This application is based on and claims priority under 35 USC 119 from Japanese Patent Application No. 2015-187337 filed Sep. 24, 2015.
The present invention relates to recording medium transporting devices and image forming apparatuses.
According to an aspect of the invention, a recording medium transporting device includes a transport path, a first open-close portion, and a second open-close portion. A recording medium on which an image is formed is transported over the transport path. The first open-close portion is disposed on a side surface of the transporting device so as to be openable to cover and closeable to uncover the transporting device. The first open-close portion renders a first portion of the transport path open when the first open-close portion is opened so as to uncover the transporting device. The second open-close portion is disposed inside the transporting device at a position further inward of the first open-close portion so as to be openable to cover and closeable to uncover the transporting device. The second open-close portion renders a second portion of the transport path different from the first portion of the transport path open when the second open-close portion is opened so as to uncover the transporting device.
An exemplary embodiment of the present invention will be described in detail based on the following figures, wherein:
Referring now to the appended drawings, an exemplary embodiment of the invention is described in detail below.
The image forming system 1 illustrated in
The image forming system 1 also includes a sheet transporting section 70, which transports sheets P on which images have been formed by the image forming section 10, and sheet ejection portions 50, to which the sheets P on which images have been formed are ejected. The image forming system 1 also includes a subsequent-processing device 60 disposed to the right of the sheet transporting section 70 in
The image forming system 1 also includes a housing 40 that accommodates and holds the image forming section 10, the sheet feeding section 21, and the sheet transporting section 70. The image forming system 1 also includes a controller 30, which controls the entire operation of the image forming system 1, a communication unit 31, which communicates with other devices such as a personal computer (PC) 3 or an image reading device (scanner) 4 and receives image data from the devices, and an image processing unit 32, which performs predetermined image processing on the image data received by the communication unit 31.
In the following description, the direction from the lower side to the upper side of the image forming system 1 is referred to as a z direction, the direction from the front side F to the rear side R of the image forming system 1 is referred to as a y direction, and the direction perpendicular to the z direction and the y direction and from the left side to the right side of the image forming system 1 when viewed from the front side F is referred to as an x direction.
The sheet feeding section 21 includes a first sheet-feed tray 22 and a second sheet-feed tray 23, from which sheets P are fed to a first sheet-transport path R1. The first sheet-feed tray 22 and the second sheet-feed tray 23 have a similar configuration. The sheet feeding section 21 also includes a manual feed tray 24 used for manually feeding sheets P. The sheet feeding section 21 also includes pick-up rollers 25 disposed over the first sheet-feed tray 22, the second sheet-feed tray 23, and the manual feed tray 24 at positions downstream of the respective trays 22, 23, and 24 in the direction in which the sheets P are transported, or, a transportation direction. Each pick-up roller 25 picks up the sheets P and transports the sheets P to a second transfer position Tr of the image forming section 10 along the transport path extending from the corresponding tray 22, 23, or 24. The transport paths extending from the first sheet-feed tray 22, the second sheet-feed tray 23, and the manual feed tray 24 merge with one another at a merging point G1, which is an upstream end of the first sheet-transport path R1.
The image forming section 10 includes four image forming units 11Y, 11M, 11C, and 11K (hereinafter collectively referred to as image forming units 11) for yellow (Y), magenta (M), cyan (C), and black (K), disposed in parallel at regular intervals. Each image forming unit 11 includes a photoconductor drum 12, which allows an electrostatic latent image to be formed thereon and holds a toner image, a charging device 13, which charges the surface of the photoconductor drum 12 with electricity, and an exposure device 14, which exposes the photoconductor drum 12 charged by the charging device 13 with light on the basis of image data. Each image forming unit 11 also includes a developing device 15, which develops an electrostatic latent image formed on the photoconductor drum 12, and a cleaner 16, which cleans the surface of the photoconductor drum 12 after transfer.
The image forming section 10 also includes an intermediate transfer belt 17, on which toner images of different colors formed on the photoconductor drums 12 of the respective image forming units 11 are transferred so as to be superposed one on top of another, first transfer rollers 18, which sequentially transfer (first-transfer) toner images of different colors of the corresponding image forming units 11 to the intermediate transfer belt 17, a second transfer roller 19, which collectively transfers (second-transfers) the superposed toner images transferred onto the intermediate transfer belt 17 to a sheet P, and a fixing device 20, which fixes the second-transferred images to the sheet P.
The sheet ejection portions 50 include a side tray 52, disposed on a first side surface of the sheet transporting section 70, and an ejection tray 51, disposed on a second side surface of the sheet transporting section 70, the second side surface facing in the x direction of
The side tray 52 is disposed on the left side of the sheet transporting section 70 in
The ejection tray 51 is disposed on the right side of the sheet transporting section 70 in
Here, the ejection tray 51, the side tray 52, and the ejection port 61 are examples of ejection portions.
An image forming system 1 according to this exemplary embodiment is a so-called a color printer, which forms images of colors Y, M, C, and K on a sheet P. The image forming system 1, however, is not limited to a color printer. The image forming system 1 may be, for example, a so-called monochrome printer, which forms monochrome images on a sheet P.
The image forming apparatus 2 according to this exemplary embodiment includes the image forming section 10, the sheet feeding section 21, the housing 40, the sheet transporting section 70, the sheet ejection portions 50, and the ejection port 61.
Subsequently, the sheet transporting section 70 that transports sheets P on which images have been formed is described.
The sheet transporting section 70, which is an example of a recording medium transporting device, includes first transport rollers 71, which transport sheets P on which images have been formed by the image forming section 10 downward in the transportation direction, and second transport rollers 72, which transport the sheets P that have been transported thereto by the first transport rollers 71 further downward in the transportation direction. The sheet transporting section 70 also includes third transport rollers 73, which transport the sheets P that have been transported thereto by the second transport rollers 72 toward the ejection tray 51, and reverse transport rollers 74, which reverse the transportation direction of the sheets P that have been transported thereto by the second transport rollers 72. The sheet transporting section 70 also includes diverging rollers 75, which transport the sheets P transported thereto after their transportation direction is reversed by the reverse transport rollers 74 toward the side tray 52 or back to a second transfer position Tr.
The sheet transporting section 70 also includes a second sheet transport path R2, which extends upward from the image forming section 10 for transporting the sheets P to the ejection tray 51, and a third sheet transport path R3, which diverges rightward in
The sheet transporting section 70 also includes a sixth sheet transport path R6, which diverges leftward in
Although the fifth sheet transport path R5 and the sixth sheet transport path R6 cross each other in the middle of the transport paths, the paths R5 and R6 are separately provided. The second sheet transport path R2, the third sheet transport path R3, the fourth sheet transport path R4, the fifth sheet transport path R5, and the sixth sheet transport path R6 are examples of transport paths.
The sheet transporting section 70 includes a first switching gate 76, which is disposed near a diverging point B1 between the second sheet transport path R2 and the third sheet transport path R3 and switches the transportation route of the sheets P between the second sheet transport path R2 and the third sheet transport path R3. The sheet transporting section 70 also includes a second switching gate 77, which is disposed near a diverging point B2 between the second sheet transport path R2 and the fourth sheet transport path R4 and switches the transportation route of the sheets P between the second sheet transport path R2 and the fourth sheet transport path R4. The sheet transporting section 70 also includes a third switching gate 78, which is disposed near a diverging point B3 between the fourth sheet transport path R4 and the sixth sheet transport path R6 and switches the transportation route of the sheets P between the fourth sheet transport path R4 and the sixth sheet transport path R6. The sheet transporting section 70 also includes a fourth switching gate 79, which is disposed near a merging point G2 at which the fifth sheet transport path R5 and the sixth sheet transport path R6 merge with each other and switches the transportation route of the sheets P between the fifth sheet transport path R5 and the sixth sheet transport path R6.
The sheet transporting section 70 also includes a one-way transport gate 80, which is disposed near the diverging point B4 between the fourth sheet transport path R4 and the fifth sheet transport path R5 and guides the sheets P to the downstream side of the fourth sheet transport path R4. The sheet transporting section 70 also includes a position sensor PS, which is disposed near the diverging point B2 and detects the leading ends of the sheets P transported by the second transport rollers 72 over the second sheet transport path R2.
The sheet transporting section 70 also includes a downstream path cover 84 disposed so as to be openable and closable by rotation and a lower cover 81 disposed below the downstream path cover 84 so as to be openable and closable by rotation. The downstream path cover 84 and the lower cover 81 constitute parts of the housing 40 and are disposed on the first side surface of the sheet transporting section 70 on which the side tray 52 is disposed. The sheet transporting section 70 also includes an upstream path cover 92 disposed inside the housing 40 so as to be openable and closeable by rotation. The downstream path cover 84, the lower cover 81, and the upstream path cover 92 are described in detail below.
In the following description, portions of sheet transport paths located downstream of the diverging rollers 75 in the transportation direction are collectively referred to as a downstream path RD, which is an example of a first transport path. In other words, the downstream path RD includes portions of sheet transport paths located in an area extending from the diverging rollers 75 toward the downstream path cover 84 (leftward in
The first transport rollers 71 transport sheets P on which images have been formed to the second sheet transport path R2 or the third sheet transport path R3.
The first switching gate 76 is disposed in such a manner as to be allowed to protrude over the second sheet transport path R2 and the third sheet transport path R3. When the transportation route of a sheet P transported by the first transport rollers 71 is to be switched to the third sheet transport path R3, the first switching gate 76 protrudes over the second sheet transport path R2 to guide the sheet P to the third sheet transport path R3. When, on the other hand, the transportation route of a sheet P is to be switched to the second sheet transport path R2, the first switching gate 76 protrudes over the third sheet transport path R3 to guide the sheet P to the downstream side of the second sheet transport path R2.
The second transport rollers 72, which are examples of an upstream transporting portion, include a roller 72A and a roller 72B, which are a pair of rollers that transport sheets P by rotation. The roller 72A is disposed on the downstream side of the roller 72B in the x direction in
The roller 72B receives a pressing force (nip pressure) exerting in the x direction in
The second transport rollers 72 transport the sheet P, which the first switching gate 76 has been guiding to the second sheet transport path R2, to the downstream side of the second sheet transport path R2, to the fourth sheet transport path R4, or to the sixth sheet transport path R6.
The position sensor PS detects passing of the leading end of each sheet P transported by the second transport rollers 72 and, upon detection, transmits a detection signal to the controller 30. The controller 30 receives the signal from the position sensor PS and acquires information on the position of the sheet P. The controller 30 thus controls transportation of sheets P so that a sheet P transported over the fifth sheet transport path R5 and another sheet P transported over the sixth sheet transport path R6 do not come into contact with each other.
The second switching gate 77 is disposed so as to be allowed to protrude over the second sheet transport path R2 and the fourth sheet transport path R4. When the transportation route of a sheet P transported by the second transport rollers 72 is to be switched to the fourth sheet transport path R4, the second switching gate 77 protrudes over the second sheet transport path R2 to guide the sheet P to the fourth sheet transport path R4. On the other hand, when the transportation route of a sheet P is to be switched to the second sheet transport path R2, the second switching gate 77 protrudes over the fourth sheet transport path R4 to guide the sheet P to the downstream side of the second sheet transport path R2.
The third transport rollers 73 include a pair of rollers, which are a pressing roller and a driving roller. The third transport rollers 73 transport the sheet P, which the second switching gate 77 guides to the second sheet transport path R2, toward the ejection tray 51.
The third switching gate 78 is disposed so as to be allowed to protrude over the fourth sheet transport path R4 and the sixth sheet transport path R6. When the transportation route of the sheet P transported by the second transport rollers 72 is to be switched to the sixth sheet transport path R6, the third switching gate 78 protrudes over the fourth sheet transport path R4 to guide the sheet P to the sixth sheet transport path R6. On the other hand, when the transportation route of the sheet P is to be switched to the fourth sheet transport path R4, the third switching gate 78 protrudes over the sixth sheet transport path R6 to guide the sheet P to the downstream side of the fourth sheet transport path R4.
The one-way transport gate 80 is continuous with a wall surface (not illustrated) constituting the fifth sheet transport path R5 at its first end 80A. A second end 80B of the one-way transport gate 80 is disposed on a wall surface (not illustrated) constituting the fourth sheet transport path R4 at a portion upstream of the diverging point B4. When a sheet P transported over the fourth sheet transport path R4 comes into contact with the one-way transport gate 80, the one-way transport gate 80 is pushed aside by the sheet P and elastically deformed in such a manner that its second end 80B moves in the direction of arrow A in
On the other hand, even when the sheet P transported by the reverse transport rollers 74 in the reverse direction comes into contact with an upper portion of the one-way transport gate 80, the wall surface constituting the fourth sheet transport path R4 located below the one-way transport gate 80 restricts downward movement of the one-way transport gate 80. Thus, the second end 80B of the one-way transport gate 80 does not move. The sheet P is thus transported to the fifth sheet transport path R5 while being guided by the one-way transport gate 80.
The one-way transport gate 80 may have a configuration similar to that of the first switching gate 76. In this case, when a sheet P is to be transported over the fourth sheet transport path R4, the one-way transport gate 80 is retracted from the fourth sheet transport path R4. When the sheet P is to be transported over the fifth sheet transport path R5 in the reverse direction, the one-way transport gate 80 protrudes over the fourth sheet transport path R4 to guide the sheet P to the downstream side of the fifth sheet transport path R5.
The reverse transport rollers 74 include a pair of rollers, that is, a pressing roller and a driving roller. The reverse transport rollers 74 rotate (forward) in such a direction that the sheet P transported over the fourth sheet transport path R4 is transported further downstream. The reverse transport rollers 74 also rotate in the reverse direction when the trailing end of the sheet P passes through the one-way transport gate 80 to transport the sheet P toward the fifth sheet transport path R5.
The diverging rollers 75, which are examples of a downstream transporting portion, include a roller 75A and a roller 75B. The rollers 75A and 75B are a pair of rollers that transport the sheets P by rotation. The roller 75A is disposed above the roller 75B and faces the roller 75B with the merging point G2 interposed therebetween. Each of the rollers 75A and 75B includes a rotation shaft, not illustrated, disposed so as to extend in the y direction in
The rotation shaft of the roller 75B is provided with a spring, not illustrated, extending toward the rotation shaft of the roller 75A. The spring exerts a downward pressing force F2 on the rotation shaft of the roller 75B as a reaction force against the nip pressure received from the rotation shaft of the roller 75B. This pressing force F2 is transmitted to the upstream path cover 92 via the rotation shaft of the roller 75B.
The diverging rollers 75 transport the sheet P transported over the fifth sheet transport path R5 to the downstream side of the fifth sheet transport path R5. The diverging rollers 75 also transport the sheet P transported over the sixth sheet transport path R6 toward the side tray 52.
The fourth switching gate 79 is disposed so as to be allowed to protrude over the fifth sheet transport path R5 and the sixth sheet transport path R6. When the transportation route of a sheet P is to be switched to the sixth sheet transport path R6, the fourth switching gate 79 protrudes over the fifth sheet transport path R5 to guide the sheet P to the sixth sheet transport path R6. On the other hand, when the transport route of a sheet P is to be switched to the fifth sheet transport path R5, the fourth switching gate 79 protrudes over the sixth sheet transport path R6 to guide the sheet P to the downstream side of the fifth sheet transport path R5.
Subsequently, the configuration of the lower cover 81 and the downstream path cover 84 is described.
The lower cover 81, which is an example of a third open-close portion, includes an operation handle 82 and a moving mechanism portion 83. The operation handle 82 is handled by a user when the user opens or closes the lower cover 81. The moving mechanism portion 83 is disposed at a portion downstream of the operation handle 82 in the x direction of
Except when the user handles the handle 82, the operation handle 82 is engaged with the body of the sheet transporting section 70 to fix the lower cover 81 in position to the body of the sheet transporting section 70.
When a user grips the operation handle 82 and pulls the operation handle 82 in the −x direction illustrated in
The moving mechanism portion 83 includes a slant portions 83A extending obliquely downward in the direction opposite to the y direction.
When a user grips the operation handle 82 and pulls the operation handle 82 in the −x direction illustrated in
The downstream path cover 84, which is an example of a first open-close portion, includes a rotation shaft 90 at the end of the downstream path cover 84 in the y direction in
The latch portion 85 includes a rotation shaft 86, disposed at the upstream end of the latch portion 85 in the x direction in
The latch portion 85 receives a force in the direction of arrow D in
The rotatable external door 91 receives a pressing force F1, which is a reaction force against the nip pressure, in the −x direction of
When the moving mechanism portion 83 ascends as a result of a user griping the operation handle 82 and pulling the operation handle 82 in the −x direction in
After the latch portion 85 rotates by a predetermined distance in the direction of arrow E in
Here, the downstream path cover 84 is an example of a first rotatable door.
The upstream path cover 92, which is an example of a second open-close portion, includes a rotation shaft 93, disposed at the end of the upstream path cover 92 in the y direction of
The upstream path cover 92 also includes a slot 96 that allows the positioning pin 95 to be fitted thereinto to fix the upstream path cover 92 in position. The slot 96 includes a guide portion 96A, with which a lower portion of the positioning pin 95 comes into contact and which extends obliquely upward in the x direction, and a flat portion 96B, extending in the x direction of
While the downstream path cover 84 is closed, the rotatable internal door 94 is pushed by the downstream path cover 84 in the x direction of
Meanwhile, the rotatable internal door 94 receives the pressing force F2, which is a reaction force against the nip pressure of the diverging rollers 75 and exerts downward, from the spring of the rotation shaft of the roller 75B.
The rotatable internal door 94 also receives the pressing force F1, which is a reaction force against the nip pressure of the second transport rollers 72 and exerts in the −x direction in
As described above, however, when the restriction of the latch portion 85 is removed, the downstream path cover 84 is opened so as to uncover the body of the sheet transporting section 70 by rotation.
Thus, the restriction of the downstream path cover 84 is removed and the rotatable internal door 94 rotates together with the rotation of the downstream path cover 84. Specifically, the rotatable internal door 94 is opened so as to uncover the sheet transporting section 70 by rotating around the rotation shaft 93 in the direction of arrow I.
As the rotatable internal door 94 rotates further in the direction of arrow I in
When the downstream path cover 84 is pushed in the x direction of
In this exemplary embodiment, when the restriction on the movement of the downstream path cover 84 is removed, the downstream path cover 84 and the upstream path cover 92 are opened to uncover the sheet transporting section 70 by the pressing force F1 from the second transport rollers 72 without the need for users to perform opening and closing operations.
The upstream path cover 92 is opened together with the downstream path cover 84 in response to opening of the downstream path cover 84.
In addition, when a user closes the downstream path cover 84, the upstream path cover 92 is closed together with the downstream path cover 84.
Here, the upstream path cover 92 is an example of a second rotatable door.
Description of Range of Sheet Transport Paths and Transport Rollers that Move in Response to Opening of Upstream Path Cover or Downstream Path Cover
A wall surface (not illustrated) constituting a portion of the sixth sheet transport path R6 downstream of the merging point G2 in the transportation direction is located adjacent to the downstream path cover 84. Part of a wall surface (not illustrated) constituting a portion of the fifth sheet transport path R5 extending from the merging point G2 to the level up to which the lower cover 81 extends is located adjacent to the downstream path cover 84. Specifically, among the wall surfaces constituting the fifth sheet transport path R5, the wall surface located closer to the first side surface of the sheet transporting section 70, on which the downstream path cover 84 is disposed, than the opposing wall surface is adjacent to the downstream path cover 84.
When the downstream path cover 84 moves in the −x direction, the wall surface adjacent to the downstream path cover 84 also moves concurrently. Thus, the sheet transport path is rendered open. A user is thus allowed to remove paper jam in the opened sheet transport path.
In this exemplary embodiment, the downstream path RD is rendered open by opening the downstream path cover 84 and the lower cover 81.
Among the wall surfaces constituting the fourth sheet transport path R4 from the diverging point B2 to the diverging point B3, the wall surface located closer to the first side surface of the sheet transporting section 70, on which the downstream path cover 84 is disposed, than the opposing wall surface is located adjacent to the upstream path cover 92. In addition, among the wall surfaces constituting the sixth sheet transport path R6 from the diverging point B3 to the merging point G2, the wall surface located closer to the roller 75B than the opposing wall surface is located adjacent to the upstream path cover 92.
Further, among the wall surfaces constituting the fifth sheet transport path R5 from the merging point G2 to the lower cover 81, the wall surface located farther from the first side surface of the sheet transporting section 70, on which the downstream path cover 84 is disposed, than the opposing wall surface is located adjacent to the upstream path cover 92.
In addition, the roller 75B of the diverging rollers 75 and the roller 72B of the second transport rollers 72 are attached to the upstream path cover 92.
When the upstream path cover 92 moves in the −x direction, the wall surface adjacent to the upstream path cover 92 also moves concurrently.
In this exemplary embodiment, the upstream path RU is rendered open by opening the downstream path cover 84 and the upstream path cover 92.
A user is allowed to remove paper jam in the downstream path RD by opening the downstream path cover 84 and the lower cover 81 and allowed to remove paper jam in the upstream path RU by opening the upstream path cover 92.
When paper jam occurs in only the upstream path RU, a user fails to remove the paper jam if merely the downstream path cover 84 is opened. Even in this case, both of the downstream path cover 84 and the upstream path cover 92 are opened, and thus a user is allowed to remove paper jam.
When the downstream path cover 84 is opened, the upstream path cover 92 is opened concurrently. Thus, in the case where paper jam occurs in only the upstream path RU, a user is allowed to remove the paper jam in the upstream path RU by performing an operation for opening the downstream path cover 84 without performing an operation for opening the upstream path cover 92.
When the upstream path cover 92 moves in the −x direction in
When the nip pressure does not occur in the diverging rollers 75, the pressing force F2 exerted by the spring of the rotation shaft of the roller 75B as a reaction force of the nip pressure no longer occurs.
When the nip pressure does not occur in the second transport rollers 72, the pressing force F1 exerted by the spring of the rotation shaft of the roller 72B as a reaction force of the nip pressure no longer occurs. Thus, the downstream path cover 84 and the upstream path cover 92, which have been receiving the pressing force F1 and moving in the −x direction of
In some cases, a sheet P is jammed over the range extending from a portion of the fifth sheet transport path R5, attached to the downstream path cover 84 or the upstream path cover 92, to the downstream side of the fifth sheet transport path R5, to which the downstream path cover 84 or the upstream path cover 92 is not attached. When the downstream path cover 84 is opened to remove paper jam, the upstream path cover 92 is also opened. However, since the pressing force F1 is no longer exerted from the second transport rollers 72, the upstream path cover 92 is not completely opened to uncover the body of the sheet transporting section 70 and stops moving halfway.
Thus, a sheet P stuck between the downstream path cover 84 and the upstream path cover 92 is prevented from coming into contact with and damaging the wall surface on the downstream side of the fifth sheet transport path R5, although the sheet P would otherwise come into contact with and damage the wall surface if the downstream path cover 84 and the upstream path cover 92 are only allowed to move in an integrated manner and are opened.
In some other cases, paper jam occurs in the state where a sheet P is stuck between the diverging rollers 75 or the second transport rollers 72. In this exemplary embodiment, when the downstream path cover 84 is opened, the upstream path cover 92 is opened up to the position at which the nip pressure exerted from the diverging rollers 75 and the nip pressure exerted from the second transport rollers 72 no longer occur.
Thus, the jammed sheet P is prevented from being damaged, although the sheet P would otherwise be damaged by the nip pressure being exerted thereon from the transport rollers in the direction different from the direction from which the sheet P is removed.
In some other cases, paper jam occurs in the state where a sheet P is stuck between the diverging rollers 75 or the second transport rollers 72 and the leading end of the sheet P extends to the downstream path RD. In this case, when the downstream path cover 84 is opened, the upstream path cover 92 is opened up to the position at which the nip pressure exerted from the diverging rollers 75 and the nip pressure exerted from the second transport rollers 72 no longer occur.
Thus, a user is allowed to remove paper jam without completely opening the upstream path cover 92 and without subjecting a sheet P to damage due to the nip pressure.
The foregoing description of the exemplary embodiment of the present invention has been provided for the purposes of illustration and description. It is not intended to be exhaustive or to limit the invention to the precise forms disclosed. Obviously, many modifications and variations will be apparent to practitioners skilled in the art. The embodiment was chosen and described in order to best explain the principles of the invention and its practical applications, thereby enabling others skilled in the art to understand the invention for various embodiments and with the various modifications as are suited to the particular use contemplated. It is intended that the scope of the invention be defined by the following claims and their equivalents.
Number | Date | Country | Kind |
---|---|---|---|
2015-187337 | Sep 2015 | JP | national |