The present invention relates in general to recovering the Basic Input Output System (BIOS) image for a computer system upon a remote or local request or in the case of a boot-up failure.
The BIOS image, which includes both programs and data, is an essential set of routines in a personal computer (PC) or other computer system which is stored within the computer and provides an interface between the operating system and the hardware. The read-only locations in the BIOS image contain boot block code that is executed first after any power-up or system reset of the computer system. The BIOS image supports all peripheral technologies and internal services such as the real-time clock (time and date). On startup, code in the BIOS image (may be referred to as simply BIOS) tests the system and prepares the computer for operation by querying its own small memory bank for peripheral drive and other configuration settings. It searches for other BIOS images on the plug-in boards and sets up pointers (interrupt vectors) in memory to access those routines. It then loads the operating system and passes control to it. The BIOS accepts requests from the peripheral drivers as well as the application programs. The BIOS image must periodically be updated to keep pace with new peripheral technologies. If the BIOS image is stored in a read-only memory (ROM) chip (ROM BIOS), then to update the BIOS image the ROM chip must be replaced. In newer systems, the BIOS image is stored on an electronically erasable programmable read only memory (EEPROM) that may be upgraded via software. One problem with this method is that the BIOS in the EEPROM may be corrupted during the upgrade process. For example, corruption may occur if power is lost while updating the system BIOS image. To recover from the power loss, the covers of the system are opened and a jumper directs the receipt of a new BIOS image from an external storage device (e.g., a diskette). The diskette data is recorded into the EEPROM and then upon system re-boot the new BIOS image is used for setting up the system. The above method requires the system to be equipped with a diskette or other external readable storage media (e.g., CD-ROM) and it requires that the system covers be opened to manually direct (e.g., with a jumper) writing of the EEPROM with new BIOS image. Many new systems, while containing a hard drive, come without a diskette, CD-ROM, or other removable media drive. These systems which contain only a hard drive still require some method to recover a lost or corrupted BIOS image. It would be convenient to not require the opening of the covers of a system to update the stored BIOS image in an EEPROM, and it would be cost effective to eliminate nonessential storage devices incorporated in systems primarily for BIOS image recovery.
Therefore, there is a need for a method and system to allow the BIOS image to be recovered in a system with only a hard drive without requiring the covers of the system to be opened or requiring that the system be equipped with a diskette drive or a CD-ROM drive.
A computer system has an Integrated Drive Electronics (IDE) compatible hard drive storage device and a method for communicating with the system via either a wide area network (WAN) connection or a local area network (LAN). The IDE or equivalent hard drive is equipped with a feature that supports designations of partitions of the hard drive to be hidden and protected during the period when the operating system (OS) is in control and executing. The boot block code in the BIOS image stored in the EEPROM includes recovery code that searches the hidden partition of the hard drive for a BIOS image. The system manufacturer may place a recovery image in the hidden partition which then is used to recover the system in case the original BIOS image in the EEPROM is corrupted. If the active BIOS image in the EEPROM is corrupted, then on a recovery event, the boot block recovery code rewrites the BIOS image in the EEPROM with the BIOS image stored in the hidden portion of the hard drive. The BIOS image in the hidden partition of the hard drive may be updated via the external communication connection or in some instances from a diskette drive or a compact disk read-only memory (CD-ROM) drive.
The foregoing has outlined rather broadly the features and technical advantages of the present invention in order that the detailed description of the invention that follows may be better understood. Additional features and advantages of the invention will be described hereinafter which form the subject of the claims of the invention.
For a more complete understanding of the present invention, and the advantages thereof, reference is now made to the following descriptions taken in conjunction with the accompanying drawings, in which:
In the following description, numerous specific details are set forth to provide a thorough understanding of the present invention. However, it will be obvious to those skilled in the art that the present invention may be practiced without such specific details. In other instances, well-known circuits have been shown in block diagram form in order not to obscure the present invention in unnecessary detail. For the most part, details concerning timing considerations and the like have been omitted in as much as such details are not necessary to obtain a complete understanding of the present invention and are within the skills of persons of ordinary skill in the relevant art.
Refer now to the drawings wherein depicted elements are not necessarily shown to scale and wherein like or similar elements are designated by the same reference numeral through the several views.
Integrated Drive Electronics (IDE) is a type of hardware interface widely used to connect hard disks, CD-ROMs and tape drives to a personal computer (PC). IDE, as an interface, is very popular because it is an economical way to connect peripherals. Starting out with 10 MB capacities years ago, 6 GB and 10 GB IDE hard disks have become entry level, costing less than a penny per megabyte. With IDE, the controller electronics is built into the drive itself, requiring a simpler circuit in the PC for connection. IDE drives were attached to earlier PCs using an IDE host adapter card. Today, two Enhanced IDE (EIDE) sockets are built onto the motherboard, and each socket connects to two devices via a 40-pin ribbon cable.
Although the present invention and its advantages have been described in detail, it should be understood that various changes, substitutions and alterations can be made herein without departing from the spirit and scope of the invention as defined by the appended claims.
Number | Name | Date | Kind |
---|---|---|---|
5410699 | Bealkowski et al. | Apr 1995 | A |
5579522 | Christeson et al. | Nov 1996 | A |
5864698 | Krau et al. | Jan 1999 | A |
5978912 | Rakavy et al. | Nov 1999 | A |
6003130 | Anderson | Dec 1999 | A |
6009524 | Olarig et al. | Dec 1999 | A |
6122733 | Christeson et al. | Sep 2000 | A |
6185696 | Noll | Feb 2001 | B1 |
6282642 | Cromer et al. | Aug 2001 | B1 |
6282643 | Cromer et al. | Aug 2001 | B1 |
6308265 | Miller | Oct 2001 | B1 |
6438640 | Miyamoto et al. | Aug 2002 | B1 |
6625730 | Angelo et al. | Sep 2003 | B1 |
6647494 | Drews | Nov 2003 | B1 |
6651150 | Maeda | Nov 2003 | B1 |
6651188 | Harding et al. | Nov 2003 | B1 |
6715074 | Chaiken | Mar 2004 | B1 |
6715106 | Mermelstein | Mar 2004 | B1 |
6718464 | Cromer et al. | Apr 2004 | B1 |
6732267 | Wu et al. | May 2004 | B1 |
6757838 | Chaiken et al. | Jun 2004 | B1 |
6892304 | Galasso et al. | May 2005 | B1 |
20020147941 | Gentile | Oct 2002 | A1 |
Number | Date | Country | |
---|---|---|---|
20030028800 A1 | Feb 2003 | US |