appl. No. 13/244,578, filed Sep. 25, 2011, Seong-jin Moon et al, Samsung Electronics Co., Ltd. |
Number | Date | Country | |
---|---|---|---|
20120014667 A1 | Jan 2012 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 10747139 | Dec 2003 | US |
Child | 13244574 | US | |
Parent | 09339191 | Jun 1999 | US |
Child | 10747139 | US |