The present embodiments refer to caravans or recreational vehicles, a cooling device for a caravans or recreational vehicles, a controlling system for such caravans or recreational vehicles and/or cooling device and methods for controlling the cooling device.
Today, a plurality of electronic devices are provided in caravans or recreational vehicles, in the following defined as RV, to increase the functionality of the RV and thus to make a ride with the RV as pleasant as possible. Such electronic devices are for example an air conditioning system, a lighting system, various cooking devices and in particular cooling devices as refrigerators and, preferably, absorption refrigerators, the latter being preferred due to its low energy consumption and noise generation. However, conventionally, these electronic devices of an RV are provided and controlled independently from each other. This shows the drawback, that each of the electronic devices of an RV has to be equipped with its own sensors and logic units to determine and process data required to choose the best operation mode for the respective device. This results in a huge increase in the costs for each of the provided electronic devices. Furthermore, frequently it arises, that at least some of the provided electronic devices require the same data, as for example an ambient temperature, to optimize their operation mode. Thus, as each of the devices has its own sensors and logic unit for determining and processing these date, the costs for the overall entirety of the provided electronic devices is increased substantially due to multiple provided sensors and logic unit for determining and processing the same data. Further, each of the electronic devices only has access to the data generated by its own, which limits the available functionality of each of the provided devices substantially. Finally, controlling all of the different electronic devices of the RV is cumbersome for the user.
Accordingly, it is the task of the present embodiments to provide a RV, a cooling device for RV's and/or a controlling system for RV's overcoming the above described drawbacks and thus decreasing the costs for the RV and the entirety of the therein provided electronic devices while increasing the functionality of the caravan and the therein provided devices.
This task is solved by the RV, the cooling device for RV's, the controlling system for RV's and/or the method according to independent claims 1, 14, 15 and 16. Advantages on embodiments thereof are disclosed in the dependent claims.
According to some embodiments, a controlling system configured to be installed in a caravan or recreational vehicle (RV) comprises a central possessing unit, a read out unit and a controlling unit. The controlling system is configured to be coupled to a plurality of electronic devices and/or sensors of the RV. The read out unit is configured to read out data from the electronic devices and/or sensors of the RV coupled to the controlling system and to forward the read out data to the central possessing unit. The central processing unit is configured to receive and to process the read out data received from the read out unit and to forward the processed data to the controlling unit. The controlling unit is configured to receive the processed data from the central processing unit and to control at least one of the electronic devices coupled to the controlling system based on at least some of the processed data.
Caravan or recreational vehicle (RV) in the sense of the present embodiments should be understood in its broadest interpretation including, besides others, campers and mobile homes. Reading out in the sense of the present embodiments not only means to actively obtain data but also to passively receive data. The received data also can be instructions and/or commands. The plurality of electronic devices can for example comprise an air conditioning system of the RV, a lighting system thereof, provided cooking devices as well as computers and or mobile devices like mobile phones and tablets. Furthermore, also additionally provided sensors like motion detectors, photo sensors, tilting sensors and temperature sensors can serve as electronic devices in the sense of the present embodiments. Sensors of the RV are basically sensors provided in the RV as part of the electronic controlling unit of the RV or at least coupled thereto. Examples for such sensors are a tachometer, a sensor for determining the filling of the fuel and/or gas tank of the RV, a battery sensor and or temperatures sensors of the RV. Processing in the sense of the present embodiments should be understood not just as customizing data but also as analyzing data and or generating new data from the data. However, processing also can mean keeping the data in the read out configuration without customizing them.
In other words, the controlling system according to the present embodiments collects data from electronic devices coupled thereto and analyses and/or processes the collected data centrally. Finally, the controlling system utilizes the analyzed data and/or the processed data to control at least one of the electronic devices coupled to the controlling system. Thus, it is possible, to use data determined by one or more of the electronic devices coupled to the controlling system for determining an optimized operation mode for the at least one of the electronic devices and to forward instructions to the at least one of the electronic devices in order to operate this device according to the determined optimized operation mode. Thus, it is for example possible to optimize the operation mode of a refrigerator provided in the RV based on ambient temperature data obtained from an air conditioning system and/or a temperature sensor of the RV itself. Accordingly, the refrigerator does not have to be provided with its own ambient temperature sensor. In sum, having such a central controlling system allows optimizing the overall system of the RV and of the plurality of electronic devices in view of highly decreased costs thereof, as no sensor has to be provided several times in the respective electronic devices, and/or RV. Furthermore, it is possible to use data, which until now due to cost and effort expenditure was not used, to optimize the operation mode of some of the electronic devices to optimize its operation mode. For example, while until now the operation mode of a cooling device was not optimized based on a weather forecast, because such a configuration would be complex and expensive, using the controlling system enables this optimizing based on a weather forecast easily, when, for example, the controlling system is coupled to the internet and configured to read out and analyze data with regard to weather forecast. This results, besides the highly-decreased costs for the overall system, in a highly-increased functionality of the overall system of the RV and its electronic devices.
Altogether, the above disclosed controlling system provides huge possibilities for optimizing overall systems of a RV and electronic devices in view of highly decreased costs for such systems and highly increased functionality thereof.
Advantageously, the controlling system further comprises a memory unit. The memory unit is configured to store information defining how to control the at least one of the electronic devices based on the read out data. The central processing unit further is configured to read out the stored information from the memory unit and to use this information to process the read out data. In doing so, it is possible to influence the processing of the read out data reliably and, thus, to optimize the processing of the read out data and, thus, in the end the controlling of the at least one of the electronic devices freely. For example, the stored information can be some user profiles and/or various selectable operation modes defining the operation of the controlling system due to specific requirements, which has to be considered when processing and controlling the at least one of the electronic devices. For example, via the stored information it can be defined, that when operating the air conditioning system at maximum cooling power, the refrigerator has to be operated at an energy saving operation mode to reduce the overall energy consumption of the overall system comprising the air conditioning system and the refrigerator.
Advantageously, the central processing unit further may be configured to generate and to process data. Such data, in particular, can be time related data. Therewith it is possible to increase the functionality of the controlling system substantially. Besides, the costs for the overall system can be reduced as specific data is generated by the processing unit and does not have to be determined via additionally provided sensors. One example for such self-generated data is time related data like a real clock time and or relative times as used for timers.
In some embodiments, the processed data can be derived from the user's behavior. The behavior of the users is relatively similar over time in a RV, e.g. breakfast and/or dinner are usually taken the same time every day or showering is also done mostly at the same time, for instance in the morning. Thus, based on the read out data from the electronic devices and/or the sensors, the central processing unit can evaluate the users' behavior which in turn can again be used to further optimize the operation mode and to reduce the overall energy consumption.
Advantageously, the controlling system comprises or is coupled to a display unit. The central processing unit further is configured to forward at least a part of the processed data to the display unit, while the display unit is configured to receive and display the part of the processed data. This configuration allows to display a specific selection of the processed data to a user and thus assists the user in deciding for specific settings and/or commands for controlling the controlling system. Thus, for example, a charge level of various energy storages of the RV, like the gas tank or the automotive battery, can be displayed via the display to support the user in deciding which energy source should be used to supply the at least one of the electronic devices with energy, and/or whether and when it is necessary to refill at least one of the provided energy storages.
Advantageously, the controlling system, may be configured to be coupled to electronic devices via wireless data connection, and in particular to receive and process commands from the electronic devices coupled to the controlling system as read out data. Examples for such wireless data connections are local and or global radio network connections, Bluetooth connections, infrared connections and or near range communication connections. Thus, it is possible to provide a communication between the controlling system and electronic devices without the necessity of providing an often unattractive and confusing cable based connection. This results, next to increased flexibility, in decreased costs and decreased required space for the controlling system as not for each of the electronic devices coupled to the controlling system an independent connection port has to be provided.
Advantageously, the entirety of the electronic devices may comprise an electric control unit of the RV, mobile and/or stationary equipment of the RV, other controlling systems and or BUS-systems provided in the RV, additionally provided sensors, and/or external mobile devices. By coupling the controlling system to at least one of these exemplary electronic devices, the controlling system is able to obtain data determined by the respective electronic devices and to use this data to control at least one of the electronic devices. Thus, the functionality of the controlling system is further increased. For example, data with regard to the operation mode of the motor of the RV obtained via the electric control unit of the RV can be used to optimize the operation mode of a refrigerator provided in the RV by, for example, operating the refrigerator at a high-power level via the automotive battery of the RV when the motor of the RV is in operation and, thus, enough energy is provided in the automotive battery of the RV.
Advantageously, the processing unit of the controlling system may be sourced out at least partially to one or more of the electronic devices coupled to the controlling system. Thus, the controlling system can resort to the processing power of the one or more of the electronic devices coupled to the controlling system. Therewith, it is possible to increase the effective processing power of the controlling system substantially and/or to decrease the costs for the controlling system by decreasing the processing power of the controlling system itself while keeping up and/or even increasing the effective processing power for the controlling system.
Advantageously, the read out unit may be coupled to the internet and configured to read out data from the internet automatically when coupled thereto. In this configuration, the controlling system has access to the almost infinite information from the internet, which results in a huge increase in the accessible functionality of the controlling system. For example, the controlling system can obtain information with regard to the real clock time and/or weather forecast from the internet and use this information to control a cooling device provided in the RV and coupled to the controlling system as defined by a user and/or in an optimized manner with regard to cooling efficiency.
In addition, the external information can also be used to inform the user about expected power limitations based on the current settings of the controlling system. For instance, in case the weather forecast predicts rather high ambient temperatures during daytime, the user can be informed that more energy might be needed for cooling purposes. Preferably, the controlling system gives ideas for improvement to the user in case power limitations are expected. Thus, the user can directly alter the settings based on the suggestions of the controlling system, e.g. chose a different energy source for one of the electronic devices or completely shut down one of the electronic devices temporarily. Preferably, the settings of the controlling system are changed in case the user confirms the suggestion. Thus, this greatly enhances ease of use and allows to reduce the overall energy consumption.
Advantageously, the controlling system may be coupled to various energy storages of the RV provided to supply energy to the at least one electronic device, and configured to control, which one of the provided energy storages is used to supply energy to the at least one electronic device. This configuration enables an optimization of the energy consumption of the overall system and of the utilization of the provided energy storages. For example, when the RV is coupled to a socket for external energy supply on a camping ground, the controlling system can be able to guarantee that a provided cooling device is supplied with energy from the socket and not with energy provided by gas burner supplied with gas from a gas tank of the RV.
Advantageously, the controlling system provides various operation modes selectable by a user for controlling the at least one electronic device in a specific manner. Examples for such operation modes are an energy saving mode, in which the at least one electronic device is operated in view of a minimum energy consumption, a high-power mode, in which the at least one electronic device is operated without attention on the energy consumption at its highest available cooling power, and/or a silent mode, in which the at least one electronic device is operated as silent as possible. The respective controlling parameters for the various operation modes can be for example stored in a memory unit coupled to the controlling system and/or can be read out respectively received from one of the electronic devices, like for example a mobile phone or a tablet coupled to the controlling system wirelessly. At least some of the provided operation modes can contain information for controlling respectively operation various of the electronic devices. This allows a fast and reliably controlling of the controlling system and thus of the at least one of the electronic devices coupled to the controlling system.
Advantageously, the at least one of the electronic devices is a cooling device for RV's and/or a device configured to define and/or control an operation mode of the cooling device. In particular, such a cooling device can be a refrigerator, and more specifically, for example, an absorption refrigerator due to its low energy consumption and low noise generation. Thus, by the controlling system, it is possible to optimize the operation mode of the cooling device based on a huge variety of data obtained from various electronic devices coupled to the controlling system without the need of providing sensors in the cooling device configured to determine each of these data. Accordingly, this configuration results in decreased costs for the cooling device and, thus, of the overall system of the RV and the electronic devices coupled to the controlling system while, at the same time, in a substantial increase of the functionality of the cooling device.
Further advantageously, the controlling system is configured to control the operation mode of the cooling device based on a huge variety of data. For example, the operation mode of the cooling device can be controllable by the controlling system based on a real clock time, such as for example during night times the cooling device is operated in a silent mode and/or an energy saving mode. Usually, during night time, the required energy for cooling the internal space of the cooling device is less than during day time due to lower ambient temperatures. In contrast to this, during day time the cooling device can be operated in a high-performance mode to ensure a sufficient cooling of the cooling space of the cooling device.
Furthermore, during night time the cooling device can be operated in a defrosting mode. Usually, during night time, the cooling device will not heat up as much during defrosting than during day time due to the lower ambient temperature. Above that, the operation mode of the cooling device can be controlled based on a relative time, such as for example in the course of a boost mode, in which for a specific time frame, the cooling power of the cooling device is maximized to intercept an expected temperature decrease within the cooling space of the cooling device, for example occurring after shopping and filling in the warm goods from the shopping bag into the cooling space. Additionally and/or alternatively thereto, the operation mode of the cooling device can also be controllable based on a global location of the RV. In doing so, it is for example possible to select the allowed energy source for providing the cooling device with energy automatically, as for example on ferry boats, it is when the caravan or RV is located, globally seen, on an expanse of water like a lake, the cooling device is not allowed to be provided with energy from the gas tank due to safety technical regulations. Thus, to comply with the safety regulations, when the controlling system determines, that the caravan is on a lake, it can ensure, that the cooling device is only provided with energy from the automotive battery.
Alternatively, the controlling system can determine via the global location of the RV the specific climate zone in which the RV remains and then can optimize the operation mode of the cooling device based on the therewith supposed temperature and/or humidity. Furthermore, the operation mode of the cooling device can be controllable by the controlling system based on operation information of the RV. Thus, for example, when the controlling system recognizes from the operation information of the RV that the RV is driving, the cooling device usually has not to be operated in a frequently less energy efficient silent mode due to the high driving noise, and thus switch the operation mode of the cooling device from a silent mode, for example, to an energy saving mode automatically.
Besides, the controlling system could choose to operate the cooling device with energy supplied by the automotive battery of the RV as during the RV is motor-driven as then the automotive battery is recharged automatically. According to another example, the operation mode of the cooling device can be controllable by the controlling system in view of tilting information for the RV and/or of the cooling device. Thus, for example the controlling system is able to initiate an emergency shutdown of the cooling device when the tilting of the RV and/or of the cooling device exceeds a predetermined critical value, to prevent danger emanating from a cooling device tilted over during operation.
Besides, the controlling system can be configured to control the operation mode of the cooling device based on an internal and/or ambient temperature of the cooling device and/or the RV. This allows to operate the cooling device in an optimized operation mode selected not only dependent on the internal or ambient temperature of the cooling device but also dependent from the ambient temperature of the RV and, thus, of the outdoor temperature. The controlling system can also be configured to control the operation mode of the cooling device based on operation information of the cooling device itself. In other words, at least a part of a central processing unit of the cooling device can be outsourced to the controlling system to reduce the costs of the cooling device.
Furthermore, the current weather situation or a weather forecast can be determined by the controlling system and can be used by the controlling system to control the operation mode of the cooling device. For example, the controlling system can operate the cooling device in a high-power mode when extreme hot weather is forecast to ensure a sufficient cooling of the cooling space of the cooling device while, In case of a cold outside condition with decreased or low outside temperature, the cooling device can be controlled by the controlling system to operate in an energy saving mode. Alternatively and/or in additionally, the controlling system can be configured to control the operation mode of the cooling device based on a charging level and/or the availability of various energy storages and/or sources. In this configuration, the controlling system is able to optimize a utilization of various energy sources and storages coupled to the controlling system. For example, when a photovoltaic system of the RV provides enough energy for operating a cooling device, not gas from a gas tank has to be used to provide the required energy for operating the cooling device, and/or the cooling device is operated in an energy saving mode, then the charging level of each of the available energy sources is below 10%.
Furthermore, the controlling system can be configured to control the operation mode of the cooling device based on a sound level of the cooling device and/or a sound level within the RV. In view of this, the controlling system can be able to decide when it is necessary to operate the cooling device, for example, in a silent mode, which is, for example, not the case when the sound level within the RV already is at a high level. Another example for data based on which the controlling system can be configured to control the operation mode of the cooling device is the energy consumption of the cooling device. Thus, for example, when the controlling system determines that the energy consumption of the cooling device is too high, the controlling system can instruct the cooling device to execute a defrosting cycle to restore an optimized cooling efficiency of the cooling device.
Finally, the controlling system can also be configured to control the operation mode of the controlling device based on specific operation instructions programmed to the central processing unit, stored in a memory coupled to the central processing unit and/or received via or read out from one or more of the electronic devices coupled to the controlling system. These configurations enable various possibilities to modify and optimize the controlling of the operation mode of the cooling device by the controlling system in view of various technical necessities and/or requests of a user. Thus, for example, the user is able to instruct the controlling system how to control the operation mode of the cooling device regardless of other programmed instructions and thus to satisfy the user's expectations towards the controlling system and/or the operation of the provided cooling device.
Further advantageously, the controlling system is configured to control an operation mode of a heater and/or of a compressor of the cooling device. These two options are the most common and effective ways of controlling an operation mode of a cooling device and thus provide an easy as well as reliable and efficient controlling of the operation mode of the provided cooling device of the RV.
A cooling device for a caravan or recreational vehicle (RV) according to the present embodiments comprises or is coupled to a controlling system according to anyone of the above described configurations. The cooling device in particular can be a refrigerator and more specifically, for example, an absorption refrigerator, as in particular an absorption refrigerator has proven itself to be very advantageous to be used in RVs due to its low generation of noise and energy consumption. This configuration allows to reduce the overall costs of the cooling device while increasing its functionality and efficiency substantially, dependent on other devices coupled to the controlling system.
A caravan or recreational vehicle (RV) according to the present embodiments comprises any one of the above described controlling systems and/or a cooling device as described before. This allows to transfer the above set forth advantages, in particular in view of reduced costs and increased efficiency and functionality to the RV.
Finally, according to the present embodiments, a method for controlling an operation mode of a cooling device for a caravan or recreational vehicle (RV), in particular a refrigerator and more specifically, for example, an absorption refrigerator, comprises the following steps. First, data and/or instructions are read out and/or received from electronic devices and sensors of the RV. In a next step, the read out data is processed. Finally, at least a part of the processed data is used to control the operation mode of the cooling device. This method allows to use a huge variety of data determined by various electronic devices and/or sensors of the RV to identify a best mode of operation for the cooling device and to control the cooling device in accordance with the identified best mode of operation. Therefore, it is possible to reduce the costs for the cooling device as the cooling device itself not has to be provided with sensors for each of the data required to determine the best mode of operation for the cooling device. Above that, the operation of the cooling device can be optimized substantially, as an immense plurality of data can be used to optimize the operation mode of the cooling device without the necessity of increasing the costs for the cooling device substantially.
Advantageously, controlling the operation mode of the cooling device is based on various data as it already has been explained above with reference to the controlling system. For example, controlling the operation mode of the cooling device is based on data with regard to the real clock time, a relative time, a global location of the RV, operation information of the RV, tilting information of the RV and/or of the cooling device, an internal and/or ambient temperature of the cooling device and/or of the RV, operation information of the cooling device itself, a current weather situation and/or weather forecast, a charging level and/or availability of various energy storages and/or sources, a sound level of the cooling device and/or within the RV, a current energy consumption of the cooling device, and/or specific operation instructions programmed to the central processing unit, stored in a memory coupled to the central processing unit and/or received from and/or red out from one or more of the electronic devices. Exemplary advantages for the above set forth distinct data used to control the operation mode of the cooling device already have been described above, which is why for the sake of brevity they are not repeated here.
In the following, embodiments will be described to substantiate the understanding of the above said with reference to the drawings, wherein in
As illustrated in
The electronic control unit 50 of the caravan 10 is further coupled via hard wires to some sensors 52, 54 and 56 of the RV 10, and, thus, provides a coupling between the sensors 52, 54, 56 and the controlling system 20. In the depicted example, the first sensor 52 is a speed sensor for determining the travel speed of the RV 10, the second sensor 54 is a temperature sensor for determining the ambient temperature of the RV 10 and the third sensor 56 is a charge level sensor for determining the charge level of the automotive battery of the RV 10. However, more or less and/or other sensors are imaginable.
The controlling system 20 comprises (e.g., as shown in
As indicated in
In
Finally, in
In
In the following, to underline the advantages and potential of the present embodiments, examples for controlling the operation mode of the cooling device 30 advantageously will be described.
As illustrated in
An example for a correlation between read out data and displayed data is depicted in the diagram of
Again, returning to
In the following, some other advantageous functions of the depicted controlling system 20 will be described.
The depicted controlling system 20 is configured to control the operation mode of the cooling device 30 based on a real clock time. The real clock time can be obtained automatically via the router from the internet 90. When it is not possible to get the information with regard to the real clock time from the internet 90, the controlling system 20 is configured to obtain the real clock time information from the mobile phone 40 coupled to the controlling system 20. The controlling system 20 uses the obtained data with regard to the real clock time to control the operation mode of the cooling device 30, for example, by activating an operation of the cooling device 30 by a specific time set. For example, the operation mode can be switched on every day at 8 a.m. and switched off at 8 p.m. on the same day. Thus, the cooling device 30 is operated during day time only and, thus, energy consumption during night time is reduced significantly. Furthermore, the controlling system 20 according to the present embodiment is configured to initiate a boosted cooling operation of the cooling device 30, for example, during noon and to execute a defrosting cycle at midnight. Thus, unintended temperature increases during noon due to high ambient temperatures can be avoided while the defrosting cycle is executed when no considerable temperature increase has to be feared as it would be during noon. In particular, the operation mode of the controlling system 20 and thus the operation mode of controlling the electronic devices 30, 40, 60, 70 and 80 is adapted to a user's behavior pattern stored in a memory coupled to the controlling system 20 as well as an additionally provided user behavior control system comprising at least a movement sensor coupled to the controlling system 20.
Furthermore, the controlling system 20 is configured to control the operation mode of the cooling device 30 based on a relative time which is generated by the processing unit of the controlling system 20. For example, when the user activates a boost mode for the cooling device 30 via the mobile phone 40 coupled to the controlling system 20, for example for a duration of 45 minutes, starting with receiving the instruction to perform the boost mode, the cooling system 30 is operated at a high-performance mode without considering the energy consumption. Such a boost mode, for example, can be activated before the user intends to go for shopping such that, a temperature increase due to the new items placed within the cooling device 30 after shopping is quenched.
Furthermore, the controlling system 20 is configured to control the operation mode of the cooling device 30 based on a global location of the RV obtained by the mobile phone 40 and/or via the router 70 from the internet 90. For example, the controlling system 20 recognizes when the RV 10 is at home and, by recognizing this home position, switches off the cooling device 30 of the RV 10.
Furthermore, the controlling system 20 is configured to control the operation mode of the cooling device 30 based on operation information of the RV 10 by selecting the energy source for supplying the cooling device 30 based on the driving mode of the RV. Thus, when the RV 10 is motor-driven, the cooling device 30 is provided with energy from the automotive battery, while when the RV 10 is in a parked condition, the cooling device 30 is supplied with energy gained from the gas or fuel tank.
Furthermore, the controlling system 20 is configured to control the operation mode of the cooling device 30 based on an internal temperature and ambient temperature of the cooling device 30 and of the RV 10. For example, when the ambient temperature of the RV 10 is high while the internal temperature of the RV 10 is relatively low, the controlling system 30 is operated with an increased cooling power to provide a reliable cooling of the cooling space.
Furthermore, the controlling system 20 is configured to control the operation mode of the cooling device 30 based on tilting information for the RV 10 and, thus, for the cooling device 30. In particular, when the RV 10 and, thus, also the cooling device 30 is tilted above a critical predefined value, the cooling device 30 is automatically shutdown to prevent damages thereto and/or danger emanating from undesired effects when the cooling device 30 is tilted over while being operated.
Furthermore, the controlling system 20 is configured to control the operation mode of the cooling device 30 based on operation information of the cooling device 30 itself. In particular, when the controlling systems 20 determines that the cooling efficiency of the cooling device 30 drops, it controls the cooling device 30 to operate a defrosting cycle to restore the desired cooling efficiency.
Furthermore, the controlling system 20 is configured to control the operation mode of the cooling device 30 based on the current weather situation or the weather forecast for the current location of the RV 10. In particular, when the ambient temperature is high but soon strong rainfall or another temperature drop is expected according to the forecast, the cooling device 30 is not operated at its high-performance mode, because soon a drop in the ambient temperature is expected. Thus, the cooling device 30 is operated at a higher energy efficiency.
Furthermore, the controlling system 20 is configured to control the operation mode of the cooling device 30 based on a sound level of the cooling device 30 and the sound level within the RV 10. In particular, when the sound level of the cooling device 30 is high compared to the overall sound level within the RV 10, the cooling device 30 is controlled to operate in a silent mode by reducing the fan speed. Thus, users staying inside within the RV 10 are not acoustically disturbed by the operation of the cooling device 30, especially during night times.
The controlling system 20 further is configured to control the operation of the cooling device 30 based on the charging level and availability of various energy storages and sources. Exemplary energy sources are on-board systems like an automotive battery of the RV 10 or an internal gas tank and external electrical power supply, for example provided on a camping ground or at home, as indicated in
Furthermore, the controlling system 20 is configured to control the operation mode of the cooling device 30 based on a determined energy consumption of the cooling device 30. In particular, when the energy consumption of the cooling device 30 is above an acceptable value, a defrosting operation is executed such that the desired cooling efficiency of the cooling device 30 is restored.
Furthermore, the controlling system 20 is configured to control the operation mode of the cooling device 30 based on further specific operation instructions programmed to the central processing unit, stored in a memory coupled to the central processing unit of the controlling system 20 and received via the mobile phone 40 or read out from the internet 90 via the router 70. In particular, each command received from the mobile phone 40 and, thus, intended by a user will be carried out by the controlling system 20 regardless of other programmed or stored information. This ensures that the controlling system 20 controls the cooling device 30 as it is desired by the user.
It is obviously, that the controlling system 20 has to be coupled to corresponding electrical devices providing the data required to control the operation mode of the cooling device 30 in the above-described advantages manners.
Number | Date | Country | Kind |
---|---|---|---|
10 2017 214 941.8 | Aug 2017 | DE | national |
This continuation patent application claims priority to and benefit of, under 35 U.S.C. § 120, U.S. patent application Ser. No. 16/641,581, filed Feb. 24, 2020, which claims priority to PCT Patent Application Serial Number PCT/EP/2018/070390, filed Jul. 17, 2018, and DE Patent Application Serial Number 102017214941.8, filed Aug. 25, 2017, all of which is incorporated by reference herein.
Number | Name | Date | Kind |
---|---|---|---|
4916909 | Mathur et al. | Apr 1990 | A |
5424720 | Kirkpatrick | Jun 1995 | A |
5632614 | Consadori et al. | May 1997 | A |
5931151 | Van Dore et al. | Aug 1999 | A |
6134906 | Eastman | Oct 2000 | A |
6460356 | Tao et al. | Oct 2002 | B1 |
6729144 | Kupferman | May 2004 | B1 |
6856820 | Kolls | Feb 2005 | B1 |
6863222 | Slifkin et al. | Mar 2005 | B2 |
6929061 | Lajeunesse | Aug 2005 | B2 |
7082380 | Wiebe et al. | Jul 2006 | B2 |
7117051 | Landry et al. | Oct 2006 | B2 |
7131282 | Karlsson et al. | Nov 2006 | B2 |
7412837 | Karisson et al. | Aug 2008 | B2 |
7448546 | Jung et al. | Nov 2008 | B2 |
D588479 | Giese | Mar 2009 | S |
D604305 | Anzures et al. | Nov 2009 | S |
7707845 | Bilodeau | May 2010 | B2 |
8307667 | Rusignuolo et al. | Nov 2012 | B2 |
8374824 | Schwiers et al. | Feb 2013 | B2 |
8461958 | Saenz et al. | Jun 2013 | B2 |
8539783 | Bunch | Sep 2013 | B1 |
8545113 | Johnson et al. | Oct 2013 | B2 |
8549131 | Keyghobad et al. | Oct 2013 | B2 |
8653949 | Lee et al. | Feb 2014 | B2 |
8960563 | Perten et al. | Feb 2015 | B1 |
8981930 | Horstemeyer et al. | Mar 2015 | B2 |
D738355 | Smith et al. | Sep 2015 | S |
9193312 | Colella et al. | Nov 2015 | B2 |
D756333 | Smith et al. | May 2016 | S |
D757691 | Smith et al. | May 2016 | S |
D761232 | Smith et al. | Jul 2016 | S |
D766217 | Smith et al. | Sep 2016 | S |
9454897 | Cattermole et al. | Sep 2016 | B2 |
D823265 | Meda et al. | Jul 2018 | S |
D839318 | Meda et al. | Jan 2019 | S |
D846505 | Becker | Apr 2019 | S |
D865914 | Snyder | Nov 2019 | S |
10696129 | Bergin | Jun 2020 | B2 |
D893436 | Becker | Aug 2020 | S |
10747404 | Liddell et al. | Aug 2020 | B2 |
10941955 | Heral | Mar 2021 | B2 |
11254183 | Peter | Feb 2022 | B2 |
20030164754 | Roseen | Sep 2003 | A1 |
20040178889 | Buckingham et al. | Sep 2004 | A1 |
20050141154 | Consadori et al. | Jun 2005 | A1 |
20060123807 | Sullivan et al. | Jun 2006 | A1 |
20070023180 | Komarek et al. | Feb 2007 | A1 |
20070028635 | Gleeson | Feb 2007 | A1 |
20080087663 | Mansbery et al. | Apr 2008 | A1 |
20080115513 | Unmack | May 2008 | A1 |
20080121729 | Gray | May 2008 | A1 |
20080299961 | Muller et al. | Dec 2008 | A1 |
20090109004 | Van Alstyne | Apr 2009 | A1 |
20090139246 | Lifson et al. | Jun 2009 | A1 |
20100274604 | Crilly | Oct 2010 | A1 |
20120255317 | Leistner et al. | Oct 2012 | A1 |
20140148975 | Self | May 2014 | A1 |
20140210593 | Cattermole et al. | Jul 2014 | A1 |
20140313055 | Warkentin et al. | Oct 2014 | A1 |
20150184442 | Gantman et al. | Jul 2015 | A1 |
20150198937 | Wait | Jul 2015 | A1 |
20160144764 | Dutta | May 2016 | A1 |
20160211985 | Castillo et al. | Jul 2016 | A1 |
20160214621 | Baalu et al. | Jul 2016 | A1 |
20170264224 | Becker | Sep 2017 | A1 |
20170285712 | Veloso et al. | Oct 2017 | A1 |
20170372600 | Palin et al. | Dec 2017 | A1 |
20180134116 | Chen | May 2018 | A1 |
20180147913 | Bergin | May 2018 | A1 |
20180191687 | Munafo | Jul 2018 | A1 |
20190003765 | Chen | Jan 2019 | A1 |
20190128551 | Heral | May 2019 | A1 |
20200313871 | Troia et al. | Oct 2020 | A1 |
20200338951 | Paci | Oct 2020 | A1 |
20210142601 | Schoenfelder et al. | May 2021 | A1 |
20210229529 | Cai | Jul 2021 | A1 |
Number | Date | Country |
---|---|---|
2001280374 | May 2002 | AU |
2002335708 | Apr 2008 | AU |
2006259965 | Jun 2009 | AU |
201710975 | Mar 2017 | AU |
201710976 | Mar 2017 | AU |
201712767 | May 2017 | AU |
201811509 | Apr 2018 | AU |
201811512 | Apr 2018 | AU |
2017364256 | Jun 2019 | AU |
2572005 | Aug 2007 | CA |
2948710 | Sep 2017 | CA |
174706 | May 2018 | CA |
179312 | May 2018 | CA |
2420532 | Feb 2001 | CN |
1299034 | Jun 2001 | CN |
2434623 | Jun 2001 | CN |
2524157 | Dec 2002 | CN |
1116579 | Jul 2003 | CN |
1475763 | Feb 2004 | CN |
1178037 | Dec 2004 | CN |
1570929 | Jan 2005 | CN |
1761318 | Apr 2006 | CN |
1763450 | Apr 2006 | CN |
2769742 | Apr 2006 | CN |
2780132 | May 2006 | CN |
2811877 | Aug 2006 | CN |
1828186 | Sep 2006 | CN |
2829654 | Oct 2006 | CN |
2849539 | Dec 2006 | CN |
1888750 | Jan 2007 | CN |
1936533 | Mar 2007 | CN |
2878997 | Mar 2007 | CN |
2906406 | May 2007 | CN |
101063586 | Oct 2007 | CN |
200961918 | Oct 2007 | CN |
101074816 | Nov 2007 | CN |
201000370 | Jan 2008 | CN |
201015999 | Feb 2008 | CN |
201028884 | Feb 2008 | CN |
100373116 | Mar 2008 | CN |
100380075 | Apr 2008 | CN |
101153758 | Apr 2008 | CN |
201066217 | May 2008 | CN |
100397004 | Jun 2008 | CN |
100398956 | Jul 2008 | CN |
101245936 | Aug 2008 | CN |
101245957 | Aug 2008 | CN |
100417880 | Sep 2008 | CN |
101266069 | Sep 2008 | CN |
201129824 | Oct 2008 | CN |
201129825 | Oct 2008 | CN |
201149349 | Nov 2008 | CN |
201163244 | Dec 2008 | CN |
201166753 | Dec 2008 | CN |
201170678 | Dec 2008 | CN |
101368771 | Feb 2009 | CN |
201191043 | Feb 2009 | CN |
201196458 | Feb 2009 | CN |
201209986 | Mar 2009 | CN |
201230319 | Apr 2009 | CN |
101435604 | May 2009 | CN |
201233076 | May 2009 | CN |
201237396 | May 2009 | CN |
101476563 | Jul 2009 | CN |
101498933 | Aug 2009 | CN |
201297694 | Aug 2009 | CN |
201306900 | Sep 2009 | CN |
201348340 | Nov 2009 | CN |
201348413 | Nov 2009 | CN |
100575078 | Dec 2009 | CN |
201363279 | Dec 2009 | CN |
201363838 | Dec 2009 | CN |
201363859 | Dec 2009 | CN |
201363949 | Dec 2009 | CN |
101665037 | Mar 2010 | CN |
101691863 | Apr 2010 | CN |
201486856 | May 2010 | CN |
201503133 | Jun 2010 | CN |
201539404 | Aug 2010 | CN |
201541754 | Aug 2010 | CN |
201546958 | Aug 2010 | CN |
201575541 | Sep 2010 | CN |
201589475 | Sep 2010 | CN |
1928445 | Oct 2010 | CN |
101251290 | Oct 2010 | CN |
101866173 | Oct 2010 | CN |
101363640 | Nov 2010 | CN |
201621800 | Nov 2010 | CN |
201622078 | Nov 2010 | CN |
201666251 | Dec 2010 | CN |
201672642 | Dec 2010 | CN |
201748559 | Feb 2011 | CN |
201749468 | Feb 2011 | CN |
101435616 | Apr 2011 | CN |
101464032 | Apr 2011 | CN |
102012146 | Apr 2011 | CN |
201820291 | May 2011 | CN |
101619882 | Jun 2011 | CN |
201849367 | Jun 2011 | CN |
201852224 | Jun 2011 | CN |
102118435 | Jul 2011 | CN |
201908838 | Jul 2011 | CN |
101586562 | Aug 2011 | CN |
102147125 | Aug 2011 | CN |
102151092 | Aug 2011 | CN |
102156466 | Aug 2011 | CN |
201923534 | Aug 2011 | CN |
201948819 | Aug 2011 | CN |
101435617 | Sep 2011 | CN |
102192569 | Sep 2011 | CN |
201964703 | Sep 2011 | CN |
201976127 | Sep 2011 | CN |
201982375 | Sep 2011 | CN |
102213518 | Oct 2011 | CN |
102235717 | Nov 2011 | CN |
102252369 | Nov 2011 | CN |
202050251 | Nov 2011 | CN |
202083072 | Dec 2011 | CN |
102338428 | Feb 2012 | CN |
102345951 | Feb 2012 | CN |
102355628 | Feb 2012 | CN |
102364319 | Feb 2012 | CN |
202177186 | Mar 2012 | CN |
101556069 | Apr 2012 | CN |
202186048 | Apr 2012 | CN |
101443719 | May 2012 | CN |
102444957 | May 2012 | CN |
102466296 | May 2012 | CN |
102478335 | May 2012 | CN |
101275800 | Jun 2012 | CN |
101788172 | Jul 2012 | CN |
101825087 | Jul 2012 | CN |
101846381 | Jul 2012 | CN |
101886852 | Jul 2012 | CN |
102042724 | Jul 2012 | CN |
102536819 | Jul 2012 | CN |
102564052 | Jul 2012 | CN |
102588285 | Jul 2012 | CN |
202287095 | Jul 2012 | CN |
202305190 | Jul 2012 | CN |
102032643 | Aug 2012 | CN |
102620517 | Aug 2012 | CN |
102650479 | Aug 2012 | CN |
101988839 | Sep 2012 | CN |
102679490 | Sep 2012 | CN |
102691660 | Sep 2012 | CN |
202431521 | Sep 2012 | CN |
202431522 | Sep 2012 | CN |
202442411 | Sep 2012 | CN |
202452784 | Sep 2012 | CN |
102705237 | Oct 2012 | CN |
202470336 | Oct 2012 | CN |
202475495 | Oct 2012 | CN |
202476017 | Oct 2012 | CN |
202501706 | Oct 2012 | CN |
202503538 | Oct 2012 | CN |
202511560 | Oct 2012 | CN |
101988717 | Nov 2012 | CN |
102765563 | Nov 2012 | CN |
202532335 | Nov 2012 | CN |
202563323 | Nov 2012 | CN |
102809202 | Dec 2012 | CN |
102840716 | Dec 2012 | CN |
202568984 | Dec 2012 | CN |
202581676 | Dec 2012 | CN |
202598971 | Dec 2012 | CN |
202613597 | Dec 2012 | CN |
202613835 | Dec 2012 | CN |
202630282 | Dec 2012 | CN |
102853624 | Jan 2013 | CN |
102878663 | Jan 2013 | CN |
102889748 | Jan 2013 | CN |
202648236 | Jan 2013 | CN |
202692596 | Jan 2013 | CN |
202708102 | Jan 2013 | CN |
202709553 | Jan 2013 | CN |
102914102 | Feb 2013 | CN |
202734071 | Feb 2013 | CN |
202734420 | Feb 2013 | CN |
202789544 | Mar 2013 | CN |
202835631 | Mar 2013 | CN |
102116515 | Apr 2013 | CN |
103032933 | Apr 2013 | CN |
202851355 | Apr 2013 | CN |
202868893 | Apr 2013 | CN |
202868894 | Apr 2013 | CN |
202868919 | Apr 2013 | CN |
202868920 | Apr 2013 | CN |
103105204 | May 2013 | CN |
202916629 | May 2013 | CN |
203771639 | May 2013 | CN |
103162469 | Jun 2013 | CN |
103177339 | Jun 2013 | CN |
202967270 | Jun 2013 | CN |
202993659 | Jun 2013 | CN |
202993694 | Jun 2013 | CN |
103188655 | Jul 2013 | CN |
103196274 | Jul 2013 | CN |
203053481 | Jul 2013 | CN |
203068889 | Jul 2013 | CN |
103245007 | Aug 2013 | CN |
103245031 | Aug 2013 | CN |
103245033 | Aug 2013 | CN |
203116393 | Aug 2013 | CN |
203163367 | Aug 2013 | CN |
203164715 | Aug 2013 | CN |
103292572 | Sep 2013 | CN |
103322766 | Sep 2013 | CN |
203203288 | Sep 2013 | CN |
203203289 | Sep 2013 | CN |
203203317 | Sep 2013 | CN |
103335485 | Oct 2013 | CN |
103375870 | Oct 2013 | CN |
103375871 | Oct 2013 | CN |
103375935 | Oct 2013 | CN |
203310199 | Nov 2013 | CN |
103471297 | Dec 2013 | CN |
203324857 | Dec 2013 | CN |
203366082 | Dec 2013 | CN |
103512087 | Jan 2014 | CN |
103528142 | Jan 2014 | CN |
103574771 | Feb 2014 | CN |
103574772 | Feb 2014 | CN |
103578257 | Feb 2014 | CN |
103604272 | Feb 2014 | CN |
103616863 | Mar 2014 | CN |
103629740 | Mar 2014 | CN |
103629866 | Mar 2014 | CN |
103671119 | Mar 2014 | CN |
203489530 | Mar 2014 | CN |
103691835 | Apr 2014 | CN |
103745359 | Apr 2014 | CN |
203518373 | Apr 2014 | CN |
203550232 | Apr 2014 | CN |
203550407 | Apr 2014 | CN |
203561118 | Apr 2014 | CN |
203566105 | Apr 2014 | CN |
102705939 | May 2014 | CN |
103776090 | May 2014 | CN |
103776212 | May 2014 | CN |
103791684 | May 2014 | CN |
103807987 | May 2014 | CN |
103808012 | May 2014 | CN |
203586483 | May 2014 | CN |
203586488 | May 2014 | CN |
103836761 | Jun 2014 | CN |
103854344 | Jun 2014 | CN |
103884152 | Jun 2014 | CN |
203633039 | Jun 2014 | CN |
203664542 | Jun 2014 | CN |
103906529 | Jul 2014 | CN |
103925677 | Jul 2014 | CN |
103925678 | Jul 2014 | CN |
103925682 | Jul 2014 | CN |
103925753 | Jul 2014 | CN |
103925755 | Jul 2014 | CN |
103940053 | Jul 2014 | CN |
103940139 | Jul 2014 | CN |
103940157 | Jul 2014 | CN |
103954082 | Jul 2014 | CN |
103954087 | Jul 2014 | CN |
203706293 | Jul 2014 | CN |
203719239 | Jul 2014 | CN |
103968620 | Aug 2014 | CN |
103968631 | Aug 2014 | CN |
103968636 | Aug 2014 | CN |
103968963 | Aug 2014 | CN |
104006445 | Aug 2014 | CN |
104006597 | Aug 2014 | CN |
203796564 | Aug 2014 | CN |
104033996 | Sep 2014 | CN |
104048406 | Sep 2014 | CN |
104048448 | Sep 2014 | CN |
104050784 | Sep 2014 | CN |
203833232 | Sep 2014 | CN |
203837349 | Sep 2014 | CN |
203837396 | Sep 2014 | CN |
104089378 | Oct 2014 | CN |
104101124 | Oct 2014 | CN |
104101125 | Oct 2014 | CN |
104110740 | Oct 2014 | CN |
104121174 | Oct 2014 | CN |
104122463 | Oct 2014 | CN |
203867902 | Oct 2014 | CN |
203908094 | Oct 2014 | CN |
203908147 | Oct 2014 | CN |
203908786 | Oct 2014 | CN |
102958751 | Nov 2014 | CN |
104134292 | Nov 2014 | CN |
104139226 | Nov 2014 | CN |
104142001 | Nov 2014 | CN |
104154802 | Nov 2014 | CN |
104155964 | Nov 2014 | CN |
104165443 | Nov 2014 | CN |
104165483 | Nov 2014 | CN |
203928142 | Nov 2014 | CN |
203964436 | Nov 2014 | CN |
203964468 | Nov 2014 | CN |
203965900 | Nov 2014 | CN |
104180442 | Dec 2014 | CN |
104197632 | Dec 2014 | CN |
104199358 | Dec 2014 | CN |
104214887 | Dec 2014 | CN |
104215007 | Dec 2014 | CN |
104219289 | Dec 2014 | CN |
104236023 | Dec 2014 | CN |
104236198 | Dec 2014 | CN |
104236244 | Dec 2014 | CN |
104251591 | Dec 2014 | CN |
204006509 | Dec 2014 | CN |
204029050 | Dec 2014 | CN |
204044653 | Dec 2014 | CN |
204055526 | Dec 2014 | CN |
204063308 | Dec 2014 | CN |
204063678 | Dec 2014 | CN |
104266318 | Jan 2015 | CN |
104266423 | Jan 2015 | CN |
104279150 | Jan 2015 | CN |
104279716 | Jan 2015 | CN |
104279836 | Jan 2015 | CN |
104289021 | Jan 2015 | CN |
104296348 | Jan 2015 | CN |
104296489 | Jan 2015 | CN |
104315671 | Jan 2015 | CN |
204100662 | Jan 2015 | CN |
204115391 | Jan 2015 | CN |
104329831 | Feb 2015 | CN |
104344595 | Feb 2015 | CN |
104374044 | Feb 2015 | CN |
104374055 | Feb 2015 | CN |
104374117 | Feb 2015 | CN |
104374159 | Feb 2015 | CN |
104374161 | Feb 2015 | CN |
104374162 | Feb 2015 | CN |
204141931 | Feb 2015 | CN |
204143491 | Feb 2015 | CN |
204177417 | Feb 2015 | CN |
204178470 | Feb 2015 | CN |
104406271 | Mar 2015 | CN |
104422065 | Mar 2015 | CN |
104422198 | Mar 2015 | CN |
104422217 | Mar 2015 | CN |
104456846 | Mar 2015 | CN |
104457048 | Mar 2015 | CN |
104457072 | Mar 2015 | CN |
104457130 | Mar 2015 | CN |
104457132 | Mar 2015 | CN |
104467148 | Mar 2015 | CN |
204187779 | Mar 2015 | CN |
204202120 | Mar 2015 | CN |
104482712 | Apr 2015 | CN |
104501483 | Apr 2015 | CN |
104503309 | Apr 2015 | CN |
104515245 | Apr 2015 | CN |
104534618 | Apr 2015 | CN |
204270404 | Apr 2015 | CN |
204291654 | Apr 2015 | CN |
110568987 | Dec 2019 | CN |
10161576 | Jun 2003 | DE |
202006010816 | Mar 2007 | DE |
202006020319 | Jul 2008 | DE |
102017214941 | Feb 2019 | DE |
112017005541 | Aug 2019 | DE |
112018005002 | Jul 2020 | DE |
0881443 | Dec 1998 | EP |
1378981 | Jan 2004 | EP |
1226394 | Sep 2007 | EP |
1879367 | Jan 2008 | EP |
2056534 | May 2009 | EP |
1478531 | Apr 2011 | EP |
2733576 | May 2014 | EP |
2769275 | Apr 2016 | EP |
2903859 | Dec 2017 | EP |
2462395 | Jan 2018 | EP |
3971661 | Mar 2022 | EP |
3971691 | Mar 2022 | EP |
3972314 | Mar 2022 | EP |
2399887 | Sep 2004 | GB |
200808536 | May 2009 | IN |
2000357146 | Dec 2000 | JP |
2001183043 | Jul 2001 | JP |
2001208463 | Aug 2001 | JP |
2002092120 | Mar 2002 | JP |
2002092307 | Mar 2002 | JP |
2002162146 | Jun 2002 | JP |
2002228154 | Aug 2002 | JP |
2002236798 | Aug 2002 | JP |
2002295936 | Oct 2002 | JP |
2002295939 | Oct 2002 | JP |
2002295960 | Oct 2002 | JP |
2002295961 | Oct 2002 | JP |
2002342564 | Nov 2002 | JP |
2003022364 | Jan 2003 | JP |
2003090673 | Mar 2003 | JP |
2003162243 | Jun 2003 | JP |
2003207260 | Jul 2003 | JP |
2003242343 | Aug 2003 | JP |
2004005027 | Jan 2004 | JP |
2004086684 | Mar 2004 | JP |
2004259145 | Sep 2004 | JP |
2005098560 | Apr 2005 | JP |
2005101846 | Apr 2005 | JP |
2005164054 | Jun 2005 | JP |
2005284611 | Oct 2005 | JP |
2005293382 | Oct 2005 | JP |
2005311864 | Nov 2005 | JP |
2006011930 | Jan 2006 | JP |
2006250510 | Sep 2006 | JP |
2007046833 | Feb 2007 | JP |
2013238345 | Nov 2013 | JP |
2014209053 | Nov 2014 | JP |
20000030798 | Jun 2000 | KR |
20000071913 | Dec 2000 | KR |
20010077246 | Aug 2001 | KR |
20010077303 | Aug 2001 | KR |
20010094360 | Nov 2001 | KR |
20010094428 | Nov 2001 | KR |
20010105113 | Nov 2001 | KR |
20020004925 | Jan 2002 | KR |
20020009140 | Feb 2002 | KR |
20020009141 | Feb 2002 | KR |
20020013125 | Feb 2002 | KR |
20020027722 | Apr 2002 | KR |
20020055514 | Jul 2002 | KR |
100373092 | Feb 2003 | KR |
100373093 | Feb 2003 | KR |
20030016739 | Mar 2003 | KR |
100379416 | Apr 2003 | KR |
100381168 | Apr 2003 | KR |
20030075692 | Sep 2003 | KR |
100400464 | Oct 2003 | KR |
100403021 | Oct 2003 | KR |
20040021305 | Mar 2004 | KR |
20040029884 | Apr 2004 | KR |
20040032649 | Apr 2004 | KR |
100429617 | May 2004 | KR |
100432721 | May 2004 | KR |
100437057 | Jun 2004 | KR |
100457558 | Nov 2004 | KR |
100457559 | Nov 2004 | KR |
100471448 | Mar 2005 | KR |
100476448 | Mar 2005 | KR |
100484814 | Apr 2005 | KR |
100487763 | May 2005 | KR |
20050054716 | Jun 2005 | KR |
20050058799 | Jun 2005 | KR |
20050059883 | Jun 2005 | KR |
20050077657 | Aug 2005 | KR |
20050078301 | Aug 2005 | KR |
20050110147 | Nov 2005 | KR |
100535675 | Dec 2005 | KR |
100565482 | Mar 2006 | KR |
100593641 | Jun 2006 | KR |
100600741 | Jul 2006 | KR |
20060089854 | Aug 2006 | KR |
20060117703 | Nov 2006 | KR |
20060119580 | Nov 2006 | KR |
20060120799 | Nov 2006 | KR |
100656394 | Dec 2006 | KR |
100656400 | Dec 2006 | KR |
100657926 | Dec 2006 | KR |
100657927 | Dec 2006 | KR |
100673435 | Jan 2007 | KR |
20070012991 | Jan 2007 | KR |
100676764 | Feb 2007 | KR |
20070027180 | Mar 2007 | KR |
20070053510 | May 2007 | KR |
20070074863 | Jul 2007 | KR |
100745804 | Aug 2007 | KR |
20080029408 | Apr 2008 | KR |
20080037129 | Apr 2008 | KR |
100832492 | May 2008 | KR |
20080060910 | Jul 2008 | KR |
20080076381 | Aug 2008 | KR |
20090045596 | May 2009 | KR |
20090047724 | May 2009 | KR |
100934001 | Dec 2009 | KR |
100950734 | Mar 2010 | KR |
100975938 | Aug 2010 | KR |
100982260 | Sep 2010 | KR |
101028075 | Apr 2011 | KR |
101028502 | Apr 2011 | KR |
101031844 | May 2011 | KR |
20110050764 | May 2011 | KR |
20110067824 | Jun 2011 | KR |
20110124082 | Nov 2011 | KR |
20130094047 | Aug 2013 | KR |
20140000081 | Jan 2014 | KR |
20140026975 | Mar 2014 | KR |
20150051514 | May 2015 | KR |
20150052690 | May 2015 | KR |
200301047 | Jun 2003 | TW |
593950 | Jun 2004 | TW |
201309059 | Feb 2013 | TW |
03072378 | May 2004 | WO |
2007117245 | Oct 2007 | WO |
2010008343 | Jan 2010 | WO |
2012122390 | Sep 2012 | WO |
2013189183 | Dec 2013 | WO |
2014014862 | Jan 2014 | WO |
2014016212 | Jan 2014 | WO |
2014106060 | Jul 2014 | WO |
2014183437 | Nov 2014 | WO |
2014205243 | Dec 2014 | WO |
2015058421 | Apr 2015 | WO |
2016000041 | Jan 2016 | WO |
2018082168 | May 2018 | WO |
2018096127 | May 2018 | WO |
2019038023 | Feb 2019 | WO |
2019082168 | May 2019 | WO |
2020183367 | Sep 2020 | WO |
2020183368 | Sep 2020 | WO |
2022058389 | Mar 2022 | WO |
2022058390 | Mar 2022 | WO |
2022058391 | Mar 2022 | WO |
Entry |
---|
US D887,373 S, 06/2020, Becker (withdrawn) |
U.S. Appl. No. 16/641,581 entitled “Recreational Vehicle, Cooling Device, Controlling System and Method for Controlling the Cooling Device” filed Feb. 24, 2020. |
Design U.S. Appl. No. 29/641,674, filed Mar. 23, 2018 titled “Control Panel”. |
Design U.S. Appl. No. 29/767,088, filed Jan. 20, 2021 titled “Control Panel”. |
Design U.S. Appl. No. 29/683,099, filed Mar. 11, 2019 titled Controller. |
European Design Application No. 008053383-0001-0003 filed on Jul. 24, 2020. |
Notice of Allowance for U.S. Appl. No. 16/172,253 dated Oct. 26, 2020. |
Utility U.S. Appl. No. 16/172,253 entitled “Systems, Methods, and Apparatuses for Providing Communications Between Climate Control Devices in a Recreational Vehicle” filed Oct. 26, 2018. |
Non Final office Action for U.S. Appl. No. 16/172,253, dated Feb. 12, 2020. |
Office Action for Germany Patent Application No. 102017214941.8 dated Jan. 31, 2020. |
Bochner, B., “Digitization in the Mobile Home—Mobile tour into the digital future,” URL: https://www.promobil.de/zubehoer/mobil-tour-in die-digi-zukunft digitale kofortzone. |
Heinz, D.S., “Bus Technology in the Camper—promobil explains the complex electronics,” URL: https://www.promobil.de/werkstatt/elektronik-im-wohnmobil-bus-technik-und-apps. |
DE Application No. 112018005002.5 filed Apr. 24, 2020 entitled “Systems, Methods, and Apparatuses for Providing Communications Between Climate Control Devices in a Recreational Vehicle”. |
Non Final office Action for U.S. Appl. No. 16/172,253, dated May 20, 2020. |
European Patent Office, International Search Report and Written Opinion for PCT/EP2018/070390 dated Sep. 12, 2018, 10 pages. |
U.S. Appl. No. 18/245,320 titled “A Recreational Vehicle User Interface” filed Mar. 14, 2023. |
AU Application No. 2021343247 titled “A Recreational Vehicle User Interface” filed on Mar. 13, 2023. |
U.S. Appl. No. 18/245,321 titled “System and Method for Controlling at Least One Function of a Recreational Vehicle” filed Mar. 14, 2023. |
U.S. Appl. No. 18/245,322 titled “Devices and Methods for Securing Communication Between a Sensor and a Device” filed Mar. 14, 2023. |
PCT Application No. PCT/EP2022/068965 titled “Minibar Communication” filed on Jul. 7, 2022. |
International Search Report and Written Opinion issued in PCT Application No. PCT/EP2022/068965 dated Feb. 21, 2023. |
PCT Application No. PCT/EP2022/068968 titled “Minibar Operation” filed on Jul. 7, 2022. |
International Search Report and Written Opinion issued in PCT Application No. PCT/EP2022/068968 dated Feb. 20, 2023. |
PCT Application No. PCT/EP2022/068970 titled “Initialisation of a Communication Device for a Minibar” filed on Jul. 7, 2022. |
International Search Report and Written Opinion issued in PCT Application No. PCT/EP2022/068970 dated Feb. 1, 2023. |
International Search Report and Written Opinion issued in PCT Application No. PCT/EP2022/056369 dated Nov. 9, 2022. |
Corrected Notice of Allowance Issued in U.S. Appl. No. 16/641,581 dated Jan. 14, 2022. |
International Search Report Issued in PCT Application No. PCT/EP2021/075391 dated Nov. 9, 2021. |
International Search Report Issued in PCT Application No. PCT/EP2021/075390 dated Dec. 20, 2021. |
International Search Report Issued in PCT Application No. PCT/EP2021/075389 dated Jan. 18, 2022. |
Non Final office Action Issued in U.S. Appl. No. 16/641,581, dated Jun. 18, 2021. |
Notice of Allowance for U.S. Appl. No. 16/641,581 dated Oct. 6, 2021. |
PCT Application No. PCT/EP2022/056369 titled “Improved Use of Minibar Sensors” filed on Mar. 11, 2022. |
European Patent Application No. 20197019.1 entitled “A Recreational Vehicle User Interface” filed on Sep. 18, 2020. |
European Patent Application No. 20197022.5 entitled “System and Method for Controlling at least one Function of a Vehicle” filed on Sep. 18, 2020. |
European Patent Application No. 20197023.3 entitled “Devices and Method for Controlling at least one Function of a Vehicle” filed on Sep. 18, 2020. |
Extended European Search Report for European Patent Application No. 20197019.1 dated Mar. 9, 2021. |
Extended European Search Report for European Patent Application No. 20197022.5 dated Mar. 4, 2021. |
Extended European Search Report for European Patent Application No. 20197023.3 dated Feb. 16, 2021. |
“Understanding : On/Off, Floating, Modulating/Proportional Control”, retreived from internet URL: https://controltrends.org/by-industry/commercial-hvac/03/understanding-on-off-floating-modulatingproportional-control/, on Jan. 23, 2019, pp. 2, paragraph 3. |
“Starting up the Truma iNet System,” truma iNet System, pp. 1-8 (2015). |
Ferrill, B., et al., “Swipe to Patent: Design Patents in the Age of User Interfaces,” Tech Crunch, retreived from Internet URL: https://techcrunch.com/2015/08/03/swipe-to-patent-design-patents-in-the-age-of-user-interfaces/, on Dec. 12, 2018, pp. 23. |
“STIIC—Smart Touch Integrated Intelligence Control,” retreived from internet URL: https://citimarinestore.com/en/dometic-marine-air-conditioner-parts/4748-stiic-smart-touch-integrated-intelligence-control-263400309.html on Dec. 12, 2018, pp. 3. |
International Search Report and Written Opinion for International Application No. PCT/IB2018/058414, dated Jan. 31, 2019. |
U.S. Appl. No. 62/578,350, filed Oct. 27, 2017 entitled “Systems, Methods, and Apparatuses for Providing Communications Between Climate Control Devices in a Recreational Vehicle”. |
Office Action for Germany Patent Application No. 102017214941.8 dated Nov. 2, 2023. |
Office Action issued in EP Application No. 20197023.3 dated Oct. 24, 2023. |
Number | Date | Country | |
---|---|---|---|
20220169090 A1 | Jun 2022 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 16641581 | US | |
Child | 17673080 | US |