Data Acquisition Devices (DAD's) typically include sensors that are deployed via wireline, slickline or permanently attached to a tubular, casing or liner system with feed through packers, using control line or fiber optic cable to monitor a variety of parameters, such as temperature, pressure, fluid resistivity and flow rates, for example. Deploying such DAD's in this manner is difficult, expensive and can experience issues that prevent their successful deployment in horizontal wells. Systems and methods to alleviate the foregoing concerns are therefore of interest to those practicing in the art.
Disclosed herein is a recoverable data acquisition system. The system includes at least one sensor positionable within a tubular of a completion system that is recoverable therefrom.
Further disclosed herein is a method of sensing at least one parameter of a subterranean bore. The method includes positioning at least one sensor within a tubular, miming the tubular into the subterranean bore, completing the subterranean bore, sensing at least one parameter with the at least one sensor and recovering at least a portion of the at least one sensor.
Further disclosed herein is a method of recovering at least one sensor from a completion data acquisition system. The method includes running into a tubular of a completion, shifting at least one retainer defining a cavity between the retainer and the tubular, ejecting at least one sensor from the cavity, catching the at least one sensor and recovering the sensor while running out of the tubular.
The following descriptions should not be considered limiting in any way. With reference to the accompanying drawings, like elements are numbered alike:
A detailed description of one or more embodiments of the disclosed apparatus and method are presented herein by way of exemplification and not limitation with reference to the Figures.
Referring to
In this embodiment the cavity 26 is formed in part by a recess 34 in a wall 36 of the tubular 18 and in part by a groove 38 in the retainer 14. In other embodiments, one of which will be described in detail hereunder, the cavity 26 can be formed completely in the retainer 14 or the tubular 18. In this embodiment, the biasing member 30 is attached to the tubular 18 and urges the sensor 22 radially inwardly to eject the sensor 22 from the cavity 26 as the retainer 14 is moved to the second position.
The sensor 22 can include one or more sensors for measuring parameters such as pressure, temperature, flow, capacitance, resistivity, magnetic resonance, gravity, acoustic, nuclear and any combinations of the foregoing, for example. Additionally, the sensor 22 can include portions such as a battery 42 for powering the sensor 22 and a memory module 46 for storing data gathered by the sensor 22 for later retrieval. Optionally, the sensor 22 could include a wireless transceiver 50 (
Referring to
The system 110 includes a cavity 126 defined between the retainer 114 and the tubular 118 for housing the sensor 22. The cavity 126, however, differs from the cavity 26 in that the cavity 126 is formed completely within a recess 134 in a tubular 118, thereby negating the need for the groove 38 as is used in the retainer 14 of the system 10. Alternate embodiments could have a cavity formed completely by a groove in the retainer (not shown) thereby negating the need for the recess 134 in the tubular 118.
The system 110 optionally employs seals 128, shown herein as o-rings that slidingly sealingly engage the retainer 114 to the tubular 118 on opposing longitudinal sides of the cavity 126 when the retainer 114 is in the first position thereby enclosing the cavity 126 and maintaining the sensor 22 therewithin in a fluid tight space. The seals 128 can prevent fluid intrusion into the cavity 126 as well as prevent pressure outside of the cavity 126 from being experienced within the cavity 126. By isolating the sensor 22 from an environment outside of the cavity 126 the system 110 can protect the sensor 22 from otherwise damaging conditions. For example, the sensor 22 can be protected from erosion due to high flow rates through the tubular 118. . Although not shown in the Figures, the system 10 may optionally incorporate the seals 128, or seals of another configuration, to isolate the cavity 26 from an environment outside thereof
Optionally, in either of the systems 10 or 110, the cavities 26 or 126 may also be fillable with a disintegrable material 132 (only shown in
The disintegrable material 132 can be made of a high strength controlled electrolytic metallic material and be disintegrable when exposed to a fluid referred to herein as an activation fluid. Possible activation fluids include brine, acid, aqueous solutions or combinations of one or more of these, for example. A variety of suitable materials for use as the disintegrable material and their methods of manufacture are described in United States Patent Publication No. 2011/0135953 (Xu et al.), the entire Patent Publication of which is hereby incorporated by reference in its entirety.
One or more of each or both of the systems 10 and 110 can be employed at the same time. Doing so would allow an operator to monitor conditions with one or more of the systems 10, 110 prior to an operation such as fracing, for example, and then to monitor conditions with one or more others of the systems 10, 110 after the fracing operation is complete. The system 10, 110 to be used after the fracing would protect the sensor from the environment during fracing while then allowing the system 10, 110 to monitor conditions after the fracing. The sensor 22 can be configured wait a selected time before beginning acquiring data or can wait until specific threshold conditions are met before beginning acquiring data.
Employing one or more of the systems 10, 110 in a completion allows an operator to perform several operations in a single run. For example, plugs, and other devices that are no longer needed can be drilled out and then one or more of the retainers 14 can be shifted to the second (open) position thereby allowing the sensors 22 to be ejected from the cavities 26, 126. A recovery basket can catch all the ejected sensors 22 during the trip out thereby recovering them for subsequent retrieval of any data they may have acquired.
While the invention has been described with reference to an exemplary embodiment or embodiments, it will be understood by those skilled in the art that various changes may be made and equivalents may be substituted for elements thereof without departing from the scope of the invention. In addition, many modifications may be made to adapt a particular situation or material to the teachings of the invention without departing from the essential scope thereof Therefore, it is intended that the invention not be limited to the particular embodiment disclosed as the best mode contemplated for carrying out this invention, but that the invention will include all embodiments falling within the scope of the claims. Also, in the drawings and the description, there have been disclosed exemplary embodiments of the invention and, although specific terms may have been employed, they are unless otherwise stated used in a generic and descriptive sense only and not for purposes of limitation, the scope of the invention therefore not being so limited. Moreover, the use of the terms first, second, etc. do not denote any order or importance, but rather the terms first, second, etc. are used to distinguish one element from another. Furthermore, the use of the terms a, an, etc. do not denote a limitation of quantity, but rather denote the presence of at least one of the referenced item.