The present invention relates generally to communications error recovery, and in particular to recovery from communication errors in networking equipment having a shared control bus architecture.
Network switching equipment typically comprises a set of physical ports, one or more packet processors that receive data packets from and send packets to a physical port (or to a plurality of physical ports) of the network switching device via PHY and MAC circuitry, and a controller (typically CPU-based). The packet processors may be ASICs or FPGAs. The physical ports and packet processors (each of which has its own input and output ports) may be arrayed over a plurality of linecards, as in a chassis type unit, or on a single circuit board, as in a stackable unit. A received data packet can be processed and forwarded by a packet processor to another physical port coupled to an output port of the same packet processor. Alternatively, the received data packet can be forwarded by a receiving packet processor through a switching fabric to another packet processor to be further processed and forwarded via one of its output ports to a physical port of the switching device
During normal operation, there is occasional data communication between the respective packet processors and the CPU-based controller. The CPU-based controller may be on a separate management circuit board, such as in a typical chassis type network switching device, or on the same circuit board, as in a typical stackable type network switching device. In some network switching devices, there may be a dedicated controller for each packet processor or for a plural subset of the packet processors of the switching device In a cost optimized system, on the other hand, there may be one CPU-based controller for the whole system, e.g., for the entire set of packet processors of the network switching device. This centralized architecture is advantageous from a system-cost point of view, since there is only one CPU-based controller for all of the packet processors, but it poses some challenges, since there is a shared control bus coupling the CPU-based controller to the packet processors. The complex intercoupling of data structures between the controller and the packet processor that form the basis of controller-packet processor communication is susceptible to malfunctions that can render the system unusable.
In a data switching system, error recovery from data communication errors according to the present invention includes detecting occurrence of an error condition arising in a network switching device during data communication between a packet processor(s) and a controller in a shared bus architecture. In one embodiment, the controller, which is running a software program, detects the error. In response to detecting the error, data communication on the shared bus between the affected packet processor(s) and the controller is ceased pending a recovery step. Recovery of the data structures of the packet processor using data structures stored in the controller is performed, and communication between the affected packet processor(s) and the controller is resumed. Meanwhile, packet processing and forwarding by packet processor(s) (if any) are unaffected by the error continues, even to the extent such packet processing and forwarding requires communication with the controller. Further, packet processing and forwarding of packets by the packet processor(s) affected by the communication error also continues during the period of error detection and recovery, to the extent such processing and forwarding does not require communication between the affected packet processor(s) and the CPU controller, as would be the case, for instance, where the CPU controller had already programmed the memory(ies) accessed by the affected packet processor(s) with forwarding information necessary to process and forward particular received packets. This exemplary aspect allows for greater reliability of the network switch, because in prior shared bus systems, no packet forwarding was performed by the affected packet processor(s), or perhaps by the entire network switch, during the period of error detection and recovery, i.e., received packets were not forwarded, regardless of whether the memory(ies) had previously be programmed with forwarding information.
Switching device 100 of
One of the functions provided by the host CPU 102 is to program a memory 109 (e.g., a CAM and/or RAM, internal to the packet processor or external) with learned or user-inputted forwarding data so that, upon access of the memory by the packet processor 106 in response to a packet received via an in port of the switching device 100, the packet processor 106 will be able process the packet using the forwarding data to forward the received packet, typically at line rate, without the need for assistance from or communications with, the CPU 102. This type of pre-programmed forwarding by the packet processor 106 is sometimes called hardware forwarding. After processing in the packet processor 106, a received packet may be transmitted through the out port of the packet processor 106 to an out put port of the switching device 100, or to the in port of another of the packet processors 106, for further processing before the packet ultimately is sent to an output port of the switching device 100 (or dropped) Absent such pre-programmed forwarding data, a packet processor 106 may communicate with the host CPU 102 over the shared control bus, for assistance in forwarding the received packet. The CPU 102 may process the packet, and forward the packet to the same or another packet processor 106 for further processing and forwarding, e.g., VLAN flooding, or drop the packet, in accordance with the CPU's instruction set. Such communications (and other communications between the packet processors 106 and the host CPU 102) occur via the connection module 104 of
The present invention involves, among other things, detecting and resolving an error arising in the shared communication channel between the host CPU 102 and packet processor(s) 106. The error may affect the communications between the CPU 102 and all, or less than all (one or more), of the packet processors 106a-c. Such an error may be due to an unintended mechanical or electrical disturbance, e.g., a power spike, or the like, or may be due to an intended action, such as a hotswap action. In a hotswap, a circuit board (e.g., a line card including some packet processors 106, or a management card including CPU 102 (and perhaps some packet processors 106 as well), is hot removed from the switching device 100, and hot replaced with a like circuit board without a powering down of the switching device 100. Hotswap capability can improve the up time of the switching device 100.
I. Communication over the Control Plane
In an architecture such as depicted in
The descriptive information portion 132a of a packet descriptor 132 comprises data defined by the PCI standard and vendor-specific data. For example in one implementation, the packet descriptor 132 is a sixteen-byte data structure which includes a buffer address 232 (
Upon start up of switching device 100, the processing unit 114 of the host CPU 102 configures its memory 112 with packet descriptors 132 and a packet buffer 134. The packet buffer 134 can be initialized with zeroes or some other suitable initial value. Likewise, the additional data portion 234 of each packet descriptor 132 can be filled with a suitable initial value (e.g., zero). This initialization process can be accomplished in software (e.g., in program code 136), or by simply loading a portion of the memory 112 with an image of a predefined configuration of packet descriptors and a packet buffer.
Initializing the packet descriptors 132 includes, for each packet descriptor, at least storing in the buffer address 232 an address of the beginning of a portion of storage in the packet buffer 134. The packet descriptors 132 are linked to create a packet descriptor ring 122 for each packet processor 106x. This includes linking a group of the packet descriptors 132 to each other in a linked list. For example, the first N packet descriptors 132 can be linked in a ring structure to define a packet descriptor ring 122 for a first packet processor 106x. The next N packet descriptors 132 can be linked in another ring structure to define the next packet descriptor ring 122 for the second packet processor 106x, and so on. In this way, an initialized packet descriptor ring 122 for each packet processor 106x is created and initialized.
At system startup, the processing unit 114 also initializes the packet processor registers 116 of each packet processor 106x. This includes loading the next descriptor address register 116a with the address of the first packet descriptor 132 in the packet descriptor ring 122 corresponding to the packet processor 106x. The next buffer address register 116b is loaded with the buffer address contained in the first packet descriptor. As will be explained below, the packet processor 106x uses this address information to transfer data into its corresponding packet descriptor through a DMA operation.
Upon successful completion of the transfer of the control data, status fields in the packet descriptors 132 that were used for that transfer (note that more than one packet descriptor 132 may be consumed) are updated to indicate this fact. A protocol, described below, between the host CPU 102 and the packet processors 106 synchronizes the usage of the packet descriptors 132 (and packet buffers) between them.
An example of a synchronization mechanism between the host CPU 102 and the packet processors 106x will now be described. Each packet descriptor 132 contains an ownership bit field that is used for this purpose. The initiator—which could be either the host CPU 102 or packet processor 106x—only uses the packet descriptor 132 which is owned by that packet processor.
Consider a data transfer from a packet processor 106x to the host CPU 102. The packet processor 106x uses the packet descriptor 132 that is currently owned by it, identified by the address contained in the next descriptor address register 116a. The packet processor 106x transfers control data to the packet buffer 134 in the CPU memory 112 through a DMA operation, identified by the address contained in the next buffer address register 116b. After the packet processor 106x completes the data transfer into CPU memory, the ownership bit field in the packet descriptor 132 is changed to indicate that the packet processor relinquishes the ownership of that descriptor and now it is owned by the host CPU 102. The host CPU 102, when it sees that it now owns the packet descriptor 132, becomes aware of the availability of control data in the packet buffer and processes the received control data. When the processing is finished, the host CPU 102 changes the ownership bit of the packet descriptor 132 back to that of the packet processor 106x. This indicates that the descriptor is now available for the packet processor 106x for further data transfer. The same is applicable when host CPU 102 initiates a data transfer to the packet processor 106x.
I. Control Plane Failure
A communication error in a shared bus architecture communication channel between a packet processor 106 and the host CPU 102 may occur, for example, during a read or write operation to the packet descriptor ring 122 that is shared between the host CPU 102 and the affected packet processor(s) 106. Such an error could have effects such as: (a) the packet processor receives an invalid packet descriptor address or an invalid buffer address; or (b) the packet descriptor ring 122 in CPU memory 112 becomes corrupted. In both of the above scenarios, the communication between the host CPU 102 and the affected packet processor 106—which may be any subset or all of packet processors 106 of FIG. 1—over the control plane 104 will be broken down, leading (in prior art systems) to an inoperative system. Such may require the prior art switching device to be reset, resulting in no packet forwarding during the reset period of time, an undesirable situation.
The sections which follow disclose exemplary structures and methods to detect exemplary errors, and an exemplary recovery procedure to re-establish control plane communication between the host CPU 102 and the affected ones of packet processors 106. Such structures and methods allow the switching device 100 to continue switching packets through the network during the detection and recovery processes. For instance, packet processor(s) 106 unaffected by the communications error may continue processing forwarding all packet traffic and communicating with the host CPU 102 as necessary over the shared communication channel, while affected packet processor(s) 106 may continue forwarding any packet traffic that does not require communications with CPU 102 (e.g., where forwarding data for the particular received packets already is programmed in the memory 109 accessed by the packet processor 106 during packet processing and forwarding.) This technique maximizes the up time and throughput of the network switching device 100 in the case of such an error.
For the sake of example, we will discuss two error situations that could occur in a shared-bus network switching device 100 operating in a network to which it is coupled when a communication failure occurs in the control plane (e.g., due to hot-swapping or some electrical glitch), namely (1) loss of address/data integrity over the PCI bus, resulting in a parity error; and (2) PCI timeout or failure, yielding incorrect data to the master. Following is an explanation on how the above two exemplary scenarios are detected by the host CPU 102 in accordance with its program code, in accordance with an illustrative embodiment of the present invention.
(1) Loss of Address/Data Integrity over the PCI Bus, Resulting in Parity Error
An electrical disturbance or other anomalous condition involving the PCI bus can cause the data that is present on the bus at that time to become corrupted, causing the loss of integrity. The PCI standard specifies mechanisms to detect this type of error condition using, e.g., parity information generated during both the address and data phases of a transaction. A detailed description of the parity generation mechanism on the PCI bus can be found in the PCI standard specification. What is relevant for the discussion here is that, when a parity error is detected for the data on the PCI bus, the devices involved in the erroneous transaction (host CPU 102, packet processor(s) 106) set some error bits in the PCI command/status register. This mechanism is defined per the PCI standard as well. Thus, any PCI device will have this mechanism implemented. For clarity of further discussion, some bit-fields of the 32 bit PCI configuration command/status register (offset 0x4) relevant to error detection are shown in
(2) PCI Timeout or Failure
A timeout or other failure during a PCI transaction may occur, for instance, due to hotswapping a linecard while a packet processor(s) 106 of the linecard is communicating with the host CPU 102. For instance, such an electrical disturbance occurring during communication between a packet processor 106 and the host CPU 102 can result in a failure yielding incorrect data to the device (packet processor 106 or the host CPU 102) that originated the operation. In the context of a switching system 100, this could result in the affected packet processor(s) 106 getting an invalid packet descriptor address or an invalid packet buffer address if the affected packet processor(s) was in the middle of a read operation during the hotswap operation. An invalid address obtained like this will cause the packet processor 106 to be unable to properly transfer data to the CPU. For example, an invalid packet descriptor address may cause the packet processor 106 to access an incorrect packet descriptor 132 within its associated packet descriptor ring 122, or worse yet may cause the packet processor 106 to access a packet descriptor 132 belonging to another packet processor. Similarly, an incorrect packet buffer address will cause the wrong area in the packet buffer 134 to be accessed, resulting in writing of data to an area in the packet buffer that belongs to another packet processor 106.
III. Control Plane Failure Detection by the Host CPU
Referring to
Referring to
Upon detection of a data phase parity error, the PCI device (i.e., host CPU 102 or packet processor 106) that checked the parity is responsible for asserting the Detected Parity Error bit (bit31) (
The PERR# signal or the SERR# signal, when asserted, could generate an interrupt to the host CPU 102. In order to get these signals, the host CPU 102 interrupts must be enabled. This is done in the software which configures the host CPU's PIC (Programmable Interrupt Control) registers appropriately during the hardware initialization (startup) phase.
Upon detection of the occurrence of an error, an attempt is initiated to identify the devices that are involved with the error, step 504. In the disclosed example embodiment, packet processors 106a-106c communicate with the host CPU 102 over the PCI shared bus. Thus, the host CPU 102 will always be one of the devices involved in a detected communication error. The following description of step 504, in this particular embodiment, then amounts to a discussion about identifying the packet processor(s) 106a-106c that experienced the communication error.
A communication error can manifest itself in the PCI shared bus by raising an interrupt signal, as described above. When the host CPU 102 is interrupted by the interrupt signal due to a PCI error detection, a corresponding interrupt service routine is executed. The interrupt running in the host CPU polls each of the packet processors 106a-106c (which may be on one or more linecards) residing on the PCI bus on which the interrupt originated. In an embodiment, the host CPU 102 reads the PCI configuration status register (
The discussion above deals with detecting a communication error between a packet processor 106 and the host CPU where the packet processor 106 is sending data to the host CPU 102. However, the error handling herein is applicable for data transfer in either direction between host CPU 102 and the packet processor. When host CPU 102 detects a PCI error that results when data is transferred over the shared control plane from the packet processor 106 to the host CPU 102 or vice-versa, the recovery procedure is invoked to rectify the error. As will be explained below, the present invention allows for error recovery while at the same time leaving unaffected pre-programmed hardware forwarding of received packets by the affected (and unaffected) packet processor(s) 106 to continue. Further, packet processors 106 not affected by the error may continue control plane communications with CPU 102 as necessary to process and forward received packets.
As another example of steps 502 and 504, a PCI timeout or failure may be detected as follows. The read and write operation from host CPU 102 to the packet processor 106 is implemented using known DMA (direct memory access) techniques. Underneath the DMA, it is a PCI transaction as the host CPU 102 and packet processor 106 are connected through a PCI interface. The actions involved in such an operation from the CPU-side are:
1. CPU configures the DMA registers;
2. CPU initiates a timer;
3. CPU initiates the DMA operation;
4. CPU checks the DMA status for error/success/busy;
5. CPU repeats the above “check” step until the returned status is success, or error, or until the timer expires.
In the case of successful operations, the host CPU 102 detects the DMA completion by the channel being not busy and the DMA status does not indicate an error. In the case of a PCI failure, the host CPU 102 detects the DMA engine returning the error back. In the case of a PCI timeout, the DMA channel never returns and the host CPU 102 initiated timer expires, thus indicating the PCI timeout discussed above.
In a case for example of a failure or timeout during a PCI read transaction (where the packet processor 106 attempts to read data from the host CPU), the operation typically returns with 0xFFFFFFFF to the packet processor. The host CPU 102 can detect this error condition by reading the relevant hardware register in the packet processor. The relevant register can vary, depending on the shared bus architecture used to connect the packet processor and CPU. If they are connected through PCI, this register would be, e.g., the PCI status register. In a more generic context, the packet processor vendor could implement a specific register to reflect the status of a transaction it made to read from CPU memory.
Continuing, the host CPU 102 polls the relevant register of each packet processor 106 present in the switching device 100 in order to identify the one or more packet processors 106 that encountered a communication error over the shared communication bus. If the error condition is detected, then the host CPU 102 invokes the recovery method discussed below for each of the one or more affected packet processors 106 in order to recover. In one embodiment, this process of polling the relevant registers of the packet processors can be selectively performed. For instance, it may be programmed to occur only when a hotswap is detected (e.g., loss of heartbeat signal or loss of power signal or some other signaling method). Alternatively, the polling can be performed periodically.
Again, the figures and discussion herein, while sometimes directed to a read operation, for example, are applicable in the other direction as well, because the PCI status gets propagated to both ends—the CPU 102, the PCI bridge, and the packet processor 106 all get that information. Thus, the CPU 102 detects the PCI error for both communication scenarios, where the CPU 102 sends data to the packet processor 106, and where the packet processor 106 sends data to the CPU 102.
Note that, while the above examples have the CPU 102 detect the control plane communication error by the generation of an interrupt to the CPU 102, or by periodic or event-driven (e.g., hotswap) polling of registers, other methods of detecting the error condition, and identifying the affected packet processor(s) 106 may be utilized. This may vary, for instance, by the type of shared bus architecture used in the network switching device 100. As mentioned, the example of a PCI bus is exemplary only.
Continuing with
When a communication error is detected and the packet processor(s) 106 that faced the error is identified by the CPU 102 via step 504, the host CPU 102 then performs the following actions according to its program code to recover from it:
Thus, in accordance with the present invention, a communication error in a switching device 100 that occurs between a packet processor (s) 106 and the host CPU 102 can be recovered without having to power down the entire switching device 100. This is advantageous because packet switching can continue during the detection and recovery process. Affected packet processor(s) 106 can process and forward packet traffic to the extent necessary forwarding data already is programmed in the memory accessed by the packet processor (or other information or programming of the packet processor allows it to process the packet without data communication with the CPU 102). This maximizes the up time of the switching device 100 during such an error condition.
In the case where more than one packet processor 106 experiences a communication failure with the host CPU 102, the host CPU 102 can identify (more? of
In an alternative embodiment, step 514 may be performed after step 506, and then after all affected packet processors 106 are identified, then steps 508-512 may be performed for each of the affected packet processors 106.
The switching device of the present invention recovers from certain communication errors by reestablishing the communication between the host CPU and the affected packet processor in manner that maintains normal packet switching functionality to the greatest possible extent. Since the procedure disrupts only the data transfer between the host CPU 102 and the affected packet processor 106, the data transfer that occurs between host CPU 102 and the other unaffected packet processor(s) 106 and the data transfer that is switched by the packet processors 106 themselves without CPU intervention is not impacted.
The above embodiments are exemplary only, and may be modified without departing from the invention in is broader aspects.
This application is a continuation application of, and claims priority to, U.S. patent application Ser. No. 11/831,950, filed Jul. 31, 2007, entitled “Recovering From Failures Without Impact On Data Traffic In A Shared Bus Architecture,” which claims priority to U.S. Provisional Application No. 60/860,882, filed Nov. 22, 2006, and U.S. Provisional Application No. 60/937,270, filed Jun. 25, 2007, the entire contents of each of which are herein incorporated by reference for all purposes.
Number | Name | Date | Kind |
---|---|---|---|
3866175 | Seifert, Jr. et al. | Feb 1975 | A |
4325119 | Grandmaison et al. | Apr 1982 | A |
4348725 | Farrell et al. | Sep 1982 | A |
4628480 | Floyd | Dec 1986 | A |
4667323 | Engdahl et al. | May 1987 | A |
4679190 | Dias et al. | Jul 1987 | A |
4683564 | Young et al. | Jul 1987 | A |
4698748 | Juzswik et al. | Oct 1987 | A |
4723243 | Joshi et al. | Feb 1988 | A |
4754482 | Weiss | Jun 1988 | A |
4791629 | Burns et al. | Dec 1988 | A |
4794629 | Pastyr et al. | Dec 1988 | A |
4807280 | Posner et al. | Feb 1989 | A |
4876681 | Hagiwara et al. | Oct 1989 | A |
4896277 | Vercellotti et al. | Jan 1990 | A |
4985889 | Frankish et al. | Jan 1991 | A |
5101404 | Kunimoto et al. | Mar 1992 | A |
5136584 | Hedlund | Aug 1992 | A |
5195181 | Bryant et al. | Mar 1993 | A |
5208856 | Leduc et al. | May 1993 | A |
5224108 | McDysan et al. | Jun 1993 | A |
5231633 | Hluchyj et al. | Jul 1993 | A |
5280582 | Yang et al. | Jan 1994 | A |
5282196 | Clebowicz | Jan 1994 | A |
5287477 | Johnson et al. | Feb 1994 | A |
5299190 | LaMaire et al. | Mar 1994 | A |
5299195 | Shah | Mar 1994 | A |
5301192 | Henrion | Apr 1994 | A |
5307345 | Lozowick et al. | Apr 1994 | A |
5323386 | Wiher et al. | Jun 1994 | A |
5365512 | Combs et al. | Nov 1994 | A |
5377189 | Clark | Dec 1994 | A |
5390173 | Spinney et al. | Feb 1995 | A |
5392279 | Taniguchi | Feb 1995 | A |
5406643 | Burke et al. | Apr 1995 | A |
5408469 | Opher et al. | Apr 1995 | A |
5430442 | Kaiser et al. | Jul 1995 | A |
5436893 | Barnett | Jul 1995 | A |
5461615 | Henrion | Oct 1995 | A |
5490258 | Fenner | Feb 1996 | A |
5506840 | Pauwels et al. | Apr 1996 | A |
5506841 | Sandquist | Apr 1996 | A |
5521923 | Willmann et al. | May 1996 | A |
5530302 | Hamre et al. | Jun 1996 | A |
5539733 | Anderson et al. | Jul 1996 | A |
5546385 | Caspi et al. | Aug 1996 | A |
5550816 | Hardwick et al. | Aug 1996 | A |
5563948 | Diehl et al. | Oct 1996 | A |
5566170 | Bakke et al. | Oct 1996 | A |
5598410 | Stone | Jan 1997 | A |
5600795 | Du | Feb 1997 | A |
5619497 | Gallagher et al. | Apr 1997 | A |
5640504 | Johnson, Jr. | Jun 1997 | A |
5646878 | Samra | Jul 1997 | A |
5649089 | Kilner | Jul 1997 | A |
5663952 | Gentry, Jr. | Sep 1997 | A |
5663959 | Nakagawa | Sep 1997 | A |
5666353 | Klausmeier et al. | Sep 1997 | A |
5721819 | Galles et al. | Feb 1998 | A |
5732080 | Ferguson et al. | Mar 1998 | A |
5734826 | Olnowich et al. | Mar 1998 | A |
5740176 | Gupta et al. | Apr 1998 | A |
5745708 | Weppler et al. | Apr 1998 | A |
5751710 | Crowther et al. | May 1998 | A |
5802287 | Rostoker et al. | Sep 1998 | A |
5802394 | Baird et al. | Sep 1998 | A |
5815146 | Youden et al. | Sep 1998 | A |
5818816 | Chikazawa et al. | Oct 1998 | A |
5835496 | Yeung et al. | Nov 1998 | A |
5838684 | Wicki et al. | Nov 1998 | A |
5862350 | Coulson | Jan 1999 | A |
5864555 | Mathur et al. | Jan 1999 | A |
5867675 | Lomelino et al. | Feb 1999 | A |
5870538 | Manning et al. | Feb 1999 | A |
5872769 | Caldara et al. | Feb 1999 | A |
5872783 | Chin | Feb 1999 | A |
5875200 | Glover et al. | Feb 1999 | A |
5896380 | Brown et al. | Apr 1999 | A |
5907566 | Benson et al. | May 1999 | A |
5907660 | Inoue et al. | May 1999 | A |
5909686 | Muller et al. | Jun 1999 | A |
5915094 | Kouloheris et al. | Jun 1999 | A |
5920566 | Hendel et al. | Jul 1999 | A |
5920886 | Feldmeier | Jul 1999 | A |
5936939 | Des Jardins et al. | Aug 1999 | A |
5936966 | Ogawa et al. | Aug 1999 | A |
5956347 | Slater | Sep 1999 | A |
5999528 | Chow et al. | Dec 1999 | A |
6000016 | Curtis et al. | Dec 1999 | A |
6011910 | Chau et al. | Jan 2000 | A |
6016310 | Muller et al. | Jan 2000 | A |
6023471 | Haddock et al. | Feb 2000 | A |
6031843 | Swanbery et al. | Feb 2000 | A |
6035414 | Okazawa et al. | Mar 2000 | A |
6038288 | Thomas et al. | Mar 2000 | A |
6067298 | Shinohara | May 2000 | A |
6067606 | Holscher et al. | May 2000 | A |
6076115 | Sambamurthy et al. | Jun 2000 | A |
6081522 | Hendel et al. | Jun 2000 | A |
6088356 | Hendel et al. | Jul 2000 | A |
6094434 | Kotzur et al. | Jul 2000 | A |
6101552 | Chiang et al. | Aug 2000 | A |
6104696 | Kadambi et al. | Aug 2000 | A |
6104700 | Haddock et al. | Aug 2000 | A |
6104969 | Beeks | Aug 2000 | A |
6108306 | Kalkunte et al. | Aug 2000 | A |
6118787 | Kalkunte et al. | Sep 2000 | A |
6125417 | Bailis et al. | Sep 2000 | A |
6128666 | Muller et al. | Oct 2000 | A |
6144668 | Bass et al. | Nov 2000 | A |
6147996 | Laor et al. | Nov 2000 | A |
6151301 | Holden | Nov 2000 | A |
6151497 | Yee et al. | Nov 2000 | A |
6154446 | Kadambi et al. | Nov 2000 | A |
6157643 | Ma | Dec 2000 | A |
6160809 | Adiletta et al. | Dec 2000 | A |
6160812 | Bauman et al. | Dec 2000 | A |
6172990 | Deb et al. | Jan 2001 | B1 |
6178520 | DeKoning et al. | Jan 2001 | B1 |
6181699 | Crinion et al. | Jan 2001 | B1 |
6185208 | Liao | Feb 2001 | B1 |
6185222 | Hughes | Feb 2001 | B1 |
6194666 | Hayashida et al. | Feb 2001 | B1 |
6195335 | Calvignac et al. | Feb 2001 | B1 |
6201492 | Amar et al. | Mar 2001 | B1 |
6212586 | Mros et al. | Apr 2001 | B1 |
6222845 | Shue et al. | Apr 2001 | B1 |
6229788 | Graves et al. | May 2001 | B1 |
6243388 | Mussman et al. | Jun 2001 | B1 |
6243667 | Kerr et al. | Jun 2001 | B1 |
6249528 | Kothary | Jun 2001 | B1 |
6263374 | Olnowich et al. | Jul 2001 | B1 |
6272144 | Berenbaum et al. | Aug 2001 | B1 |
6304903 | Ward | Oct 2001 | B1 |
6307839 | Gerszberg et al. | Oct 2001 | B1 |
6320859 | Momirov | Nov 2001 | B1 |
6333929 | Drottar et al. | Dec 2001 | B1 |
6335932 | Kadambi et al. | Jan 2002 | B2 |
6335935 | Kadambi et al. | Jan 2002 | B2 |
6343072 | Bechtolsheim et al. | Jan 2002 | B1 |
6351143 | Guccione et al. | Feb 2002 | B1 |
6356550 | Williams | Mar 2002 | B1 |
6356942 | Bengtsson et al. | Mar 2002 | B1 |
6359879 | Carvey et al. | Mar 2002 | B1 |
6363077 | Wong et al. | Mar 2002 | B1 |
6366557 | Hunter | Apr 2002 | B1 |
6369855 | Chauvel et al. | Apr 2002 | B1 |
6370579 | Partridge | Apr 2002 | B1 |
6421352 | Manaka et al. | Jul 2002 | B1 |
6424658 | Mathur | Jul 2002 | B1 |
6424659 | Viswanadham et al. | Jul 2002 | B2 |
6427185 | Ryals et al. | Jul 2002 | B1 |
6430190 | Essbaum et al. | Aug 2002 | B1 |
6442067 | Chawla et al. | Aug 2002 | B1 |
6457175 | Lerche | Sep 2002 | B1 |
6459705 | Cheng | Oct 2002 | B1 |
6460088 | Merchant | Oct 2002 | B1 |
6463063 | Bianchini, Jr. et al. | Oct 2002 | B1 |
6466608 | Hong et al. | Oct 2002 | B1 |
6470436 | Croft et al. | Oct 2002 | B1 |
6473428 | Nichols et al. | Oct 2002 | B1 |
6473433 | Bianchini, Jr. et al. | Oct 2002 | B1 |
6477174 | Dooley et al. | Nov 2002 | B1 |
6480477 | Treadaway et al. | Nov 2002 | B1 |
6490280 | Leung | Dec 2002 | B1 |
6493347 | Sindhu et al. | Dec 2002 | B2 |
6496502 | Fite, Jr. et al. | Dec 2002 | B1 |
6505281 | Sherry | Jan 2003 | B1 |
6510138 | Pannell | Jan 2003 | B1 |
6522656 | Gridley | Feb 2003 | B1 |
6532229 | Johnson et al. | Mar 2003 | B1 |
6532234 | Yoshikawa et al. | Mar 2003 | B1 |
6535504 | Johnson et al. | Mar 2003 | B1 |
6549519 | Michels et al. | Apr 2003 | B1 |
6553370 | Andreev et al. | Apr 2003 | B1 |
6556208 | Congdon et al. | Apr 2003 | B1 |
6567404 | Wilford | May 2003 | B1 |
6570884 | Connery et al. | May 2003 | B1 |
6577631 | Keenan et al. | Jun 2003 | B1 |
6587432 | Putzolu et al. | Jul 2003 | B1 |
6591302 | Boucher et al. | Jul 2003 | B2 |
6601186 | Fox et al. | Jul 2003 | B1 |
6606300 | Blanc et al. | Aug 2003 | B1 |
6628650 | Saite et al. | Sep 2003 | B1 |
6633580 | Torudbakken et al. | Oct 2003 | B1 |
6636483 | Pannell | Oct 2003 | B1 |
6643269 | Fan et al. | Nov 2003 | B1 |
6654342 | Dittia et al. | Nov 2003 | B1 |
6654346 | Mahalingaiah et al. | Nov 2003 | B1 |
6654370 | Quirke et al. | Nov 2003 | B1 |
6654373 | Maher, III et al. | Nov 2003 | B1 |
6658002 | Ross et al. | Dec 2003 | B1 |
6661791 | Brown | Dec 2003 | B1 |
6671275 | Wong et al. | Dec 2003 | B1 |
6675258 | Bramhall et al. | Jan 2004 | B1 |
6677952 | Baldwin | Jan 2004 | B1 |
6678248 | Haddock et al. | Jan 2004 | B1 |
6681332 | Byrne et al. | Jan 2004 | B1 |
6683872 | Saito | Jan 2004 | B1 |
6687217 | Chow et al. | Feb 2004 | B1 |
6687247 | Wilford et al. | Feb 2004 | B1 |
6690757 | Bunton et al. | Feb 2004 | B1 |
6691202 | Vasquez et al. | Feb 2004 | B2 |
6696917 | Heitner et al. | Feb 2004 | B1 |
6697359 | George | Feb 2004 | B1 |
6697368 | Chang et al. | Feb 2004 | B2 |
6700894 | Shung | Mar 2004 | B1 |
6708000 | Nishi et al. | Mar 2004 | B1 |
6721229 | Cole | Apr 2004 | B1 |
6721268 | Ohira et al. | Apr 2004 | B1 |
6721313 | Van Duyne | Apr 2004 | B1 |
6721338 | Sato | Apr 2004 | B1 |
6731875 | Kartalopoulos | May 2004 | B1 |
6735218 | Chang et al. | May 2004 | B2 |
6745277 | Lee et al. | Jun 2004 | B1 |
6747971 | Hughes et al. | Jun 2004 | B1 |
6751224 | Parruck et al. | Jun 2004 | B1 |
6754881 | Kuhlmann et al. | Jun 2004 | B2 |
6760305 | Pasternak et al. | Jul 2004 | B1 |
6765866 | Wyatt | Jul 2004 | B1 |
6775706 | Fukumoto et al. | Aug 2004 | B1 |
6778546 | Epps et al. | Aug 2004 | B1 |
6781990 | Puri et al. | Aug 2004 | B1 |
6785290 | Fujisawa et al. | Aug 2004 | B1 |
6788697 | Aweya et al. | Sep 2004 | B1 |
6792484 | Hook | Sep 2004 | B1 |
6792502 | Pandya et al. | Sep 2004 | B1 |
6798740 | Senevirathne et al. | Sep 2004 | B1 |
6804220 | Odenwalder et al. | Oct 2004 | B2 |
6804731 | Chang et al. | Oct 2004 | B1 |
6804815 | Kerr et al. | Oct 2004 | B1 |
6807179 | Kanuri et al. | Oct 2004 | B1 |
6807363 | Abiko et al. | Oct 2004 | B1 |
6810038 | Isoyama et al. | Oct 2004 | B1 |
6810046 | Abbas et al. | Oct 2004 | B2 |
6813243 | Epps et al. | Nov 2004 | B1 |
6813266 | Chiang et al. | Nov 2004 | B1 |
6816467 | Muller et al. | Nov 2004 | B1 |
6831923 | Laor et al. | Dec 2004 | B1 |
6831932 | Boyle et al. | Dec 2004 | B1 |
6836808 | Bunce et al. | Dec 2004 | B2 |
6839346 | Kametani | Jan 2005 | B1 |
6842422 | Bianchini | Jan 2005 | B1 |
6842903 | Weschler | Jan 2005 | B1 |
6854117 | Roberts | Feb 2005 | B1 |
6856600 | Russell et al. | Feb 2005 | B1 |
6859438 | Haddock et al. | Feb 2005 | B2 |
6865153 | Hill et al. | Mar 2005 | B1 |
6873630 | Muller et al. | Mar 2005 | B1 |
6895528 | Cantwell et al. | May 2005 | B2 |
6901072 | Wong | May 2005 | B1 |
6906936 | James et al. | Jun 2005 | B1 |
6912637 | Herbst | Jun 2005 | B1 |
6920154 | Achler | Jul 2005 | B1 |
6925516 | Struhsaker et al. | Aug 2005 | B2 |
6934305 | Duschatko et al. | Aug 2005 | B1 |
6937606 | Basso et al. | Aug 2005 | B2 |
6946948 | McCormack et al. | Sep 2005 | B2 |
6952419 | Cassiday et al. | Oct 2005 | B1 |
6957258 | Maher, III et al. | Oct 2005 | B2 |
6959007 | Vogel et al. | Oct 2005 | B1 |
6961347 | Bunton et al. | Nov 2005 | B1 |
6965615 | Kerr et al. | Nov 2005 | B1 |
6973092 | Zhou et al. | Dec 2005 | B1 |
6975599 | Johnson et al. | Dec 2005 | B1 |
6978309 | Dorbolo | Dec 2005 | B1 |
6980552 | Belz et al. | Dec 2005 | B1 |
6982974 | Saleh et al. | Jan 2006 | B1 |
6990102 | Kaniz et al. | Jan 2006 | B1 |
6993032 | Dammann et al. | Jan 2006 | B1 |
6996663 | Marsteiner | Feb 2006 | B1 |
7005812 | Mitchell | Feb 2006 | B2 |
7009968 | Ambe et al. | Mar 2006 | B2 |
7009976 | Michelson et al. | Mar 2006 | B1 |
7010607 | Bunton | Mar 2006 | B1 |
7012919 | So et al. | Mar 2006 | B1 |
7050430 | Kalkunte et al. | May 2006 | B2 |
7050505 | Kaku | May 2006 | B2 |
7065673 | Subramaniam et al. | Jun 2006 | B2 |
7080238 | Van Hoof et al. | Jul 2006 | B2 |
7082133 | Lor et al. | Jul 2006 | B1 |
7095753 | Milliken et al. | Aug 2006 | B1 |
7103041 | Speiser et al. | Sep 2006 | B1 |
7106692 | Schulz | Sep 2006 | B1 |
7120744 | Klein | Oct 2006 | B2 |
7126948 | Gooch et al. | Oct 2006 | B2 |
7126956 | Scholten | Oct 2006 | B2 |
7151797 | Limberg | Dec 2006 | B2 |
7161948 | Sampath et al. | Jan 2007 | B2 |
7167471 | Calvignac et al. | Jan 2007 | B2 |
7176911 | Kidono et al. | Feb 2007 | B1 |
7185141 | James et al. | Feb 2007 | B1 |
7185266 | Blightman et al. | Feb 2007 | B2 |
7187687 | Davis et al. | Mar 2007 | B1 |
7188237 | Zhou et al. | Mar 2007 | B2 |
7190696 | Manur et al. | Mar 2007 | B1 |
7191277 | Broyles | Mar 2007 | B2 |
7191468 | Hanner | Mar 2007 | B2 |
7194652 | Zhou et al. | Mar 2007 | B2 |
7203194 | Chang et al. | Apr 2007 | B2 |
7206283 | Chang et al. | Apr 2007 | B2 |
7212536 | Mackiewich et al. | May 2007 | B2 |
7218637 | Best et al. | May 2007 | B1 |
7219293 | Tsai et al. | May 2007 | B2 |
7228509 | Dada et al. | Jun 2007 | B1 |
7236490 | Chang et al. | Jun 2007 | B2 |
7237058 | Srinivasan | Jun 2007 | B2 |
7249306 | Chen | Jul 2007 | B2 |
7266117 | Davis | Sep 2007 | B1 |
7272611 | Cuppett et al. | Sep 2007 | B1 |
7272613 | Sim et al. | Sep 2007 | B2 |
7277425 | Sikdar | Oct 2007 | B1 |
7283547 | Hook et al. | Oct 2007 | B1 |
7284236 | Zhou et al. | Oct 2007 | B2 |
7286534 | Kloth | Oct 2007 | B2 |
7298752 | Moriwaki et al. | Nov 2007 | B2 |
7324509 | Ni | Jan 2008 | B2 |
7324553 | Varier et al. | Jan 2008 | B1 |
7355970 | Lor | Apr 2008 | B2 |
7356030 | Chang et al. | Apr 2008 | B2 |
7366100 | Anderson et al. | Apr 2008 | B2 |
7391769 | Rajkumar et al. | Jun 2008 | B2 |
7414979 | Jarvis | Aug 2008 | B1 |
7428693 | Obuchi et al. | Sep 2008 | B2 |
7468975 | Davis | Dec 2008 | B1 |
7512127 | Chang et al. | Mar 2009 | B2 |
7543077 | Milliken et al. | Jun 2009 | B1 |
7558193 | Bradbury et al. | Jul 2009 | B2 |
7561590 | Walsh | Jul 2009 | B1 |
7590760 | Banks | Sep 2009 | B1 |
7596139 | Patel et al. | Sep 2009 | B2 |
7606968 | Branscome et al. | Oct 2009 | B2 |
7609617 | Appanna et al. | Oct 2009 | B2 |
7613991 | Bain | Nov 2009 | B1 |
7624283 | Bade et al. | Nov 2009 | B2 |
7636369 | Wong | Dec 2009 | B2 |
7649885 | Davis | Jan 2010 | B1 |
7657703 | Singh | Feb 2010 | B1 |
7721297 | Ward | May 2010 | B2 |
7738450 | Davis | Jun 2010 | B1 |
7782805 | Belhadj et al. | Aug 2010 | B1 |
7813367 | Wong | Oct 2010 | B2 |
7817659 | Wong | Oct 2010 | B2 |
7821972 | Finn et al. | Oct 2010 | B1 |
7830884 | Davis | Nov 2010 | B2 |
7903654 | Bansal | Mar 2011 | B2 |
7933947 | Fleischer et al. | Apr 2011 | B2 |
7948872 | Patel et al. | May 2011 | B2 |
7953922 | Singh | May 2011 | B2 |
7953923 | Singh | May 2011 | B2 |
7978614 | Wong et al. | Jul 2011 | B2 |
7978702 | Chang et al. | Jul 2011 | B2 |
7995580 | Patel et al. | Aug 2011 | B2 |
8014278 | Subramanian et al. | Sep 2011 | B1 |
8037399 | Wong et al. | Oct 2011 | B2 |
8090901 | Lin et al. | Jan 2012 | B2 |
8140044 | Villian et al. | Mar 2012 | B2 |
8149839 | Hsu et al. | Apr 2012 | B1 |
8155011 | Wong et al. | Apr 2012 | B2 |
8170044 | Davis et al. | May 2012 | B2 |
8201180 | Briscoe et al. | Jun 2012 | B2 |
8238255 | Suresh et al. | Aug 2012 | B2 |
8271859 | Wong et al. | Sep 2012 | B2 |
8395996 | Wong et al. | Mar 2013 | B2 |
8448162 | Ramanathan et al. | May 2013 | B2 |
8493988 | Wong et al. | Jul 2013 | B2 |
8509236 | Zhang et al. | Aug 2013 | B2 |
8514716 | Patel et al. | Aug 2013 | B2 |
8599850 | Jha et al. | Dec 2013 | B2 |
8619781 | Patel et al. | Dec 2013 | B2 |
8671219 | Davis | Mar 2014 | B2 |
8718051 | Wong | May 2014 | B2 |
8730961 | Wong | May 2014 | B1 |
8811390 | Wong | Aug 2014 | B2 |
20010001879 | Kubik et al. | May 2001 | A1 |
20010007560 | Masuda et al. | Jul 2001 | A1 |
20010026551 | Horlin | Oct 2001 | A1 |
20010048785 | Steinberg | Dec 2001 | A1 |
20010053150 | Clear et al. | Dec 2001 | A1 |
20020001307 | Nguyen et al. | Jan 2002 | A1 |
20020012585 | Kalkunte et al. | Jan 2002 | A1 |
20020040417 | Winograd et al. | Apr 2002 | A1 |
20020048280 | Lee et al. | Apr 2002 | A1 |
20020054594 | Hoof et al. | May 2002 | A1 |
20020054595 | Ambe et al. | May 2002 | A1 |
20020069294 | Herkersdorf et al. | Jun 2002 | A1 |
20020073073 | Cheng | Jun 2002 | A1 |
20020083111 | Row et al. | Jun 2002 | A1 |
20020085499 | Toyoyama et al. | Jul 2002 | A1 |
20020087788 | Morris | Jul 2002 | A1 |
20020089937 | Venkatachary et al. | Jul 2002 | A1 |
20020091844 | Craft et al. | Jul 2002 | A1 |
20020091884 | Chang et al. | Jul 2002 | A1 |
20020126672 | Chow et al. | Sep 2002 | A1 |
20020131437 | Tagore-Brage | Sep 2002 | A1 |
20020141403 | Akahane et al. | Oct 2002 | A1 |
20020146013 | Karlsson et al. | Oct 2002 | A1 |
20020161929 | Longerbeam et al. | Oct 2002 | A1 |
20020161967 | Kirihata et al. | Oct 2002 | A1 |
20020169786 | Richek | Nov 2002 | A1 |
20020181476 | Badamo et al. | Dec 2002 | A1 |
20020191605 | Van Lunteren et al. | Dec 2002 | A1 |
20030009466 | Ta et al. | Jan 2003 | A1 |
20030012198 | Kaganoi et al. | Jan 2003 | A1 |
20030033435 | Hanner | Feb 2003 | A1 |
20030043800 | Sonksen et al. | Mar 2003 | A1 |
20030043848 | Sonksen | Mar 2003 | A1 |
20030048785 | Calvignac et al. | Mar 2003 | A1 |
20030061459 | Aboulenein et al. | Mar 2003 | A1 |
20030074657 | Bramley, Jr. | Apr 2003 | A1 |
20030081608 | Barri et al. | May 2003 | A1 |
20030095548 | Yamano | May 2003 | A1 |
20030103499 | Davis et al. | Jun 2003 | A1 |
20030103500 | Menon et al. | Jun 2003 | A1 |
20030108052 | Inoue et al. | Jun 2003 | A1 |
20030110180 | Calvignac et al. | Jun 2003 | A1 |
20030115403 | Bouchard et al. | Jun 2003 | A1 |
20030120861 | Calle et al. | Jun 2003 | A1 |
20030128668 | Yavatkar et al. | Jul 2003 | A1 |
20030137978 | Kanetake | Jul 2003 | A1 |
20030152084 | Lee et al. | Aug 2003 | A1 |
20030152096 | Chapman | Aug 2003 | A1 |
20030156586 | Lee et al. | Aug 2003 | A1 |
20030159086 | Arndt | Aug 2003 | A1 |
20030165160 | Minami et al. | Sep 2003 | A1 |
20030169470 | Alagar et al. | Sep 2003 | A1 |
20030174719 | Sampath et al. | Sep 2003 | A1 |
20030177209 | Kwok et al. | Sep 2003 | A1 |
20030177221 | Ould-Brahim et al. | Sep 2003 | A1 |
20030198182 | Pegrum et al. | Oct 2003 | A1 |
20030200343 | Greenblat et al. | Oct 2003 | A1 |
20030214956 | Navada et al. | Nov 2003 | A1 |
20030215029 | Limberg | Nov 2003 | A1 |
20030223424 | Anderson et al. | Dec 2003 | A1 |
20030223466 | Noronha, Jr. et al. | Dec 2003 | A1 |
20030227943 | Hallman et al. | Dec 2003 | A1 |
20040022263 | Zhao et al. | Feb 2004 | A1 |
20040028060 | Kang | Feb 2004 | A1 |
20040037302 | Varma et al. | Feb 2004 | A1 |
20040054867 | Stravers et al. | Mar 2004 | A1 |
20040062130 | Chiang | Apr 2004 | A1 |
20040062245 | Sharp et al. | Apr 2004 | A1 |
20040062246 | Boucher et al. | Apr 2004 | A1 |
20040083404 | Subramaniam et al. | Apr 2004 | A1 |
20040083475 | Todd et al. | Apr 2004 | A1 |
20040088469 | Levy | May 2004 | A1 |
20040120322 | Wu | Jun 2004 | A1 |
20040128434 | Khanna et al. | Jul 2004 | A1 |
20040141504 | Blanc | Jul 2004 | A1 |
20040190547 | Gordy et al. | Sep 2004 | A1 |
20040196859 | Benner | Oct 2004 | A1 |
20040205393 | Kitamorn et al. | Oct 2004 | A1 |
20040208177 | Ogawa | Oct 2004 | A1 |
20040208181 | Clayton et al. | Oct 2004 | A1 |
20040223502 | Wybenga et al. | Nov 2004 | A1 |
20040235480 | Rezaaifar et al. | Nov 2004 | A1 |
20040264380 | Kalkunte et al. | Dec 2004 | A1 |
20050010630 | Doering et al. | Jan 2005 | A1 |
20050010849 | Ryle et al. | Jan 2005 | A1 |
20050041684 | Reynolds et al. | Feb 2005 | A1 |
20050097432 | Obuchi et al. | May 2005 | A1 |
20050120122 | Farnham | Jun 2005 | A1 |
20050132132 | Rosenbluth et al. | Jun 2005 | A1 |
20050132179 | Glaum et al. | Jun 2005 | A1 |
20050138276 | Navada et al. | Jun 2005 | A1 |
20050144369 | Jaspers | Jun 2005 | A1 |
20050152324 | Benveniste | Jul 2005 | A1 |
20050152335 | Lodha et al. | Jul 2005 | A1 |
20050169317 | Pruecklmayer | Aug 2005 | A1 |
20050185577 | Sakamoto et al. | Aug 2005 | A1 |
20050185652 | Iwamoto | Aug 2005 | A1 |
20050193316 | Chen | Sep 2005 | A1 |
20050201387 | Willis | Sep 2005 | A1 |
20050226236 | Klink | Oct 2005 | A1 |
20050246508 | Shaw | Nov 2005 | A1 |
20050249124 | Elie-Dit-Cosaque et al. | Nov 2005 | A1 |
20060031610 | Liav et al. | Feb 2006 | A1 |
20060034452 | Tonomura | Feb 2006 | A1 |
20060050690 | Epps et al. | Mar 2006 | A1 |
20060077891 | Smith et al. | Apr 2006 | A1 |
20060092829 | Brolin et al. | May 2006 | A1 |
20060092929 | Chun | May 2006 | A1 |
20060114876 | Kalkunte | Jun 2006 | A1 |
20060146374 | Ng et al. | Jul 2006 | A1 |
20060165089 | Klink | Jul 2006 | A1 |
20060209685 | Rahman et al. | Sep 2006 | A1 |
20060221841 | Lee et al. | Oct 2006 | A1 |
20060268680 | Roberts et al. | Nov 2006 | A1 |
20060274749 | Beier | Dec 2006 | A1 |
20070038798 | Bouchard et al. | Feb 2007 | A1 |
20070088974 | Chandwani et al. | Apr 2007 | A1 |
20070127464 | Jain et al. | Jun 2007 | A1 |
20070179909 | Channasagara | Aug 2007 | A1 |
20070208876 | Davis | Sep 2007 | A1 |
20070258475 | Chinn et al. | Nov 2007 | A1 |
20070288690 | Wang et al. | Dec 2007 | A1 |
20080002707 | Davis | Jan 2008 | A1 |
20080025309 | Swallow | Jan 2008 | A1 |
20080031263 | Ervin et al. | Feb 2008 | A1 |
20080037544 | Yano et al. | Feb 2008 | A1 |
20080049742 | Bansal et al. | Feb 2008 | A1 |
20080069125 | Reed et al. | Mar 2008 | A1 |
20080092020 | Hasenplaugh et al. | Apr 2008 | A1 |
20080095169 | Chandra et al. | Apr 2008 | A1 |
20080117075 | Seddigh et al. | May 2008 | A1 |
20080126652 | Vembu et al. | May 2008 | A1 |
20080159309 | Sultan et al. | Jul 2008 | A1 |
20080181103 | Davies | Jul 2008 | A1 |
20080205407 | Chang et al. | Aug 2008 | A1 |
20080307288 | Ziesler et al. | Dec 2008 | A1 |
20090175178 | Yoon et al. | Jul 2009 | A1 |
20090207838 | Milliken et al. | Aug 2009 | A1 |
20090279440 | Wong et al. | Nov 2009 | A1 |
20090279441 | Wong et al. | Nov 2009 | A1 |
20090279541 | Wong et al. | Nov 2009 | A1 |
20090279542 | Wong et al. | Nov 2009 | A1 |
20090279546 | Davis | Nov 2009 | A1 |
20090279548 | Davis et al. | Nov 2009 | A1 |
20090279549 | Ramanathan et al. | Nov 2009 | A1 |
20090279558 | Davis et al. | Nov 2009 | A1 |
20090279561 | Chang et al. | Nov 2009 | A1 |
20090282148 | Wong et al. | Nov 2009 | A1 |
20090282322 | Wong et al. | Nov 2009 | A1 |
20090287952 | Patel et al. | Nov 2009 | A1 |
20090290499 | Patel et al. | Nov 2009 | A1 |
20100034215 | Patel et al. | Feb 2010 | A1 |
20100046521 | Wong | Feb 2010 | A1 |
20100061393 | Wong | Mar 2010 | A1 |
20100100671 | Singh | Apr 2010 | A1 |
20100135313 | Davis | Jun 2010 | A1 |
20100161894 | Singh | Jun 2010 | A1 |
20100246588 | Davis | Sep 2010 | A1 |
20110044340 | Bansal et al. | Feb 2011 | A1 |
20110069711 | Jha et al. | Mar 2011 | A1 |
20110110237 | Wong et al. | May 2011 | A1 |
20110173386 | Milliken et al. | Jul 2011 | A1 |
20120023309 | Abraham et al. | Jan 2012 | A1 |
20120026868 | Chang et al. | Feb 2012 | A1 |
20120163389 | Zhang et al. | Jun 2012 | A1 |
20120236722 | Patel et al. | Sep 2012 | A1 |
20120294312 | Edward et al. | Nov 2012 | A1 |
20130034098 | Davis | Feb 2013 | A1 |
20130305236 | Ramanathan et al. | Nov 2013 | A1 |
20130343199 | Wong et al. | Dec 2013 | A1 |
20140023086 | Patel et al. | Jan 2014 | A1 |
20140133488 | Patel et al. | May 2014 | A1 |
20140153389 | Wong et al. | Jun 2014 | A1 |
20140233423 | Jha et al. | Aug 2014 | A1 |
Number | Date | Country |
---|---|---|
1380127 | Jan 2004 | EP |
2003289359 | Oct 2003 | JP |
2004-537871 | Dec 2004 | JP |
WO 0184728 | Nov 2001 | WO |
WO 02041544 | May 2002 | WO |
Entry |
---|
U.S. Appl. No. 13/862,160, filed Apr. 12, 2013 by Ramanathan et al. (Unpublished). |
U.S. Appl. No. 13/925,564, filed Jun. 24, 2013 by Wong et al. (Unpublished). |
Non-Final Office Action for U.S. Appl. No. 13/458,650 mailed on Oct. 2, 2013, 5 pages. |
Notice of Allowance for U.S. Appl. No. 11/745,008 mailed on Oct. 7, 2013, 9 pages. |
U.S. Appl. No. 13/766,330, filed Feb. 13, 2013 by Yuen Wong et al. (Unpublished). |
International Search Report for Application No. PCT/US03/08719, Mailed Jun. 17, 2003, 1 page. |
Belhadj et al., “Feasibility of a 100GE MAC”, PowerPoint Presentation, IEEE Meeting Nov. 2006, Nov. 13-15, 2006, 18 pages. |
Braun et al., “Fast incremental CRC updates for IP over ATM networks,” IEEE Workshop on High Performance Switching and Routing, 2001, 6 pages. |
10 Gigabit Ethernet—Technology Overview White Paper, Sep. 2001, 16 pages. |
10 Gigabit Ethernet Alliance, Interconnection with Wide Area Networks, Version 1.0, Mar. 2002, 6 pages. |
Degermark, M., et al., “Small Forwarding Tables for Fast Routing Lookups,” ACM Computer Communications Review 27(4):3-14, Oct. 1997. |
Foundry Networks, “BigIron Architecture Technical Brief,” Oct. 1998—Version 1.0, 15 pages. |
Foundry Networks, “BigIron Architecture Technical Brief,” Oct. 1998—Version 1.02, 15 pages. |
Foundry Networks, “BigIron Architecture Technical Brief,” Dec. 1998—Version 1.03, 14 pages. |
Foundry Networks, “BigIron Architecture Technical Brief,” May 1999—Version 2.01, 15 pages. |
Foundry Networks, “BigIron Architecture Technical Brief,” Jul. 2001—Version 2.02, 16 pages. |
Foundry Networks, “Foundry Networks, Next Generation Terabit System Architecture—The High Performance Revolution for 10 Gigabit Networks,” Nov. 17, 2003, 27 pages. |
Gigabit Ethernet Alliance—“Accelerating the Standard for Speed,” Copyright 1998, 19 pages. |
Kichorowsky, R., et al., “Mindspeed.TM. Switch Fabric Offers the Most Comprehensive Solution for Multi-Protocol Networking Equipment,” Apr. 30, 2001, 3 pages. |
Matsumoto, C., et al., “Switch Fabrics Touted At Interconnects Conference,” Aug. 21, 2000, URL= http://www.eetimes.com/story/OEG2000821S0011, accessed Aug. 12, 2002, 2 pages. |
Mcauley, A., et al., “Fast Routing Table Lookup Using CAMs,” Proceedings of INFOCOM, Mar.-Apr. 1993, 10 pages. |
Foundry Networks, “JetCore™ Based Chassis Systems—An Architecture Brief on NetIron, BigIron, and FastIron Systems,” Jan. 17, 2003, 27 pages. |
Mier Communications, Inc., “Lab Testing Summary Report—Product Category: Layer-3 Switches, Vendor Tested:, Product Tested: Foundry Networks, BigIron 4000,” Report No. 231198, Oct. 1998, 6 pages. |
Mier Communications, Inc.,“Lab Testing Summary Report—Product Category: Gigabit Backbone Switches, Vendor Tested: Foundry Networks, Product Tested: BigIron 4000,” Report No. 210998, Sep. 1998, 6 pages. |
Mindspeed—A Conexant Business, “Switch Fabric Chipset—CX27300 iScale.TM.,” Apr. 30, 2001, 2 pages. |
Mindspeed—A Conexant Business, “17×17 3.2 Gbps Crosspoint Switch with Input Equalization—M21110,” Feb. 1, 2001, 2 pages. |
The Tolly Group, “Foundry Networks, Inc.—BigIron 4000, Layer 2 & Layer 3 Interoperability Evaluation,” No. 199133, Oct. 1999, 4 pages. |
The Tolly Group, “Foundry Networks, Inc.—BigIron 8000 Gigabit Ethernet Switching Router, Layer 2 & Layer 3 Performance Evaluation,” No. 199111, May 1999, 4 pages. |
Satran et al., “Out of Order Incremental CRC Computation,” IEEE Transactions on Computers, vol. 54, Issue 9 Sep. 2005), pp. 1178-1181. |
Spurgeon, C., “Éthernet, The Definitive Guide,” O'Reilly & Associates, Inc., Sebastopol, CA, Feb. 2000. (Not being submitted as applicants' believe the Examiner can obtain ad this reference from the file history or issued US Patent Nos. 7,813,367 and 7,812,912). |
ANSI/IEEE Standard 802.1D, 1998 Edition, 373 pages. |
Newton, Newton's Telecom Dictionary, CMP Books, Mar. 2004, 20th Ed., 3 pages. |
International Preliminary Examination Report for Application No. PCT/US2001/043113, mailed Nov. 6, 2003, 6 pages. |
Written Opinion of the International Searching Authority for Application No. PCT/US2001/043113, mailed May 1, 2003, 6 pages. |
International Search Report for Application No. PCT/US2001/043113, mailed Dec. 13, 2002, 2 pages. |
GUPTA et al., “Packet Classification on Multiple Fields,” SIGCOMM '99, Aug. 1999, 14 pages., ACM, Cambridge, MA. |
Final Office Action for U.S. Appl. No. 11/745,008, mailed on Jun. 28, 2012, 13 pages. |
Final Office Action for U.S. Appl. No. 11/646,845, mailed on Jul. 5, 2012, 17 pages. |
Non-Final Office Action for U.S. Appl. No. 12/900,279, mailed Aug. 30, 2012, 9 pages. |
Non-Final Office Action for U.S. Appl. No. 12/198,710, mailed Sep. 13, 2012, 18 pages. |
Non-Final Office Action for U.S. Appl. No. 13/083,481, mailed Oct. 4, 2012, 9 pages. |
Non-Final Office Action for U.S. Appl. No. 12/880,518, mailed Oct. 30, 2012, 7 pages. |
Non-Final Office Action for U.S. Appl. No. 13/152,715, mailed on Nov. 13, 2012, 6 pages. |
Notice of Allowance for U.S. Appl. No. 11/953,742, mailed on Nov. 13, 2012, 7 pages. |
Non-Final Office Action for U.S. Appl. No. 13/398,725, mailed on Nov. 28, 2012, 10 pages. |
Non-Final Office Action for U.S. Appl. No. 09/855,024, mailed Jun. 4, 2002, 9 pages. |
Final Office Action for U.S. Appl. No. 09/855,024, mailed Jan. 15, 2003, 14 pages. |
Advisory Action for U.S. Appl. No. 09/855,024, mailed May 2, 2003, 7 pages. |
Notice of Allowance for U.S. Appl. No. 09/855,024, mailed Nov. 3, 2003, 5 pages. |
Notice of Allowance for U.S. Appl. No. 09/855,024, mailed Dec. 15, 2003, 3 pages. |
Non-Final Office Action for U.S. Appl. No. 10/810,301, mailed Mar. 17, 2005,11 pages. |
Non-Final Office Action for U.S. Appl. No. 10/810,301, mailed Feb. 16, 2006, 12 pages. |
Non-Final Office Action for U.S. Appl. No. 10/210,041, mailed Sep. 10, 2003, 12 pages. |
Final Office Action for U.S. Appl. No. 10/210,041, mailed Jan. 7, 2004, 14 pages. |
Non-Final Office Action for U.S. Appl. No. 10/210,041, mailed Mar. 11, 2004, 12 pages. |
Final Office Action for U.S. Appl. No. 10/210,041, mailed Jul. 7, 2004, 13 pages. |
Non-Final Office Action for U.S. Appl. No. 10/210,041, mailed Feb. 9, 2005, 7 pages. |
Final Office Action for U.S. Appl. No. 10/210,041, mailed Aug. 24, 2005, 7 pages. |
Advisory Action for U.S. Appl. No. 10/210,041, mailed Dec. 13, 2005, 4 pages. |
Notice of Allowance for U.S. Appl. No. 10/810,301, mailed Feb. 6, 2007, 9 pages. |
Non-Final Office Action for U.S. Appl. No. 09/855,025, mailed Nov. 23, 2004, 17 pages. |
Non-Final Office Action for U.S. Appl. No. 09/855,031, mailed May 22, 2002, 10 pages. |
Non-Final Office Action for U.S. Appl. No. 09/855,031, mailed Dec. 10, 2002, 10 pages. |
Final Office Action for U.S. Appl. No. 09/855,031, mailed Jul. 30, 2003, 13 pages. |
Notice of Allowance for U.S. Appl. No. 09/855,031, mailed Nov. 4, 2003, 5 pages. |
Non-Final Office Action for U.S. Appl. No. 10/736,680, mailed Feb. 16, 2006, 18 pages. |
Final Office Action for U.S. Appl. No. 10/736,680, mailed Aug. 3, 2006, 10 pages. |
Notice of Allowance for U.S. Appl. No. 10/736,680, mailed Feb. 22, 2007, 12 pages. |
Non-Final Office Action for U.S. Appl. No. 10/210,108, mailed Jun. 12, 2003, 6 pages. |
Notice of Allowance for U.S. Appl. No. 10/210,108, mailed Oct. 7, 2003, 5 pages. |
Requirement for Restriction/Election for U.S. Appl. No. 10/438,545, mailed Oct. 31,2003, 3 pages. |
Non-Final Office Action for U.S. Appl. No. 10/438,545, mailed Dec. 19, 2003, 5 pages. |
Notice of Allowance for U.S. Appl. No. 10/438,545, mailed Jun. 15, 2004, 6 pages. |
Non-Final Office Action for U.S. Appl. No. 10/832,086, mailed Sep. 19, 2007, 11 pages. |
Final Office Action for U.S. Appl. No. 10/832,086, mailed May 1, 2008, 31 pages. |
Advisory Action for U.S. Appl. No. 10/832,086, mailed Jul. 21, 2008, 4 pages. |
Non-Final Office Action for U.S. Appl. No. 10/832,086, mailed Sep. 18, 2008, 18 pages. |
Non Final Office Action for U.S. Appl. No. 10/832,086, mailed Apr. 1, 2009 ,17 pages. |
Final Office Action for U.S. Appl. No. 10/832,086, mailed Sep. 29, 2009, 26 pages. |
Non-Final Office Action for U.S. Appl. No. 11/586,991, mailed Oct. 2, 2008, 23 pages. |
Non-Final Office Action for U.S. Appl. No. 11/646,845, mailed on Oct. 4, 2010, 47 pages. |
Final Office Action for U.S. Appl. No. 11/646,845, mailed on Jun. 9, 2011, 22 pages. |
Non-Final Office Action for U.S. Appl. No. 11/646,845, mailed on Oct. 14, 2011, 19 pages. |
Final Office Action for U.S. Appl.No. 12/900,279 mailed on Dec. 5, 2012, 8 pages. |
Non-Final Office Action for U.S. Appl. No. 11/831,950, mailed Aug. 18, 2009, 49 pages. |
Final Office Action for U.S. Appl. No. 11/831,950, mailed on Jan. 6, 2010, 23 pages. |
Advisory Action for U.S. Appl. No. 11/831,950, mailed on Mar. 4, 2010, 4 pages. |
Non-Final Office Action for U.S. Appl. No. 11/831,950, mailed Aug. 26, 2011, 45 pages. |
Final Office Action for U.S. Appl. No. 11/831,950, mailed on Feb. 28, 2012, 20 pages. |
Notice of Allowance for U.S. Appl. No. 11/831,950, mailed May 16, 2012, 9 pages. |
Non-Final Office Action for U.S. Appl. No. 11/953,742, mailed on Nov. 19, 2009, 51 pages. |
Final Office Action for U.S. Appl. No. 11/953,742, mailed on Jun. 14, 2010, 21 pages. |
Non-Final Office Action for U.S. Appl. No. 11/953,742, mailed on Mar. 30, 2011, 23 pages. |
Final Office Action for U.S. Appl. No. 11/953,742, mailed on Oct. 26, 2011, 19 pages. |
Non-Final Office Action for U.S. Appl. No. 11/953,743, mailed on Nov. 23, 2009, 47 pages. |
Final Office Action for U.S. Appl. No. 11/953,743, mailed on Jul. 15, 2010, 21 pages. |
Notice of Allowance for U.S. Appl. No. 11/953,743, mailed on Apr. 28, 2011, 19 pages. |
Non-Final Office Action for U.S. Appl. No. 11/953,745, mailed on Nov. 24, 2009, 48 pages. |
Non-Final Office Action for U.S. Appl. No. 11/953,745, mailed on Jun. 14, 2010, 19 pages. |
Non-Final Office Action for U.S. Appl. No. 11/953,751, mailed on Nov. 16, 2009, 55 pages. |
Final Office Action for U.S. Appl. No. 11/953,751, mailed on Jun. 25, 2010, 24 pages. |
Non-Final Office Action for U.S. Appl. No. 11/953,751, mailed on Mar. 29, 2011, 31 pages. |
Notice of Allowance for U.S. Appl. No. 11/953,751, mailed Dec. 7, 2011, 12 pages. |
Supplemental Notice of Allowance for U.S. Appl. No. 11/953,751, mailed Dec. 27, 2011, 6 pages. |
Non-Final Office Action for U.S. Appl. No. 11/779,778, mailed on Feb. 2, 2011, 63 pages. |
Notice of Allowance for U.S. Appl. No. 11/779,778, mailed on Jul. 28, 2011, 11 pages. |
Non-Final Office Action for U.S. Appl. No. 11/779,714, mailed Sep. 1, 2009, 58 pages. |
Non-Final Office Action for U.S. Appl. No. 11/779,714, mailed on Mar. 31, 2010, 29 pages. |
Final Office Action for U.S. Appl. No. 11/779,714, mailed on Nov. 9, 2010, 24 pages. |
Non-Final Office Action for U.S. Appl. No. 12/624,300, mailed on Dec. 31, 2012, 13 pages. |
Non-Final Office Action for U.S. Appl. No. 10/810,208, mailed Jul. 16, 2007, 24 pages. |
Non-Final Office Action for U.S. Appl. No. 10/810,208, mailed Dec. 18, 2007, 40 pages. |
Final Office Action for U.S. Appl. No. 10/810,208, mailed Jun. 11, 2008, 34 pages. |
Advisory Action for U.S. Appl. No. 10/810,208, mailed Aug. 27, 2008, 4 pages. |
Non-Final Office Action for U.S. Appl. No. 10/810,208, mailed Feb. 13, 2009, 17 pages. |
Non-Final Office Action for U.S. Appl. No. 10/810,208, mailed Aug. 24, 2009, 38 pages. |
Non-Final Office Action for U.S. Appl. No. 10/810,208, mailed on Feb. 5, 2010, 15 pages. |
Notice of Allowance for U.S. Appl. No. 10/810,208, mailed on Jul. 15, 2010, 15 pages. |
Non-Final Office Action for U.S. Appl. No. 11/668,322, mailed on Jun. 22, 2010, 16 pages. |
Requirement for Restriction/Election for U.S. Appl. No. 10/140,752, mailed May 18, 2006, 8 pages. |
Non-Final Office Action for U.S. Appl. No. 10/140,752, mailed Dec. 14, 2006, 17 pages. |
Non-Final Office Action for U.S. Appl. No. 10/140,752, mailed Apr. 23, 2007, 6 pages. |
Non-Final Office Action for U.S. Appl. No. 10/140,752, mailed Jan. 24, 2008, 8 pages. |
Notice of Allowance of U.S. Appl. No. 10/140,752, mailed Jul. 24, 2008, 14 pages. |
Notice of Allowance of U.S. Appl. No. 10/140,752, mailed Sep. 10, 2008, 5 pages. |
Non-Final Office Action for U.S. Appl. No. 11/668,322, mailed Mar. 23, 2009, 19 pages. |
Requirement for Restriction/Election for U.S. Appl. No. 11/668,322, mailed on Oct. 29, 2009, 6 pages. |
Final Office Action for U.S. Appl. No. 11/668,322, mailed on Feb. 24, 2010, 33 pages. |
Final Office Action for U.S. Appl. No. 11/668,322, mailed on Feb. 1, 2011, 17 pages. |
Non-Final Office Action for U.S. Appl. No. 11/668,322, mailed on Aug. 30, 2011 17 pages. |
Notice of Allowance for U.S. Appl. No. 11/668,322, mailed on Feb. 10, 2012, 20 pages. |
Non-Final Office Action for U.S. Appl. No. 11/854,486, mailed Jul. 20, 2009, 29 pages. |
Non-Final Office Action for U.S. Appl. No. 11/854,486, mailed on Jan. 12, 2010, 23 pages. |
Notice of Allowance for U.S. Appl. No. 11/854,486, mailed on Jul. 13, 2010, 12 pages. |
Non-Final Office Action for U.S. Appl. No. 10/139,912, mailed Jan. 25, 2006, 14 pages. |
Final Office Action for U.S. Appl. No. 10/139,912, mailed Aug. 11, 2006, 26 pages. |
Non-Final Office Action for U.S. Appl. No. 10/139,912, mailed Apr. 20, 2007, 20 pages. |
Final Office Action for U.S. Appl. No. 10/139,912, mailed Nov. 28, 2007, 20 pages. |
Non-Final Office Action for U.S. Appl. No. 10/139,912, mailed Aug. 1, 2008, 21 pages. |
Notice of Allowance for U.S. Appl. No. 10/139,912, mailed Feb. 5, 2009, 8 pages. |
Notice of Allowance for U.S. Appl. No. 10/139,912, mailed Jun. 8, 2009, 8 pages. |
Notice of Allowance for U.S. Appl. No. 10/139,912, mailed on Oct. 19, 2009, 17 pages. |
Supplemental Notice of Allowance for U.S. Appl. No. 10/139,912, mailed on Nov. 23, 2009, 4 pages. |
Requirement for Restriction/Election for U.S. Appl. No. 10/140,751, mailed Apr. 27, 2006, 5 pages. |
Non-Final Office Action for U.S. Appl. No. 10/140,751, mailed Aug. 10, 2006, 15 pages. |
Final Office Action for U.S. Appl. No. 10/140,751, mailed Apr. 10, 2007, 16 pages. |
Non-Final Office Action for U.S. Appl. No. 10/140,751, mailed Oct. 30, 2007, 14 pages. |
Final Office Action for U.S. Appl. No. 10/140,751, mailed May 28, 2008, 19 pages. |
Non-Final Office Action for U.S. Appl. No. 10/140,751, mailed Sep. 17, 2008, 16 pages. |
Final Office Action for U.S. Appl. No. 10/140,751, mailed Mar. 17, 2009, 17 pages. |
Advisory Action for U.S. Appl. No. 10/140,751, mailed Jun. 1, 2009, 3 pages. |
Non-Final Office Action for U.S. Appl. No. 10/140,751, mailed on Sep. 28, 2009, 34 pages. |
Final Office Action for U.S. Appl. No. 10/140,751, mailed on Mar. 25, 2010, 29 pages. |
Non-Final Office Action for U.S. Appl. No. 10/140,751, mailed Dec. 20, 2010, 23 pages. |
Final Office Action for U.S. Appl. No. 10/140,751, mailed on Jun. 28, 2011, 23 pages. |
Non-Final Office Action for U.S. Appl. No. 11/745,008, mailed May 14, 2009, 27 pages. |
Final Office Action for U.S. Appl. No. 11/745,008, mailed on Dec. 30, 2009, 27 pages. |
Advisory Action for U.S. Appl. No. 11/745,008, mailed on Apr. 21, 2010, 8 pages. |
Non-Final Office Action for U.S. Appl. No. 11/745,008, mailed on Sep. 14, 2011, 26 pages. |
Notice of Allowance for U.S. Appl. No. 11/646,845 mailed on Jan. 8, 2013, 8 pages. |
Non-Final Office Action for U.S. Appl. No. 10/141,223, mailed Feb. 23, 2006, 25 pages. |
Non-Final Office Action for U.S. Appl. No. 10/141,223, mailed Feb. 13, 2007, 29 pages. |
Final Office Action for U.S. Appl. No. 10/141,223, mailed Aug. 21, 2007, 25 pages. |
Non-Final Office Action for U.S. Appl. No. 10/141,223, mailed Dec. 28, 2007, 13 pages. |
Non-Final Office Action for U.S. Appl. No. 10/141,223, mailed Sep. 3, 2008, 22 pages. |
Non-Final Office Action for U.S. Appl. No. 10/139,831, mailed Oct. 17, 2005, 7 pages. |
Notice of Allowance for U.S. Appl. No. 10/139,831, mailed Feb. 9, 2006, 7 pages. |
Non-Final Office Action for U.S. Appl. No. 10/139,831, mailed Jun. 27, 2006, 9 pages. |
Final Office Action for U.S. Appl. No. 10/139,831, mailed Nov. 28, 2006, 17 pages. |
Notice of Allowance for U.S. Appl. No. 10/139,831, mailed Jun. 14, 2007, 26 pages. |
Notice of Allowance for U.S. Appl. No. 10/139,831, mailed Jun. 26, 2007, 10 pages. |
Non-Final Office Action for U.S. Appl. No. 11/828,246, mailed Jun. 15, 2009, 26 pages. |
Notice of Allowance for U.S. Appl. No. 11/828,246, mailed on Nov. 16, 2009, 4 pages. |
Non-Final Office Action for U.S. Appl. No. 12/702,031, mailed on Apr. 29, 2011, 5 pages. |
Non-Final Office Action for U.S. Appl. No. 10/140,088, mailed Apr. 27, 2006, 13 pages. |
Notice of Allowance for U.S. Appl. No. 10/140,088, mailed Sep. 7, 2006, 13 pages. |
Notice of Allowance for U.S. Appl. No. 10/140,088, mailed Oct. 24, 2006, 8 pages. |
Notice of Allowance for U.S. Appl. No. 10/140,088, mailed Jan. 11, 2007, 5 pages. |
Non-Final Office Action for U.S. Appl. No. 11/621,038, mailed Apr. 23, 2009, 44 pages. |
Final Office Action for U.S. Appl. No. 11/621,038, mailed on Dec. 23, 2009, 10 pages. |
Notice of Allowance for U.S. Appl. No. 11/621,038, mailed on Apr. 28, 2010, 5 pages. |
Non-Final Office Action for U.S. Appl. No. 12/795,492, mailed on Mar. 17, 2011, 15 pages. |
Final Office Action for U.S. Appl. No. 12/795,492, mailed on Jul. 20, 2011, 11 pages. |
Notice of Allowance for U.S. Appl. No. 12/795,492, mailed on Nov. 14, 2011, 10 pages. |
Non-Final Office Action for U.S. Appl. No. 12/198,697, mailed on Feb. 2, 2010, 19 pages. |
Final Office Action for U.S. Appl. No. 12/198,697, mailed on Aug. 2, 2010, 22 pages. |
Non-Final Office Action for U.S. Appl. No. 12/198,697, mailed on Oct. 25, 2010, 23 pages. |
Non-Final Office Action for U.S. Appl. No. 12/198,697, mailed on May 20, 2011, 43 pages. |
Notice of Allowance for U.S. Appl. No. 12/198,697, mailed Nov. 28, 2011, 12 pages. |
Notice of Allowance for U.S. Appl. No. 12/198,697, mailed Jan. 5, 2012, 4 pages. |
Non-Final Office Action for U.S. Appl. No. 10/140,749, mailed Aug. 10, 2006, 22 pages. |
Final Office Action for U.S. Appl. No. 10/140,749, mailed Jun. 27, 2007, 23 pages. |
Final Office Action for U.S. Appl. No. 10/140,749, mailed Jan. 8, 2008, 23 pages. |
Non-Final Office Action for U.S. Appl. No. 10/140,749, mailed Jun. 6, 2008, 28 pages. |
Final Office Action for U.S. Appl. No. 10/140,749, mailed Dec. 8, 2008, 30 pages. |
Non-Final Office Action for U.S. Appl. No. 10/140,749, mailed May 27, 2009, 38 pages. |
Final Office Action for U.S. Appl. No. 10/140,749, mailed Jan. 13, 2010, 28 pages. |
Non-Final Office Action for U.S. Appl. No. 10/140,753, mailed Apr. 20, 2006, 11 pages. |
Final Office Action for U.S. Appl. No. 10/140,753, mailed Jan. 10, 2007, 27 pages. |
Non-Final Office Action for U.S. Appl. No. 10/140,753, mailed Aug. 22, 2007, 14 pages. |
Non-Final Office Action for U.S. Appl. No. 10/140,753, mailed Jan. 8, 2008, 14 pages. |
Final Office Action for U.S. Appl. No. 10/140,753, mailed Aug. 25, 2008, 22 pages. |
Non-Final Office Action for U.S. Appl. No. 12/198,710, mailed on Sep. 28, 2010, 14 pages. |
Non-Final Office Action for U.S. Appl. No. 12/198,710, mailed on Mar. 24, 2011, 39 pages. |
Final Office Action for U.S. Appl. No. 12/198,710, mailed on Oct. 19, 2011, 58 pages. |
Requirement for Restriction/Election for U.S. Appl. No. 11/000,359, mailed Jun. 20, 2008, 7 pages. |
Non-Final Office Action for U.S. Appl. No. 11/000,359, mailed Oct. 23, 2008, 10 pages. |
Non-Final Office Action for U.S. Appl. No. 11/000,359, mailed May 29, 2009, 14 pages. |
Notice of Allowance for U.S. Appl. No. 11/000,359, mailed on Sep. 22, 2009, 4 pages. |
Requirement for Restriction/Election for U.S. Appl. No. 12/608,972, mailed May 17, 2012, 5 pages. |
Requirement for Restriction/Election for U.S. Appl. No. 11/118,697, mailed Jun. 2, 2009, 8 pages. |
Notice of Allowance for U.S. Appl. No. 11/118,697, mailed on Sep. 30, 2009, 7 pages. |
Requirement for Restriction/Election for U.S. Appl. No. 12/639,749, mailed on Dec. 7, 2010, 6 pages. |
Notice of Allowance for U.S. Appl. No. 12/639,749, mailed on Feb. 11, 2011, 8 pages. |
Non-Final Office Action for U.S. Appl. No. 09/855,038, mailed Jun. 2, 2005, 14 pages. |
Final Office Action for U.S. Appl. No. 09/855,038, mailed Feb. 7, 2006, 8 pages. |
Non-Final Office Action for U.S. Appl. No. 09/855,038, mailed Oct. 4, 2006, 14 pages. |
Notice of Allowance for U.S. Appl. No. 09/855,038, mailed Apr. 26, 2007, 8 pages. |
Non-Final Office Action for U.S. Appl. No. 12/639,762, mailed on Sep. 1, 2010, 5 pages. |
Non-Final Office Action for U.S. Appl. No. 09/988,066, mailed Jul. 14, 2006, 17 pages. |
Non-Final Office Action for U.S. Appl. No. 09/988,066, mailed Apr. 6, 2007, 22 pages. |
Final Office Action for U.S. Appl. No. 09/988,066, mailed Oct. 31, 2007, 16 pages. |
Notice of Allowance for U.S. Appl. No. 12/639,762, mailed on Mar. 4, 2011, 5 pages. |
Notice of Allowance for U.S. Appl. No. 09/988,066, mailed Oct. 30, 2008, 8 pages. |
Requirement for Restriction/Election for U.S. Appl. No. 09/988,066, mailed Dec. 13, 2005, 7 pages. |
Advisory Action for U.S. Appl. No. 09/988,066, mailed May 28, 2008, 4 pages. |
Notice of Allowance for U.S. Appl. No. 09/988,066, mailed Jan. 9, 2009, 13 pages. |
Non Final Office Action U.S. Appl. No. 11/804,977, mailed Jan. 14, 2008, 13 pages. |
Notice of Allowance for U.S. Appl. No. 11/804,977, mailed Nov. 19, 2008, 17 pages. |
Non-Final Office Action for U.S. Appl. No. 12/400,594, mailed on May 14, 2010, 19 pages. |
Final Office Action for U.S. Appl. No. 12/400,594, mailed on Oct. 28, 2010, 9 pages. |
Notice of Allowance for U.S. Appl. No. 12/400,594, mailed on Mar. 23, 2011, 8 pages. |
Non-Final Office for U.S. Appl. No. 12/400,645, mailed on Sep. 1, 2010, 8 pages. |
Notice of Allowance for U.S. Appl. No. 12/400,645, mailed on Jan. 26, 2011, 12 pages. |
Non-Final Office Action for U.S. Appl. No. 12/372,390, mailed on Apr. 22, 2010, 12 pages. |
Non-Final Office Action for U.S. Appl. No. 12/372,390, mailed on Sep. 13, 2010, 6 pages. |
Notice of Allowance for U.S. Appl. No. 12/372,390, mailed on Mar. 9, 2011, 5 pages. |
Non-Final Office Action for U.S. Appl. No. 09/855,015, mailed Oct. 28, 2004, 12 pages. |
Non-Final Office Action for U.S. Appl. No. 09/855,015, mailed Jan. 12, 2006, 6 pages. |
Notice of Allowance for U.S. Appl. No. 09/855,015, mailed Sep. 8, 2006, 3 pages. |
Non-Final Office Action for U.S. Appl. No. 12/505,390, mailed on Oct. 28, 2010, 16 pages. |
Notice of Allowance for U.S. Appl. No. 09/855,015, mailed Jan. 7, 2008, 8 pages. |
Supplemental Notice of Allowance for U.S. Appl. No. 09/855,015, mailed Feb. 4, 2008, 18 pages. |
Non-Final Office Action for U.S. Appl. No. 13/083,481, mailed on Dec. 1, 2011, 7 pages. |
Requirement for Restriction/Election for U.S. Appl. No. 09/855,015, mailed Nov. 3, 2006, 6 pages. |
Non-Final Office Action for U.S. Appl. No. 12/070,893, mailed on Jun. 10, 2010, 9 pages. |
Final Office Action for U.S. Appl. No. 12/070,893, mailed on Nov. 24, 2010, 8 pages. |
Non-Final Office Action for U.S. Appl. No. 12/070,893, mailed on Mar. 18, 2011, 6 pages. |
Final Office Action for U.S. Appl. No. 12/070,893, mailed on Sep. 21, 2011, 12 pages. |
Requirement for Restriction/Election for U.S. Appl. No. 12/466,277, mailed on Aug. 9, 2011, 6 pages. |
Notice of Allowance for U.S. Appl. No. 12/466,277, mailed on Nov. 2, 2011, 47 pages. |
Non-Final Office Action for U.S. Appl. No. 12/684,022, mailed Jul. 30, 2012, 18 pages. |
Non-Final Office Action for U.S. Appl. No. 11/611,067, mailed Feb. 20, 2009, 11 pages. |
Final Office Action for U.S. Appl. No. 11/611,067, mailed on Oct. 16, 2009, 8 pages. |
Non-Final Office Action for U.S. Appl. No. 11/611,067, mailed on Dec. 8, 2009, 8 pages. |
Non-Final Office Action for U.S. Appl. No. 11/615,769, mailed Apr. 15, 2009, 11 pages. |
Final Office Action for U.S. Appl. No. 11/615,769, mailed on Jan. 22, 2010, 7 pages. |
Advisory Action for U.S. Appl. No. 11/615,769, mailed on May 25, 2010, 3 pages. |
Notice of Allowance for U.S. Appl. No. 11/615,769, mailed on Jul. 12, 2010, 8 pages. |
Notice of Allowance for U.S. Appl. No. 11/779,714, mailed on Jun. 18, 2012, 7 pages. |
Final Office Action for U.S. Appl. No. 12/198,710, mailed on Mar. 21, 2013, 17 pages. |
Non-Final Office Action for U.S. Appl. No. 13/083,481, mailed on Mar. 1, 2013, 14 pages. |
Notice of Allowance for U.S. Appl. No. 10/810,301, mailed Jul. 28, 2006, 5 pages. |
Non-Final Office Action for U.S. Appl. No. 11/745,008, mailed on Mar. 7, 2013, 18 pages. |
Non-Final Office Action for U.S. Appl. No. 12/900,279, mailed on Apr. 11, 2013, 7 pages. |
Non-Final Office Action for U.S. Appl. No. 12/608,985, mailed on May 31, 2013, 9 pages. |
Notice of Allowance for U.S. Appl. No. 12/198,710, mailed on May 28, 2013, 10 pages. |
Non-Final Office Action for U.S. Appl. No. 13/398,725, mailed on Aug. 30, 2013, 8 pages. |
Notice of Allowance for U.S. Appl. No. 12/684,022, mailed on Aug. 20, 2013, 10 pages. |
Notice of Allowance for U.S. Appl. No. 13/083,481, mailed on Sep. 3, 2013, 9 pages. |
Non-Final Office Action for U.S. Appl. No. 10/832,086, mailed on Sep. 9, 2013, 13 pages. |
Non-Final Office Action for U.S. Appl. No. 12/608,972, mailed on Sep. 16, 2013, 6 pages. |
Non-Final Office Action for U.S. Appl. No. 14/075,331 mailed on Aug. 15, 2014, 17 pages. |
Non-Final Office Action for U.S. Appl. No. 13/925,564 mailed on Oct. 3, 2014, 9 pages. |
Non-Final Office Action for U.S. Appl. No. 13/939,730 mailed on Sep. 25, 2014, 11 pages. |
Notice of Allowance for U.S. Appl. No. 14/075,331 mailed on Nov. 12, 2014, 10 pages. |
U.S. Appl. No. 14/082,546, filed Nov. 18, 2013 by Jha et al. (Unpublished). |
Final Office Action for U.S. Appl. No. 12/900,279 mailed on Sep. 27, 2013, 8 pages. |
Non-Final Office Action for U.S. Appl. No. 12/624,300 mailed on Oct. 31, 2013, 16 pages. |
Notice of Allowance for U.S. Appl. No. 12/608,985 mailed on Dec. 24, 2013, 7 pages. |
Final Office Action for U.S. Appl. No. 12/608,972 mailed on Jan. 17, 2014, 5 pages. |
Final Office Action for U.S. Appl. No. 13/398,725 mailed on Mar. 13, 2014, 10 pages. |
Notice of Allowance for U.S. Appl. No. 10/832,086 mailed on Mar. 14, 2014 5 pages. |
Notice of Allowance for U.S. Appl. No. 12/608,972 mailed on Apr. 9, 2014, 7 pages. |
U.S. Appl. No. 14/326,859, filed Jul. 17, 2014 by Wong. (Unpublished). |
Non-Final Office Action for U.S. Appl. No. 13/862,160 mailed on Jun. 17, 2014, 11 pages. |
Final Office Action for U.S. Appl. No. 12/624,300 mailed on Jun. 27, 2014, 15 pages. |
Notice of Allowance for U.S. Appl. No. 13/398,725 mailed on Jun. 24, 2014, 7 pages. |
Final Office Action for U.S. Appl. No. 13/485,650 mailed on Jul. 17, 2014, 10 pages. |
Non-Final Office Action for U.S. Appl. No. 14/082,546 mailed on Jan. 22, 2015, 9 pages. |
Final Office Action for U.S. Appl. No. 13/862,160 mailed on Jan. 23, 2015, 16 pages. |
Non-Final Office Action for U.S. Appl. No. 13/766,330 mailed on Jan. 28, 2015, 9 pages. |
Notice of Allowance for U.S. Appl. No. 13/939,730 mailed on Feb. 27, 2015, 9 pages. |
Number | Date | Country | |
---|---|---|---|
20120275294 A1 | Nov 2012 | US |
Number | Date | Country | |
---|---|---|---|
60937270 | Jun 2007 | US | |
60860882 | Nov 2006 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 11831950 | Jul 2007 | US |
Child | 13548116 | US |