Rectal manipulation devices

Information

  • Patent Grant
  • 8734478
  • Patent Number
    8,734,478
  • Date Filed
    Wednesday, July 13, 2011
    13 years ago
  • Date Issued
    Tuesday, May 27, 2014
    10 years ago
Abstract
Tissue manipulation devices are disclosed. In various forms, the devices include tissue manipulation arms that are arranged in a position suitable to enable the device to be inserted into the colon then, upon application of at least one actuation motion thereto, at least some of the tissue manipulation arms are moved to deployed positions wherein they contact corresponding portions of the colon to thereby expand the colon. Various devices are actuatable by various forms of actuation forces. In various embodiments, the tissue manipulation arms may be movable along corresponding axes that are transverse to an insertion axis and may also be rotated about the insertion axis as well as be moved in directions that are substantially parallel to the insertion axis.
Description
FIELD OF THE INVENTION

The present invention generally relates to surgical devices for manipulating tissues, and more particularly, to surgical devices for manipulating portions of the colon to improve access to various portions thereof.


BACKGROUND

Single-access laparoscopic surgery was first introduced for colectomy and later adapted for anterior resection. During single access laparoscopic pelvic procedures, such as total mesorectal excision, it is often difficult to obtain an adequate operative field. Often times, such dissections are made deep in the pelvis which makes it difficult to obtain adequate visualization of the area. During such procedures, the lower rectum must be lifted and rotated to gain access to the veins and arteries around both sides of the rectum during mobilization. During such manipulation, it is desirable to prevent the tissue from bunching up while being careful to avoid overstretching the tissue.


Thus, the need exists for a surgical tool that can be used to safely manipulate the colon to provide the surgeon with better visualization and access to the arteries and veins during mobilization.


The foregoing discussion is intended only to illustrate some of the shortcomings present in the field of the invention at the time, and should not be taken as a disavowal of claim scope.


BRIEF SUMMARY

In connection with general aspects of various embodiments of the present invention, there is provided a tissue manipulation device that, in at least one form, includes a shaft assembly that defines an insertion axis. A plurality of tissue manipulation arms that each have a tissue manipulation end are operably supported by the shaft assembly. At least some of the tissue manipulation arms are selectively movable from a first insertion position wherein all of the tissue manipulation ends are substantially aligned relative to each other and, upon application of an actuation motion thereto, the at least some of said tissue manipulation arms are moved to other deployed positions about the insertion axis wherein the ends of the tissue manipulation arms are not all aligned relative to each other.


In connection with yet another general aspect of one form of the present invention, there is provided a tissue manipulation device that comprises a shaft assembly that defines an insertion axis. A first tissue manipulation arm is movably supported on the shaft assembly and is movable relative thereto along a first axis that is substantially transverse to the insertion axis. A second tissue manipulation arm is movably supported on the shaft assembly and is movable relative thereto along a second axis that is substantially transverse to the insertion axis. A third manipulation arm is movably supported on the shaft assembly and is movable relative thereto along a third axis that is substantially transverse to the insertion axis. A fourth manipulation arm is movably supported on the shaft assembly and is movable relative thereto along a fourth axis that is substantially transverse to the insertion axis. An actuation member is configured to apply a deployment motion to at least two of the first, second, third, and fourth manipulation arms upon application of an actuation motion to the actuation member.


In accordance with still another general aspect of one form of the present invention, there is provided a tissue manipulation device that includes a shaft assembly that comprises an outer shaft portion that defines an insertion axis. A first actuator shaft is rotatably supported within the outer shaft portion and a second actuator shaft is rotatably supported within the first actuator shaft. In various forms, the tissue manipulation device further comprises a first tissue manipulation arm that is movably supported on the shaft assembly and operably interfaces with the first and second actuator shafts such that the first tissue manipulation arm is movable along a first axis that is substantially transverse to the insertion axis and is selectively rotatable about the insertion axis upon application of a first rotary actuation motion to the first actuator shaft. The first tissue manipulation arm is further selectively movable in directions that are substantially parallel to the insertion axis upon application of second rotary actuation motions to the second actuator shaft. A second tissue manipulation arm is movably supported on the shaft assembly and is constrained to move relative thereto along a second axis that is substantially transverse to the insertion axis. A third tissue manipulation arm is movably supported on the shaft assembly and operably interfaces with the first and second actuator shafts such that the third tissue manipulation arm is movable along a third axis that is substantially transverse to the insertion axis and is selectively rotatable about the insertion axis upon application of the first rotary actuation motion to the first actuator shaft. The third tissue manipulation arm is further movable in the directions that are substantially parallel to the insertion axis upon application of the second rotary actuation motions to the second actuator shaft. A fourth tissue manipulation arm is movably supported on the shaft assembly and is constrained to move relative thereto along a fourth axis that is substantially transverse to the insertion axis.





BRIEF DESCRIPTION OF THE FIGURES

The accompanying drawings, which are incorporated in and constitute a part of this specification, illustrate embodiments of the invention, and, together with the general description of the invention given above, and the detailed description of the embodiments given below, serve to explain the principles of the present invention.



FIG. 1 is a perspective view of a portion of a colon with a tissue manipulation device embodiment of the present invention inserted therein;



FIG. 2 is a front elevational view of a portion of a tissue manipulation device embodiment of the present invention with the tissue manipulation arms thereof in an insertion or un-deployed position;



FIG. 3 is another front elevational view of the tissue manipulation device embodiment of FIG. 2 with some of the tissue manipulation arms thereof moved to deployed positions;



FIG. 4 is a perspective view of a portion of a detent arrangement employed in the tissue manipulation device embodiment of FIGS. 2 and 3;



FIG. 5 is a partial perspective view of another tissue manipulation device embodiment of the present invention in an insertion position;



FIG. 6 is another perspective view of the tissue manipulation device embodiment of FIG. 5 with some of the tissue manipulation arms thereof in deployed positions;



FIG. 7 is a cross-sectional elevational view of a portion of another tissue manipulation device embodiment of the present invention in an insertion position;



FIG. 8 is a cross-sectional view of a tissue manipulation arm of the tissue manipulation device embodiment of FIG. 7 taken along line 8-8 in FIG. 7;



FIG. 9 is a cross-sectional view of another tissue manipulation arm of the tissue manipulation device embodiment of FIG. 7 taken along line 9-9 in FIG. 7;



FIG. 10 is another cross-sectional elevational view of a portion of the tissue manipulation device embodiment of FIG. 7 wherein some of the tissue manipulation arms thereof are in deployed positions;



FIG. 11 is a cross-sectional elevational view of a portion of another tissue manipulation device embodiment of the present invention in an insertion position;



FIG. 12 is a cross-sectional view of a tissue manipulation arm of the tissue manipulation device embodiment of FIG. 11 taken along line 12-12 in FIG. 11;



FIG. 13 is a cross-sectional view of another tissue manipulation arm of the tissue manipulation device embodiment of FIG. 11 taken along line 13-13 in FIG. 11;



FIG. 14 is another cross-sectional elevational view of a portion of the tissue manipulation device embodiment of FIG. 11 wherein some of the tissue manipulation arms thereof are in deployed positions;



FIG. 15 is a perspective view of a portion of another tissue manipulation device embodiment of the present invention with the tissue manipulation arms in deployed positions;



FIG. 16 is another perspective view of the portion of the tissue manipulation device of FIG. 15 with the tissue manipulation arms shown in cross-section in their respective insertion positions;



FIG. 17 is a partial perspective view of a detent assembly embodiment employed in the tissue manipulation device of FIGS. 15 and 16;



FIG. 18 is an exploded perspective view of one form of a modular surgical instrument;



FIG. 19 is a cross-sectional view of one form of a modular surgical instrument;



FIG. 20 is a partial perspective view of one embodiment of an actuation system of a modular surgical instrument;



FIGS. 20A-20C are side views of a gear plate and rotary drive shaft;



FIG. 21 is another cross-sectional view of the modular surgical instrument of FIG. 19;



FIG. 22 is a cross-sectional view of a portion of the shaft assembly of the modular surgical instrument of FIG. 19;



FIG. 23 is a partial cross-sectional view of the handle and shaft assembly of the modular surgical instrument of FIGS. 19 and 21; and



FIG. 24 is a partial cross-sectional view of a tissue manipulation device embodiment of the present invention attached to the shaft assembly of the modular surgical instrument of FIGS. 18-23.





DETAILED DESCRIPTION

The assignee of the present application also owns the following applications which were contemporaneously filed herewith and which are each herein incorporated by reference in their respective entireties:

    • U.S. patent application Ser. No. 13/181,779, now U.S. Patent Application Publication No. 2012/0234892 A1, filed Jul. 13, 2011, entitled “Multiple Part Anvil Assemblies For Circular Surgical Stapling Devices”;
    • U.S. patent application Ser. No. 13/181,798, now U.S. Patent Application Publication No. 2012/0239010 A1, filed Jul. 13, 2011, entitled “Modular Surgical Tool Systems”;
    • U.S. patent application Ser. No. 13/181,801, now U.S. Pat. No. 8,632,462, filed Jul. 13, 2011, entitled “Trans-Rectum Universal Ports”;
    • U.S. patent application Ser. No. 13/181,807, now U.S. Patent Application Publication No. 2012/0238829 A1, filed Jul. 13, 2011, entitled “Modular Tool Heads For Use With Circular Surgical Instruments”;
    • U.S. patent application Ser. No. 13/181,831, now U.S. Patent Application Publication No. 2012/0239082 A1, filed Jul. 13, 2011, entitled “Tissue Manipulation Devices”;
    • U.S. patent application Ser. No. 13/181,768, now U.S. Patent Application Publication No. 2012/0234890 A1, filed Jul. 13, 2011, entitled “Collapsible Anvil Plate Assemblies For Circular Surgical Stapling Devices”;
    • U.S. patent application Ser. No. 13/181,786 now U.S. Patent Application Publication No. 2012/0234898 A1, filed Jul. 13, 2011, entitled “Circular Stapling Devices With Tissue-Puncturing Anvil Features”;
    • U.S. patent application Ser. No. 13/181,774, now U.S. Patent Application Publication No. US 2012/0234891 A1, filed Jul. 13, 2011, entitled “Anvil Assemblies With Collapsible Frames For Circular Staplers”;
    • U.S. patent application Ser. No. 13/181,836, now U.S. Patent Application Publication No. US 2012/0238823 A1, filed Jul. 13, 2011, entitled “Surgical Access Devices With Anvil Introduction and Specimen Retrieval Structures”; and
    • U.S. patent application Ser. No. 13/181,827, now U.S. Patent Application Publication No. US 2012/0238824 A1, filed Jul. 13, 2011, entitled “Surgical Bowel Retractor Devices”.


Certain exemplary embodiments will now be described to provide an overall understanding of the principles of the structure, function, manufacture, and use of the devices and methods disclosed herein. One or more examples of these embodiments are illustrated in the accompanying drawings. Those of ordinary skill in the art will understand that the devices and methods specifically described herein and illustrated in the accompanying drawings are non-limiting exemplary embodiments and that the scope of the various embodiments of the present invention is defined solely by the claims. The features illustrated or described in connection with one exemplary embodiment may be combined with the features of other embodiments. Such modifications and variations are intended to be included within the scope of the present invention.


Reference throughout the specification to “various embodiments,” “some embodiments,” “one embodiment,” or “an embodiment”, or the like, means that a particular feature, structure, or characteristic described in connection with the embodiment is included in at least one embodiment. Thus, appearances of the phrases “in various embodiments,” “in some embodiments,” “in one embodiment”, or “in an embodiment”, or the like, in places throughout the specification are not necessarily all referring to the same embodiment. Furthermore, the particular features, structures, or characteristics may be combined in any suitable manner in one or more embodiments. Thus, the particular features, structures, or characteristics illustrated or described in connection with one embodiment may be combined, in whole or in part, with the features structures, or characteristics of one or more other embodiments without limitation. Such modifications and variations are intended to be included within the scope of the present invention.


The terms “proximal” and “distal” are used herein with reference to a clinician manipulating the handle portion of the surgical instrument. The term “proximal” referring to the portion closest to the clinician and the term “distal” referring to the portion located away from the clinician. It will be further appreciated that, for convenience and clarity, spatial terms such as “vertical”, “horizontal”, “up”, and “down” may be used herein with respect to the drawings. However, surgical instruments are used in many orientations and positions, and these terms are not intended to be limiting and/or absolute.



FIG. 1 is an anterior view of a colon 10 that illustrates the median sacral artery 12 and the superior rectal artery 14. As can also be seen in FIG. 1, a tissue manipulation device 100 according to at least one embodiment of the present invention has been inserted therein through the anus 16. In various embodiments, the tissue manipulation device 100 includes a central shaft assembly 110 that has a substantially straight distal end portion 112 that defines an insertion axis IA-IA. The central shaft assembly 110 may further have a proximal portion 114 that is curved to facilitate ease of control and insertion of the distal end portion 112 and head assembly 111 into the colon 10 through the anus 16. See FIG. 1. The distal end portion of the shaft 112 terminates in a blunt end cap or portion 116.


In at least one form, the tissue manipulation device 100 further comprises a plurality of tissue manipulation arms 120, 130, 140, 150 that are operably supported on the central shaft assembly 110. More specifically, a first tissue manipulation arm 120 comprises a first body portion 122 that has a relatively blunt first tissue manipulation end 124. The first tissue manipulation arm 120 is constrained to move laterally along a first axis FA-FA that is substantially transverse to the installation axis IA-IA between a first insertion position shown in FIG. 2 and at least one deployed position such as the deployed position depicted in FIG. 3. The position shown in FIG. 3 is a fully deployed position. Likewise, a second tissue manipulation arm 130 comprises a second body portion 132 that has a relatively blunt second tissue manipulation end 134. The second tissue manipulation arm 130 is constrained to move laterally along a second axis SA-SA that is substantially transverse to the installation axis IA-IA between a first insertion position shown in FIG. 2 and at least one deployed position such as the deployed position depicted in FIG. 3. A third tissue manipulation arm 140 comprises a third body portion 142 that has a relatively blunt third tissue manipulation end 144. The third tissue manipulation arm 140 is constrained to move laterally along a third axis TA-TA that is substantially transverse to the installation axis IA-IA between a first insertion position shown in FIG. 2 and at least one deployed position such as the deployed position depicted in FIG. 3. A fourth tissue manipulation arm 150 comprises a fourth body portion 152 that has a relatively blunt fourth tissue manipulation end 154. The fourth tissue manipulation arm 150 is constrained to move laterally along a fourth axis FTA-FTA that is substantially transverse to the installation axis IA-IA between a first insertion position shown in FIG. 2 and at least one deployed position such as the deployed position depicted in FIG. 3.


Various embodiments of the tissue manipulation device 100 further include an actuator 160 for selectively applying deployment motions to the tissue manipulation arms 120, 130, 140, 150. As can be seen in FIGS. 2 and 3, in at least one form, the actuator comprises a tension cable 162 that extends from the blunt end portion 116 through the shaft assembly 110. The tension cable 162 is weaved around spring biased detents located on the inside of the tissue manipulation arms 120, 130, 140, 150. More specifically, as can be seen in FIGS. 2 and 3, the first tissue manipulation arm 120 has a first spring loaded detent 126 therein that comprises a piston head 127 that is movably journaled on a pin 128 as shown in FIG. 4. A spring 129 is provided to apply a biasing force to the piston head 127. The second tissue manipulation arm 130 has a second spring loaded detent 136 therein that is substantially the same as the first spring loaded detent 126. The third tissue manipulation arm 140 has a third spring loaded detent 146 therein that is substantially the same as the first spring loaded detent 126. The fourth tissue manipulation arm 150 has a second spring loaded detent 156 therein that is substantially the same as the first spring loaded detent 126. Also in at least one embodiment, a rigid detent 113 is formed in or attached to the shaft 112 as shown in FIGS. 2 and 3.


In at least one embodiment, the head portion 111 is received with an expandable sheath 170. The expandable sheath 170 is fabricated from an elastic material and may serve to retain the head assembly 111 in an unexpanded configuration as shown in FIG. 2. The tension cable 162 extends out through the proximal portion 114 of the shaft assembly to enable the surgeon to apply tension “T” thereto. When in the unexpanded configuration (insertion position), all of the ends 124, 134, 144, 154 of the tissue manipulation arms 120, 130, 140, 150, respectively are substantially aligned relative to the insertion axis IA-IA. See FIG. 2. When the tissue manipulation arms 120, 130, 140, 150 are laterally deployed, the tissue manipulation ends 124, 144 are not aligned with the ends 134 and 154. See FIG. 3.


The tissue manipulation device 100 may be used by inserting the head assembly 111 with the sheath 170 thereover into the colon 10 through the anus 16 as shown in FIG. 1. When in that position, the proximal end portion 114 of the shaft assembly 110 protrudes out of the anus 16 providing the surgeon with the ability to further manipulate the device as needed and to also apply tension to the cable 162. Once the head assembly 111 has been inserted to the desired position in the unexpanded orientation (FIG. 2), the surgeon applies and actuation force “T” to the cable 162 by pulling on it which ultimately causes the tissue manipulation arms 120, 130, 140, 150 to move laterally to their deployed positions. As the tissue manipulation arms 120, 130, 140, 150 are laterally deployed, the sheath 170 stretches. The tissue manipulation arms 120, 130, 140, 150 contact corresponding portions of the colon and move them outward thereby expanding the colon 10. It will be understood that the extent to which the tissue manipulation arms 120, 130, 140, 150 are deployed depends somewhat upon the amount of tension “T” applied to the cable 162.



FIGS. 5 and 6 illustrate an alternative tissue manipulation device embodiment 100′ that operates in substantially the same manner as the tissue manipulation device described above. However, in this embodiment, when the tissue manipulation arms 120, 130, 140, 150 are in the initial insertion position or orientation, all of the all of the ends 124, 134, 144, 154 of the tissue manipulation arms 120, 130, 140, 150, respectively are substantially aligned along one side of the insertion axis IA-IA. Then, when an actuation motion “T” is applied to the cable 162, only the second tissue manipulation arm 130 and the fourth tissue manipulation arm 150 move laterally along their respective axes SA-SA and FTA-FTA. Thus, in this embodiment, the first tissue manipulation arm 120 and the third tissue manipulation arm 130 do not move laterally upon application of a tension force “T” to the cable 162. However, each of the tissue manipulation arms 120, 130, 140, 150 may be spring biased to enable the arms to move laterally during insertion.



FIGS. 7-10 illustrate another tissue manipulation device embodiment 200. In various embodiments, the tissue manipulation device 200 includes a central shaft assembly 210 that has an outer shaft 212 that has a substantially straight distal end portion 213 that defines an insertion axis IA-IA. The central shaft assembly 210 may further have a proximal portion (not shown) that is curved to facilitate ease of control and insertion of the distal end portion 212 and the head assembly generally designated as 211 into the colon 10 through the anus 16 in the manner described above.


In at least one form, the tissue manipulation device 200 further comprises a plurality of tissue manipulation arms 220, 230, 240, 250 that are operably supported on the central shaft assembly 210. More specifically, a first tissue manipulation arm 220 comprises a first body portion 222 that has a relatively blunt first tissue manipulation end 224. The body portion 222 of the first tissue manipulation arm 220 is received within a first slot 215 in the outer shaft portion 212 such that it can be selectively rotated about the installation axis IA-IA. In addition, the first tissue manipulation arm 220 is constrained to move laterally along a first axis FA-FA that is substantially transverse to the installation axis IA-IA in response to forces applied thereto by the colon.


More specifically, the central shaft assembly 210 further includes an actuation shaft 290 that extends through the outer shaft 212 and is rotatably supported therein for selective rotation about the insertion axis IA-IA. The actuation shaft 290 terminates in a blunt end member 292. In at least one embodiment, the first tissue manipulation arm 220 is slidably journaled on a first pin assembly 225 that is attached to the actuation rod 290. A first biasing spring 226 extends over the first pin assembly 225 and is received in a first socket 227 in the first tissue manipulation end 224. Thus, as a rotary actuation force is applied to the actuation shaft 290, the first tissue manipulation arm 220 is rotated about the insertion axis IA-IA.


The second tissue manipulation arm 230 comprises a second body portion 232 that has a relatively blunt second tissue manipulation end 234. The body portion 232 of the second tissue manipulation arm 230 is received within a second slot 216 in the outer shaft portion 212 to enable the second tissue manipulation arm 230 to move laterally relative thereto along a second axis SA-SA that is substantially transverse to the installation axis IA-IA in response to forces applied thereto by the colon. Also, the second tissue manipulation arm 230 is slidably journaled on a second pin 235 that is attached to the outer shaft 212. A second biasing spring 236 extends over the second pin 235 and is received in a second socket 237 in the second tissue manipulation end 234. Thus, the second tissue manipulation arm 220 does not rotate when the actuation shaft 290 is rotated.


The third tissue manipulation arm 240 comprises a third body portion 242 that has a relatively blunt third tissue manipulation end 244. The body portion 242 of the third tissue manipulation arm 240 is received within a third slot 217 in the outer shaft portion 212 such that it can be selectively rotated about the installation axis IA-IA. In addition, the third tissue manipulation arm 240 is constrained to move laterally along a third axis TA-TA that is substantially transverse to the installation axis IA-IA in response to forces applied thereto by the colon. In at least one embodiment, the third tissue manipulation arm 240 is slidably journaled on a third pin assembly 245 that is attached to the actuation rod 290. A third biasing spring 246 extends over the third pin assembly 245 and is received in a third socket 247 in the third tissue manipulation end 24. Thus, as a rotary actuation force is applied to the actuation shaft 290, the third tissue manipulation arm 240 is rotated about the insertion axis IA-IA.


The fourth tissue manipulation arm 250 comprises a fourth body portion 252 that has a relatively blunt fourth tissue manipulation end 254. The body portion 252 of the fourth tissue manipulation arm 250 is received within a fourth slot 218 in the outer shaft portion 212 to enable the fourth tissue manipulation arm 250 to move laterally relative thereto along a fourth axis FTA-FTA that is substantially transverse to the installation axis IA-IA in response to forces applied thereto by the colon. Also, the fourth tissue manipulation arm 250 is slidably journaled on a fourth pin 255 that is attached to the outer shaft 212. A fourth biasing spring 256 extends over the fourth pin 255 and is received in a fourth socket 257 in the fourth tissue manipulation end 254. Thus, the fourth tissue manipulation arm 250 does not rotate when the actuation shaft 290 is rotated.


To use the tissue manipulation device 200, the surgeon first orients the second and fourth tissue manipulation arms 230, 250 in the insertion position shown in FIG. 7 wherein all of the tissue manipulation ends 224, 234, 244, 254 are all substantially aligned on one side of the insertion axis IA-IA. As with the other embodiments, an expandable sheath may be inserted over the head portion 211 in the manner discussed above. Once the tissue manipulation device 200 has been inserted to the desired position in the colon, the surgeon then applies a rotary actuation motion to the actuation shaft 290 to rotate the first and third tissue manipulation arms 220, 240 about the insertion axis IA-IA to their deployed positions as shown in FIG. 10.



FIGS. 11-14 illustrate another tissue manipulation device embodiment 300. In various embodiments, the tissue manipulation device 300 includes a central shaft assembly 310 that has an outer shaft assembly 312 that defines an insertion axis IA-IA. The outer shaft assembly 312 includes a distal portion 314 that is separated from a central portion 216 by a slot or gap 315, and a proximal portion 318 that is separated from the central portion 316 by a slot or gap 317. The proximal portion 318 may be curved near to its proximal end to facilitate ease of control and insertion of the head assembly generally designated as 311 into the colon 10 through the anus 16 in the manner described above.


In at least one form, the tissue manipulation device 300 further comprises a plurality of tissue manipulation arms 320, 330, 340, 350 that are operably supported on the central shaft assembly 310. More specifically, a first tissue manipulation arm 320 comprises a first body portion 322 that has a relatively blunt first tissue manipulation end 324. The body portion 322 of the first tissue manipulation arm 320 is received within a the slot or gap 315 in the outer shaft portion 312 such that it can be selectively rotated about the installation axis IA-IA and also move axially along the installation shaft IA-IA. In addition, the first tissue manipulation arm 320 is constrained to move laterally along a first axis FA-FA that is substantially transverse to the installation axis IA-IA in response to forces applied thereto by the colon.


In various embodiments, the shaft assembly 310 further includes a first actuation shaft 390 that extends through the outer shaft portions 318, 316 and terminates at outer shaft portion 314. The first actuation shaft 390 is substantially hollow and is rotatably supported within the outer shaft 312 for selective rotation about the insertion axis IA-IA. The first actuation shaft 390 terminates in a blunt end member 392. In at least one embodiment, the first tissue manipulation arm 320 is slidably journaled on a first pin assembly 325 that is attached to a nut member 402 that is threadably coupled to a second actuation shaft 400 that is rotatably received within the hollow first actuation shaft 390. The first pin assembly 325 extends through a first slot 394 in the first actuation shaft 390. A first biasing spring 326 is received on the first pin assembly 325 and is received in a first socket 327 in the first tissue manipulation end 324.


The second tissue manipulation arm 330 comprises a second body portion 332 that has a relatively blunt second tissue manipulation end 334. The body portion 332 of the second tissue manipulation arm 330 is received within a slot 319 in the second outer shaft portion 316 to enable the second tissue manipulation arm 330 to move laterally relative thereto along a second axis SA-SA that is substantially transverse to the installation axis IA-IA in response to forces applied thereto by the colon. Also, the second tissue manipulation arm 330 is slidably journaled on a second pin assembly 335 that is attached to the outer shaft portion 316. A second biasing spring 336 is received on the second pin assembly 335 and is received in a second socket 337 in the second tissue manipulation end 334.


The third tissue manipulation arm 340 comprises a third body portion 342 that has a relatively blunt third tissue manipulation end 344. The body portion 342 of the third tissue manipulation arm 340 is received within a third slot 317 in the outer shaft portion 312 such that it can be selectively rotated about the installation axis IA-IA. In at least one embodiment, the third tissue manipulation arm 340 is slidably journaled on a third pin assembly 345 that is attached to a nut member 404 that is threadably coupled to the second actuation shaft 400 that is rotatably received within the hollow first actuation shaft 390. The third pin assembly 345 extends through a third slot 396 in the first actuation shaft 390. A third biasing spring 346 is received on the third pin assembly 345 and is received in a third socket 347 in the third tissue manipulation end 344.


The fourth tissue manipulation arm 350 comprises a fourth body portion 352 that has a relatively blunt fourth tissue manipulation end 354. The body portion 352 of the fourth tissue manipulation arm 350 is received within a fourth slot 318 in the outer shaft portion 312 to enable the fourth tissue manipulation arm 350 to move laterally relative thereto along a fourth axis FTA-FTA that is substantially transverse to the installation axis IA-IA in response to forces applied thereto by the colon. Also, the fourth tissue manipulation arm 350 is slidably journaled on a fourth pin assembly 355 that is attached to the outer shaft 312. A fourth biasing spring 356 is received on the fourth pin 355 and is received in a fourth socket 357 in the fourth tissue manipulation end 354. Thus, the fourth tissue manipulation arm 350 does not rotate when the first actuation shaft 390 is rotated.


As can be seen in FIGS. 11 and 14, the second actuation shaft 400 has two thread segments 406 and 408 thereon. The first nut 402 is in threaded engagement with the first thread segment 406 and the second nut 404 is in threaded engagement with the second thread segment 408. The first and second thread segments 406, 408 are threaded in different directions on the second actuation shaft 400 such that rotation of the second actuation shaft 400 in one direction causes the first tissue manipulation arm 320 and the third tissue manipulation arm 340 to move axially toward each other (arrows “D” in FIG. 14) and rotation of the second actuation shaft 400 in an opposite rotary direction causes the first tissue manipulation arm 320 and the third tissue manipulation arm 340 to move axially away from each other (arrows “E” in FIG. 14).


To use the tissue manipulation device 300, the surgeon first orients the first and third tissue manipulation arms 320, 340 in the insertion position shown in FIG. 11 wherein all of the tissue manipulation ends 324, 334, 344, 354 are all substantially aligned on one side of the insertion axis IA-IA. As with the other embodiments, an expandable sheath may be inserted over the head portion 311 in the manner discussed above. Once the tissue manipulation device 300 has been inserted to the desired position in the colon, the surgeon then applies a first rotary actuation motion to the first actuation shaft 390 to rotate the first and third tissue manipulation arms 320, 340 about the insertion axis IA-IA to their rotary deployed positions as shown in FIG. 14. Thereafter, if the surgeon determines that the first and third tissue manipulation arms 320, 340 need to be moved axially to better manipulate the corresponding portions of the colon, the surgeon may then apply a rotary control motion to the second actuation shaft 400. As indicated above, rotating the second actuation shaft 400 in one direction will cause the first and third tissue manipulation arms 320, 340 to move axially toward each other and rotation of the second actuation shaft in an opposite direction will cause the first and third tissue manipulation arms 320, 340 to move axially away from each other.



FIGS. 15-17 disclose another tissue manipulation device 500 includes a central shaft assembly 510 that has a substantially straight distal end portion 512 that defines an insertion axis IA-IA. The central shaft assembly 510 may further have a proximal portion (not shown) that is curved to facilitate ease of control and insertion of the distal end portion 512 and the head assembly 511 thereof into the colon 10 through the anus 16. The distal end portion of the shaft 512 terminates in a substantially hollow blunt end cap 516. In at least one form, the tissue manipulation device 500 further comprises a plurality of tissue manipulation arms 520, 530, 540, 550 that are operably supported on the central shaft assembly 510. More specifically, a first tissue manipulation arm 520 comprises a first body portion 522 that has a relatively blunt first tissue manipulation end 524. The first tissue manipulation arm 520 is constrained to move laterally along a first axis FA-FA that is substantially transverse to the installation axis IA-IA between a first insertion position shown in FIG. 16 and at least one deployed position such as the deployed position depicted in FIG. 15. The position shown in FIG. 15 is a fully deployed position.


Likewise, a second tissue manipulation arm 530 comprises a second body portion 532 that has a relatively blunt second tissue manipulation end 534. The second tissue manipulation arm 530 is constrained to move laterally along a second axis SA-SA that is substantially transverse to the installation axis IA-IA between a first insertion position shown in FIG. 16 and at least one deployed position such as the deployed position depicted in FIG. 15. A third tissue manipulation arm 540 comprises a third body portion 542 that has a relatively blunt third tissue manipulation end 544. The third tissue manipulation arm 540 is constrained to move laterally along a third axis TA-TA that is substantially transverse to the installation axis IA-IA between a first insertion position shown in FIG. 2 and at least one deployed position such as the deployed position depicted in FIG. 15. A fourth tissue manipulation arm 550 comprises a fourth body portion 552 that has a relatively blunt fourth tissue manipulation end 554. The fourth tissue manipulation arm 550 is constrained to move laterally along a fourth axis FTA-FTA that is substantially transverse to the installation axis IA-IA between a first insertion position shown in FIG. 16 and at least one deployed position such as the deployed position depicted in FIG. 15.


Various embodiments of the tissue manipulation device 500 further include an actuator rod 560 for selectively applying deployment motions to the tissue manipulation arms 520, 530, 540, 550. As can be seen in FIGS. 15 and 16, in at least one form, the actuator rod 560 has a plurality of bends 562, 564, 566, 568, 570 therein. The actuator rod 560 is configured for selective axial travel within the shaft assembly 510 and the tissue manipulation arms 520, 530, 540, 550. The bends 562, 564, 566, 568, 570 in actuator rod 560 are configured to selectively engage spring biased detents located on the inside of or otherwise attached to the tissue manipulation arms 520, 530, 540, 550. More specifically, as can be seen in FIG. 16, the first tissue manipulation arm 520 has a first spring loaded detent 526 therein that comprises a piston head 527 that is movably journaled on a pin 528 as shown in FIG. 17. A spring 529 is provided to apply a biasing force to the piston head 527. The second tissue manipulation arm 530 has a second spring loaded detent 536 therein that is substantially the same as the first spring loaded detent 526. The third tissue manipulation arm 540 has a third spring loaded detent 546 therein that is substantially the same as the first spring loaded detent 526. The fourth tissue manipulation arm 550 has a fourth spring loaded detent 556 therein that is substantially the same as the first spring loaded detent 526. In at least one embodiment, the head portion 511 is received with an expandable sheath assembly as was described above.


The tissue manipulation device 500 may be used by inserting the head assembly 511 with the sheath thereover into the colon through the anus. When in that position, the proximal end portion of the shaft assembly 510 protrudes out of the anus providing the surgeon with the ability to further manipulate the device 500 as needed and to also apply actuation motions to the actuator rod 560. Once the head assembly 511 has been inserted to the desired position in the unexpanded orientation (FIG. 16), the surgeon applies and actuation force to the actuation rod 560 to force it within the shaft assembly 510 in the distal direction “DD”. As the actuator rod 560 is moved distally, the bend 564 contacts detent 526 and pushes the first tissue manipulation arm 520 laterally along the first axis FA-FA. Likewise, the bend 566 contacts the second detent 536 and pushes the second tissue manipulation arm 530 laterally along the second axis SA-SA. The bend 568 contacts the third detent 546 and biases the third tissue manipulation arm 540 laterally along the third axis TA-TA. The bend 570 contacts the fourth detent 556 and biases the fourth tissue manipulation arm 550 laterally along the fourth axis FTA-FTA. The distal most bend 562 extends into the hollow cap 516 as shown in FIG. 15. When the surgeon applies a pulling motion to the actuator rod 560 in the proximal direction, the bends 562, 564, 566, 568, 570 are moved to the positions shown in FIG. 16 and the detents 526, 536, 546, 556 return the tissue manipulation arms 520, 530, 540, 550, respectively to their insertion or un-deployed positions as shown in FIG. 16.


The various tissue manipulation device embodiments disclosed herein may have a dedicated handle portion that is attached to the proximal end portion of the shaft assembly. The handle arrangements may include actuator knobs and other arrangements for applying actuation motions to the actuation cable or to the actuation shaft(s), whichever the case may be. In still other embodiments, at least some of the tissue manipulation devices disclosed herein may be configured to receive their actuation motions from robotic systems. Other embodiments may be configured to interface with one or more of the modular circular surgical instruments disclosed in one or more of the above-identified patent applications that have been herein incorporated by reference and which are presently commonly owned by the assignee of the subject application. For example, the outer shaft portion of various tissue manipulation devices may be configured to be attached to the distal end of the circular surgical instrument's outer shaft by a “bayonet-type” or other removable coupling arrangement. The actuation shaft(s) of the tissue manipulation device(s) may also be configured to interface with the various actuation shaft arrangements in those modular circular surgical instruments to enable the surgeon to apply the desired rotational actuation motion(s) thereto by actuating the appropriate actuator portion(s) of the circular surgical instrument. Such arrangements are intended to be within the scope of various embodiments of the present invention.



FIG. 18 illustrates one form of a modular surgical instrument 1010 of an embodiment of the present invention. In at least one embodiment, the modular surgical instrument 1010 includes a universal actuator handle assembly 1020 that is attached to an elongated shaft assembly 1060 that is configured for operable attachment to a variety of different surgical tool heads. In the depicted embodiment, the handle assembly 1020 operably supports an actuation system generally designated as 1100 which is configured to selectively apply various forms of actuation forces to the particular-type of surgical tool head attached thereto. In various embodiments, the handle assembly 1020 includes two handle case segments 1021 that may be interconnected together by suitable tastener arrangements for ease of assembly. The shaft assembly 1060 includes an outer shaft casing 1070 that is substantially hollow and may be fabricated from two casing segments 1072 that are coupled together to form a hollow conduit. The outer shaft casing 1070 has a proximal end 1074 that is coupled to the handle assembly 1020 and an open distal end 1076.


Various embodiments of the modular surgical instrument 1010 include a unique and novel transmission or actuation system that facilitates the selective application of a variety of different axial and rotary motions to a particular surgical tool head attached thereto. Referring to FIGS. 19 and 20, one form of actuation system 1100 includes a gear plate 1110 that is pivotally supported in the handle assembly 1020 for selective pivotal travel about a pivot axis PA-PA that is substantially transverse to the instrument's longitudinal axis LA-LA. The gear plate 1110 may be pivotally supported within the handle assembly 1020 on a pivot shaft 104 that extends between the handle casing segments 1021. As will be discussed in further detail below, the gear plate 1110 is also laterally movable on the pivot shaft 1104 from a first rotary drive position to a second axial drive position by a first drive selector switch 1130 that is slidably supported between the handle case segments 1021. As can be seen in FIG. 20, the first drive selector switch 1130 is provided with two downwardly protruding clevis arms 1132 that are configured to receive a proximal end portion 1112 of the gear plate 1110 therebetween. The first drive selector switch 1130 extends through slots 1022 in the handle case members 1021 and have down turned end portions 1134 to enable the user to slide the first drive selector switch 1110 laterally back and forth (arrow “A” in FIG. 20) within the handle assembly 1020 along a selector axis SE-SE that is substantially transverse to the longitudinal axis LA-LA. An “actuator” in the form of a firing trigger 1140 is attached to, or otherwise integrally formed with, the gear plate 1110 such that the gear plate 1110 may be selectively pivoted about the pivot axis PA-PA by squeezing the firing trigger 1140 toward the handle assembly 1020. The term “actuator” may also encompass a portion of a robotic system configured to apply the requisite actuation motion to the gear plate 1110.


As can be further seen in FIG. 19, the gear plate 1110 is configured to operably interact with a rotary drive shaft 1150 that extends through the outer shaft casing 1070 of the elongated shaft assembly 1060 and is rotatably supported therein. In various embodiments, the gear plate 1110 has a first gear rack 1114, a second gear rack 1116, and a third gear rack 1118 formed thereon. See FIGS. 20A-20C. The rotary drive shaft 1150 has a first pinion gear 1152 that is adapted for selective meshing engagement with the first gear rack 1114 and a second pinion gear 1154 that is adapted for selective meshing engagement with the second gear rack 1116 and a third pinion gear 1156 that is adapted for selective meshing engagement with the third gear rack 1118. As will become further apparent as the present Detailed Description proceeds, each gear rack 1114, 1116, 1118 defines a discrete amount of rotary travel that may be applied to the rotary drive shaft 1150. For example, the first gear rack 1114, when in meshing engagement with the first pinion gear 1152, may facilitate an application of a first amount of rotary travel to the rotary drive shaft 1150 upon application of an actuation motion to the firing trigger 1140. For example, the first gear rack 1114 may facilitate a first amount of rotary travel of approximately 0.70″ when the firing trigger 1140 is pivoted from a starting position to an ending position. The second gear rack 1116, when in meshing engagement with the second pinion gear 1154, facilitates a second range of rotary travel to the rotary drive shaft 1150. For example, the second gear rack 1116 may facilitate a second amount of rotary travel of approximately 1.41″ when the firing trigger 1140 is pivoted from a starting position to an ending or fully depressed position. The third gear rack 1118, when in meshing engagement with the third pinion gear 1156, facilitates a third amount of rotary travel of approximately 2.11″ when the firing trigger 1140 is pivoted from a starting position to an ending or fully depressed position. It will be understood, however, that other numbers and lengths of gear rack and pinion gear arrangements could conceivably be employed without departing from the spirit and scope of the present invention.


Also in various handle assembly embodiments, a torsion spring 1142 is employed to bias the firing trigger 1140 to the unactuated position shown in FIG. 18. Thus, in various embodiments, once the surgeon releases the firing trigger 1140, the spring 1142 returns the firing trigger 1140 to the unactuated position and, in doing so, applies a reverse rotary motion to the rotary drive shaft 1150. Various forms of known trigger safety arrangements such as those disclosed in U.S. Pat. No. 7,506,791, entitled “Surgical Stapling Instrument With Mechanical Mechanism For Limiting Maximum Tissue Compression”, the disclosure of which is herein incorporated by reference in its entirety, may also be employed.


The rotary drive shaft 1150 further has a proximal end 1160 that is supported within the handle assembly for rotary and axial travel therein. In one embodiment, for example, the proximal end 1160 of the rotary drive shaft 1150 is configured to support a bearing assembly 1162 thereon that is constrained to move in axial tracks 1170 formed in the handle cases 1021. See FIG. 19. The bearing assembly 1162 facilitates rotation of the rotary drive shaft 1150 about the longitudinal axis LA-LA while also facilitating its axial travel within the handle assembly 1020 and the outer shaft casing 1070 of the shaft assembly 1060. As can be seen in FIG. 19, a compression spring 1164 serves to bias the rotary drive shaft 1150 in the distal direction “DD”.


As can also be seen in FIGS. 19-24, the rotary drive shaft 1150 is hollow and has a distal end portion 1180 that is configured to operationally mate with various forms of surgical tool heads attached thereto. To facilitate axial positioning of the rotary drive shaft 1150 relative to the gear plate 1110 upon attachment of various surgical tool heads to the shaft assembly 1060, the distal end portion 1180 has an actuator flange 1182 formed thereon. Thus, when a particular surgical tool head is coupled to the shaft assembly 1060, its distal end contacts the actuation shaft 1182 to bias the rotary drive shaft 1150 in the proximal direction.


Also in various embodiments, the handle assembly 1020 may have a window or opening 1025 therein (FIG. 19) that facilitates viewing by the surgeon of an indicator member 1190. In various embodiments, the indicator member 1190 may comprise a tape member that is flexible enough to axially travel back and forth within the handle assembly 1020 and be viewable through the window or opening 1025. The tape member 1190 is attached to the bearing assembly 1162 as can be seen in FIGS. 19 and 21 and has indication indicia thereon that corresponds to the gear rack 1114, 1116, 1118 that is engaged with its corresponding pinion gear 1152, 1154, 1156, respectively. For example, the indicator indicia may comprise a picture, drawing, diagram, model identification number, etc. of the particular surgical tool head that requires the corresponding amount of discrete rotary travel of the rotary drive shaft 1150 for actuation purposes.


The instrument 1010 further includes axial drive arrangements for selectively applying axial actuation motions to the various surgical tool heads attached to the shaft assembly 1060. As was discussed above, a first drive selector switch 1130 is configured to engage the proximal end portion 1112 of the gear plate 1110. Such arrangement permits the first drive selector switch 1130 to be used to laterally move the gear plate 1110 on the pivot shaft 1104 between a first rotary drive position wherein an application of an actuation motion to the firing trigger 1140 results in the application of a rotary drive motion to the rotary drive shaft 1150 and a second axial drive position wherein an application of an actuation motion to the firing trigger 1140 results in the application of an axial drive motion to an axial drive bar 1200. More specifically and with reference to FIGS. 19-21, the axial drive bar 1200 is coupled to an axial drive linkage 1210 that is configured to releasably interface with the gear plate 1110. As can be seen in FIG. 20, the gear plate 1110 has an engagement lug 1120 formed thereon that has a hole 1122 that is sized to receive a first engagement pin 1212 that protrudes from the axial drive linkage 1210. The axial drive bar 1200 is pinned to a linkage bar 1214 by a pin 1216 that extends through the linkage bar 1214 into a slot 1218 in the handle casing 1021. As can be most particularly seen in FIG. 20, the first engagement pin 1212 is also attached to the linkage bar 1214 and protrudes therethrough into a second slot 1220 in the handle case 1021. A compression spring 1222 is supported within the slot 1222 to bias the pin 1212 within the slot 1220 to the starting position shown in FIG. 20. The axial drive bar 1200 has a distal end 1201 that is configured to engage a corresponding portion of the particular surgical tool head that has been coupled to the modular surgical instrument 1010 to apply the requisite amount of axial drive motion thereto.


Thus, to actuate the axial drive bar 1200, the surgeon laterally moves the first drive selection switch 1130 in the “L” direction to bring the pin 1212 into the hole 1122 in the gear plate attached lug 1120. This action also moves the gear plate 1110 to the axial drive position wherein all of the gear racks 1114, 1116, 1118 are out of meshing engagement with their corresponding pinion gears 1152, 1154, 1156 on the rotary drive shaft 1150 and the gear plate 1110 is in driving engagement with the axial drive bar 1200. Thereafter, the surgeon may depress the firing trigger 1140 to drive the axial drive bar 1200 distally within the outer shaft casing 1070 of the shaft assembly 1060. When the surgeon releases the firing trigger 1140, the springs 1222 and 1142 bias the gear plate 1110, axial drive bar 1200 and firing trigger 1140 back to the starting position.


Various embodiments of the modular surgical instrument 1010 of the present invention include a tool acquisition shaft 1240 that axially extends through the rotary drive shaft 1150. In various embodiments the proximal end portion 1242 of the tool acquisition shaft 1240 has a series of helical threads 1244 thereon that is configured to rotatably interface with a closure nut portion 1246 interfacing with an adjustment knob 1248 located on the proximal end of the handle assembly 1020. Such adjustment knob and closure nut arrangements are known in the art and will not be described in further detail herein. See, e.g., U.S. Pat. No. 7,506,791, the disclosure of which has been herein incorporated by reference. Thus, rotation of the adjustment knob 1248 relative to the handle assembly 1020 will result in the axial movement of the tool acquisition shaft 1240 within the rotary drive shaft 1150.


As is apparent from the foregoing description, various forms of the modular surgical instrument 1010 are well-suited for actuating a variety of different forms of surgical tool heads that may be required, for example, during a single surgical operation—particularly those devices/tool heads that are used to perform different surgical procedures or actions within the colon. A variety of such surgical tool head arrangements are disclosed in the various U.S. Patent Applications identified above which were incorporated herein by reference in their respective entireties. Such surgical tool head embodiments employ a “bayonet-type” attachment configuration for attaching the surgical tool head to the shaft assembly 1060. For example, to attach a surgical tool head to the shaft assembly 1060, the user aligns pins that extend from attachment portion of the tool head with corresponding bayonet-type slots 1377 provided in the distal end 1076 of the outer shaft casing 1070. See FIG. 23. Once the pins are aligned with their respective slots 1377, the user inserts the attachment stem portion of the surgical tool head into the distal end 1076 of the outer shaft casing 1070 and, when seated therein, rotates the surgical tool head slightly to seat the pins into their respective bayonet slots 1377. In alternate embodiments, the pins may be provided on the outer shaft casing and the slots may be provided in the attachment stems.



FIG. 24 illustrates a surgical tool head in the form of a tissue manipulation device 2000 that is specifically configured for use in connection with at least one form of modular surgical instrument 1010. As can be seen in that Figure, the tissue manipulation device 2000 has an attachment stem portion 2002 that has a pair of attachment pins 2004 protruding therefrom. To attach the tissue manipulation device 2000 to the shaft assembly 1060, the user aligns pins 2004 with the corresponding bayonet-type slots 1377 provided in the distal end 1076 of the outer shaft casing 1070. Once the pins 2004 are aligned with their respective slots 1377, the user inserts the attachment stem portion 2002 into the distal end 1076 of the outer shaft casing 1070 and, when seated therein, rotates the tissue manipulation device 2000 slightly to seat the pins 2004 into their respective bayonet slots 1377.


As can be further seen in FIG. 24, the tissue manipulation device 2000 further includes an actuation adapter 2010 that is configured to operably interface with the axial drive shaft 1200. In at least one form, the actuation adapter 2010 includes an attachment cap 2012 that is sized to extend over the distal end portion 1180 of the rotary drive shaft 1150 as shown so as to be axially movable relative thereto. The proximal end 2014 of the attachment cap 2012 has a pair of diametrically opposed attachment pins 2016 protruding therefrom. Each of the attachment pins 2016 is configured to hooking engage the distal end of the axial drive shaft 1200 when the attachment stem portion 2002 is coupled to the shaft assembly 1060. A thrust washer 2018 is removably affixed to the distal end portion 2020 of the attachment stem 2002 to retain the movable attachment cap 2012 within the attachment stem 2002.


As can also be seen in FIG. 24, the attachment stem portion 2002 protrudes from a central shaft assembly 2030 that defines an insertion axis IA-IA. The distal end portion of the central shaft assembly 2030 terminates in a substantially hollow blunt end cap 2032. In at least one form, the tissue manipulation device 2000 further comprises a plurality of tissue manipulation arms 2040, 2050, 2060, 2070 that are operably supported on the central shaft assembly 2030. More specifically, a first tissue manipulation arm 2040 comprises a first body portion 2042 that has a relatively blunt first tissue manipulation end 2044. The first tissue manipulation arm 2040 is constrained to move laterally along a first axis FA-FA that is substantially transverse to the installation axis IA-IA between the insertion position shown in FIG. 24 and at least one deployed position as was discussed above.


Likewise, a second tissue manipulation arm 2050 comprises a second body portion 2052 that has a relatively blunt second tissue manipulation end 2054. The second tissue manipulation arm 2050 is constrained to move laterally along a second axis SA-SA that is substantially transverse to the installation axis IA-IA between a first insertion position shown in FIG. 24 and at least one deployed position. A third tissue manipulation arm 2060 comprises a third body portion 2062 that has a relatively blunt third tissue manipulation end 2064. The third tissue manipulation arm 2060 is constrained to move laterally along a third axis TA-TA that is substantially transverse to the installation axis IA-IA between a first insertion position shown in FIG. 24 and at least one deployed position. A fourth tissue manipulation arm 2070 comprises a fourth body portion 2072 that has a relatively blunt fourth tissue manipulation end 2074. The fourth tissue manipulation arm 2070 is constrained to move laterally along a fourth axis FTA-FTA that is substantially transverse to the installation axis IA-IA between a first insertion position shown in FIG. 24 and at least one deployed position.


Various embodiments of the tissue manipulation device 2000 further include an actuator rod 2080 for selectively applying deployment motions to the tissue manipulation arms 2040, 2050, 2060, 2070. As can be seen in FIG. 24, in at least one form, the actuator rod 2080 has a plurality of bends 2082, 2084, 2086, 2088 therein. The actuator rod 2080 is configured for selective axial travel within the central shaft assembly 2030 and the tissue manipulation arms 2040, 2050, 2060, 2070. The bends 2082, 2084, 2086, 2088 in actuator rod 2080 are configured to selectively engage spring biased detents located on the inside of or otherwise attached to the tissue manipulation arms 2040, 2050, 2060, 2070. More specifically, as can be seen in FIG. 24, the first tissue manipulation arm 2040 has a first spring loaded detent 2046 therein that comprises a piston head 2047 that is movably journaled on a pin 2048. A spring 2049 is provided to apply a biasing force to the piston head 2047. The second tissue manipulation arm 2050 has a second spring loaded detent 2056 therein that is substantially the same as the first spring loaded detent 2046. The third tissue manipulation arm 2060 has a third spring loaded detent 2066 therein that is substantially the same as the first spring loaded detent 2046. The fourth tissue manipulation arm 2070 has a fourth spring loaded detent 2076 therein that is substantially the same as the first spring loaded detent 2046. In at least one embodiment, an expandable sheath assembly is inserted over the tool head as was described above.


In at least one embodiment, a proximal end portion 1081 of the actuator rod 2080 is attached to the actuator cap 2012. An actuator spring 2090 is employed to bias the actuator cap 2012 in the proximal direction “PD” to retain the tissue manipulator 2000 in the insertion position (FIG. 24) prior to applying an actuation force thereto. The actuator spring 2090 extends between the actuator cap 2012 and a thrust washer 2092 that is retained in position by pins 2094 that are inserted into the central shaft portion 2030.


Once the tissue manipulation device 2000 has been attached to the shaft assembly 1060 of the modular surgical instrument 1010 as described above, it may be used by inserting the head portion 2001 of the device 2000 with the sheath thereover into the colon through the anus. Once the head assembly 2001 has been inserted to the desired position in the insertion or unexpanded orientation (FIG. 24), the surgeon applies and actuation force to the actuation rod 2080 to force it within the central shaft assembly 2030 in the distal direction “DD”. This action is accomplished by moving the first drive selection switch 1130 in the “L” direction (FIG. 20) to bring the pin 1212 into the hole 1122 in the gear plate attached lug 1120. This action also moves the gear plate 1110 to the axial drive position wherein all of the gear racks 1114, 1116, 1118 are out of meshing engagement with their corresponding pinion gears 1152, 1154, 1156 on the rotary drive shaft 1150 and the gear plate 1110 is in driving engagement with the axial drive bar 1200. Thereafter, the surgeon depresses the firing trigger 1140 to drive the axial drive bar 1200 distally within the outer shaft casing 1070 of the shaft assembly 1060. Such action also moves the actuator cap 2012 and actuator rod 2080 distally. As the actuator rod 2080 is moved distally, the bend 2082 contacts detent 2046 and pushes the first tissue manipulation arm 2040 laterally along the first axis FA-FA. Likewise, the bend 2084 contacts the second detent 2056 and pushes the second tissue manipulation arm 2050 laterally along the second axis SA-SA. The bend 2086 contacts the third detent 2066 and biases the third tissue manipulation arm 2060 laterally along the third axis TA-TA. The bend 2088 contacts the fourth detent 2076 and biases the fourth tissue manipulation arm 2070 laterally along the fourth axis FTA-FTA. The distal most bend 2082 extends into the hollow cap 2032. When the surgeon releases the trigger 1140, the actuator rod 2080 will be pulled in the proximal direction, thereby causing the bends 2082, 2084, 2086, 2088 to move the tissue manipulation arms 2040, 2050, 2060, 2070, respectively to their insertion or un-deployed positions as shown in FIG. 24.


Further to the above, it will be understood that any one or more of the tissue manipulation devices disclosed herein, such as tissue manipulation devices 100, 200, 300, and/or or 500, for example, can comprise a modular end effector which can be assembled to a shaft assembly of a surgical instrument, such as shaft assembly 1060 of surgical instrument 1010. In various embodiments, referring generally to FIGS. 11-14, a surgical instrument can comprise a first actuator and a second actuator, wherein the first actuator can be operably coupled to the first actuation shaft 390 and the second actuator can be operably coupled to the second actuation shaft 400 when the end effector 300 is assembled to the shaft assembly of the surgical instrument. In at least one such embodiment, the first actuation shaft 390 can engage the first actuator and the second actuation shaft 400 can engage the second actuator as the end effector 300 is assembled to the shaft of the surgical instrument via a bayonet connection, for example.


The various tissue manipulation devices of the present invention provide the surgeon with considerable flexibility when performing surgical procedures on the colon. Such devices enable the surgeon to gain access to the veins and arteries on the sides of the rectum during mobilization and can also be effectively used to prevent the tissue from bunching up while avoiding over stretching. Once inserted, the device may be used to introduce some bend/articulation of portions of the colon. Use of the expandable sheath may serve to avoid inadvertent damage to the inside of the colon during manipulation. While several embodiments of the invention have been described, it should be apparent, however, that various modifications, alterations and adaptations to those embodiments may occur to persons skilled in the art with the attainment of some or all of the advantages of the invention. For example, according to various embodiments, a single component may be replaced by multiple components, and multiple components may be replaced by a single component, to perform a given function or functions. Accordingly, it is expressly intended that all such equivalents, variations and changes which fall within the spirit and scope of the present invention as defined in the claims be embraced thereby.


Any patent, publication, or other disclosure material, in whole or in part, that is said to be incorporated by reference herein is incorporated herein only to the extent that the incorporated materials does not conflict with existing definitions, statements, or other disclosure material set forth in this disclosure. As such, and to the extent necessary, the disclosure as explicitly set forth herein supersedes any conflicting material incorporated herein by reference. Any material, or portion thereof, that is said to be incorporated by reference herein, but which conflicts with existing definitions, statements, or other disclosure material set forth herein will only be incorporated to the extent that no conflict arises between that incorporated material and the existing disclosure material.

Claims
  • 1. A rectal manipulation device, comprising: a shaft assembly defining an insertion axis, wherein at least a portion of said shaft assembly is configured to be inserted into a patient's rectum; anda plurality of tissue manipulation arms each having a tissue manipulation end, each said tissue manipulation arm operably supported by said shaft assembly, wherein at least some of said tissue manipulation arms are selectively movable from a first insertion position wherein all of said tissue manipulation ends are substantially aligned relative to each other and, upon application of an actuation motion thereto, said at least some of said tissue manipulation arms move to other deployed positions about said insertion axis such that said tissue manipulation ends of said plurality of tissue manipulation arms are not all substantially aligned relative to each other and wherein one of said at least some of said tissue manipulation arms is constrained to move along a corresponding transverse axis that is substantially transverse to said insertion axis from said first insertion position to one of said other deployed positions upon application of said actuation motion thereto and wherein another one of said at least some of said tissue manipulation arms is constrained to move along another corresponding transverse axis that is substantially transverse to said insertion axis and parallel to said corresponding transverse axis from said first insertion position to another one of said other deployed positions upon application of said actuation motion thereto.
  • 2. The rectal manipulation device of claim 1 further comprising an expandable sheath extending over at least some of said plurality of tissue manipulation arms, said expandable sheath configured to retain said at least some of said plurality of tissue manipulation arms in said first insertion position and expand as said at least some of said plurality of tissue manipulation arms are moved to said other deployed positions.
  • 3. The rectal manipulation device of claim 1 wherein, upon application of said actuation motion to said one of said at least some of said tissue manipulation arms, said one of said at least some of said tissue manipulation arms moves to said one of said other deployed positions wherein said tissue manipulation end thereof is located on one lateral side of said insertion axis and, upon application of said actuation motion to said another one of said at least some of said tissue manipulation arms causes said another one of said at least some of said tissue manipulation arms to move to said another said other deployed position wherein said tissue manipulation end thereof is located on another lateral side of said insertion axis.
  • 4. The rectal manipulation device of claim 1 wherein said actuation motion is applied to said at least some of said tissue manipulation arms by a tension member operably engaging a deployment portion thereof such that, upon application of tension to said tension member, said at least some of said tissue manipulation arms are moved to at least some of said other deployed positions.
  • 5. The rectal manipulation device of claim 4 wherein each said deployment portion of said at least some of said tissue manipulation arms is configured to return said at least some of said tissue manipulation arms from said at least some other deployed positions to said insertion position upon removal of said application of tension to said tension member.
  • 6. The rectal manipulation device of claim 1 wherein said plurality of said tissue manipulation arms is equally spaced along a portion of said shaft assembly.
  • 7. The rectal manipulation device of claim 1 wherein said at least some of said tissue manipulation arms that are selectively movable are configured to move axially along said insertion axis upon application of said actuation motion thereto.
  • 8. A rectum manipulation device, comprising: a shaft assembly defining an insertion axis;a first tissue manipulation arm movably supported on said shaft assembly and is movable relative thereto along a first axis that is substantially transverse to said insertion axis;a second tissue manipulation arm movably supported on said shaft assembly and is movable relative thereto along a second axis that is substantially transverse to said insertion axis;a third tissue manipulation arm movably supported on said shaft assembly and is movable relative thereto along a third axis that is substantially transverse to said insertion axis;a fourth tissue manipulation arm movably supported on said shaft assembly and is movable relative thereto along a fourth axis that is substantially transverse to said insertion axis; andan actuation member comprising a tension member operably interfacing with each of said first, second, third, and fourth tissue manipulation arms such that, upon application of an actuation motion to said tension member, said tension member applies deployment motions to said first, second, third and fourth tissue manipulation arms.
  • 9. The rectum manipulation device of claim 8 further comprising a first biasing member biasing said first tissue manipulation arm to a first insertion position upon discontinuing said application of said deployment motion thereto;a second biasing member biasing said second tissue manipulation arm to a second insertion position upon discontinuing said application of said deployment motion thereto;a third biasing member biasing said third tissue manipulation arm to a third insertion position upon discontinuing said application of said deployment motion thereto; anda fourth biasing member biasing said fourth tissue manipulation arm to a fourth insertion position upon discontinuing said application of said deployment motion thereto.
  • 10. The rectum manipulation device of claim 8 wherein said actuation member is configured to operably engage corresponding portions of each of said first, second, third, and fourth tissue manipulation arms when said actuation motion is applied thereto in a first direction, said actuation member configured to disengage said corresponding portions of each of said first, second, third, and fourth tissue manipulation arms when said actuation motion is applied thereto in a second direction that is opposite to said first direction.
  • 11. A rectal manipulation device, comprising: a shaft assembly defining an insertion axis, wherein at least a portion of said shaft assembly is configured to be inserted into a patient's rectum; anda plurality of tissue manipulation arms each having a tissue manipulation end, each said tissue manipulation arm operably supported by said shaft assembly, wherein at least some of said tissue manipulation arms are selectively movable from a first insertion position wherein all of said tissue manipulation ends are substantially aligned relative to each other and, upon application of an actuation motion thereto, said at least some of said tissue manipulation arms move to other deployed positions about said insertion axis such that said tissue manipulation ends of said plurality of tissue manipulation arms are not all substantially aligned relative to each other and wherein said actuation motion is applied to said at least some of said tissue manipulation arms by a tension member operably engaging a deployment portion thereof such that, upon application of tension to said tension member, said at least some of said tissue manipulation arms are moved to at least some of said other deployed positions.
  • 12. The rectal manipulation device of claim 11 further comprising an expandable sheath extending over at least some of said plurality of tissue manipulation arms, said expandable sheath configured to retain said at least some of said plurality of tissue manipulation arms in said first insertion position and expand as said at least some of said plurality of tissue manipulation arms are moved to said other deployed positions.
  • 13. The rectal manipulation device of claim 11 wherein, upon application of said actuation motion to one of said at least some of said tissue manipulation arms, said one of said at least some of said tissue manipulation arms moves to one of said other deployed positions wherein said tissue manipulation end thereof is located on one lateral side of said insertion axis and, upon application of said actuation motion to another one of said at least some of said tissue manipulation arms causes said another one of said at least some of said tissue manipulation arms to move to another said other deployed position wherein said tissue manipulation end thereof is located on another lateral side of said insertion axis.
  • 14. The rectal manipulation device of claim 11 wherein one of said at least some of said tissue manipulation arms is constrained to move along a corresponding transverse axis that is substantially transverse to said insertion axis from said first insertion position to one of said other deployed positions upon application of said actuation motion thereto and wherein another one of said at least some of said tissue manipulation arms is constrained to move along another corresponding transverse axis that is substantially transverse to said insertion axis from said first insertion position to another one of said other deployed positions upon application of said actuation motion thereto.
  • 15. The rectal manipulation device of claim 14 wherein said corresponding transverse axis is substantially parallel to said corresponding transverse axis.
  • 16. The rectal manipulation device of claim 11 wherein each deployment portion of said at least some of said tissue manipulation arms is configured to return said at least some of said tissue manipulation arms from said at least some other deployed positions to said insertion position upon removal of said application of tension to said tension member.
  • 17. The rectal manipulation device of claim 11 wherein said plurality of said tissue manipulation arms are equally spaced along a portion of said shaft assembly.
  • 18. A rectal manipulation device, comprising: a shaft assembly defining an insertion axis, wherein at least a portion of said shaft assembly is configured to be inserted into a patient's rectum; anda plurality of tissue manipulation arms each having a tissue manipulation end, each said tissue manipulation arm operably supported by said shaft assembly, wherein at least some of said tissue manipulation arms are selectively movable from a first insertion position wherein all of said tissue manipulation ends are substantially aligned relative to each other and, upon application of an actuation motion thereto, said at least some of said tissue manipulation arms move to other deployed positions about said insertion axis such that said tissue manipulation ends of said plurality of tissue manipulation arms are not all substantially aligned relative to each other and wherein one of said at least some of said tissue manipulation arms is constrained to move along a corresponding transverse axis that is substantially transverse to said insertion axis from said first insertion position to one of said other deployed positions upon application of said actuation motion thereto and wherein another one of said at least some of said tissue manipulation arms is constrained to move along another corresponding transverse axis that is substantially transverse to said insertion axis and axially spaced from said corresponding transverse axis from said first insertion position to another one of said other deployed positions upon application of said actuation motion thereto.
  • 19. The rectal manipulation device of claim 18 further comprising an expandable sheath extending over at least some of said plurality of tissue manipulation arms, said expandable sheath configured to retain said at least some of said plurality of tissue manipulation arms in said first insertion position and expand as said at least some of said plurality of tissue manipulation arms are moved to said other deployed positions.
  • 20. The rectal manipulation device of claim 18 wherein, upon application of said actuation motion to said one of said at least some of said tissue manipulation arms, said one of said at least some of said tissue manipulation arms moves to one of said other deployed positions wherein said tissue manipulation end thereof is located on one lateral side of said insertion axis and, upon application of said actuation motion to another one of said at least some of said tissue manipulation arms causes said another one of said at least some of said tissue manipulation arms to move to another said other deployed position wherein said tissue manipulation end thereof is located on another lateral side of said insertion axis.
  • 21. The rectal manipulation device of claim 18 wherein said one of said at least some of said tissue manipulation arms is constrained to move along a corresponding transverse axis that is substantially transverse to said insertion axis from said first insertion position to said one of said other deployed positions upon application of said actuation motion thereto and wherein said another one of said at least some of said tissue manipulation arms is constrained to move along another corresponding transverse axis that is substantially transverse to said insertion axis from said first insertion position to said another one of said other deployed positions upon application of said actuation motion thereto.
  • 22. The rectal manipulation device of claim 21 wherein said corresponding transverse axis is substantially parallel to said another corresponding transverse axis.
  • 23. The rectal manipulation device of claim 18 wherein said actuation motion is applied to said at least some of said tissue manipulation arms by a tension member operably engaging a deployment portion thereof such that, upon application of tension to said tension member, said at least some of said tissue manipulation arms are moved to at least some of said other deployed positions.
  • 24. The rectal manipulation device of claim 23 wherein each said deployment portion of said at least some of said tissue manipulation arms is configured to return said at least some of said tissue manipulation arms from said at least some other deployed positions to said insertion position upon removal of said application of tension to said tension member.
  • 25. A rectal manipulation device, comprising: a shaft assembly defining an insertion axis, wherein at least a portion of said shaft assembly is configured to be inserted into a patient's rectum; anda plurality of tissue manipulation arms each having a tissue manipulation end, each said tissue manipulation arm operably supported by said shaft assembly, wherein at least some of said tissue manipulation arms are selectively movable from a first insertion position wherein all of said tissue manipulation ends are substantially aligned relative to each other and, upon application of an actuation motion thereto, said at least some of said tissue manipulation arms move to other deployed positions about said insertion axis such that said tissue manipulation ends of said plurality of tissue manipulation arms are not all substantially aligned relative to each other and wherein one of said at least some of said tissue manipulation arms is constrained to move along a corresponding transverse plane that is substantially transverse to said insertion axis from said first insertion position to one of said other deployed positions upon application of said actuation motion thereto and wherein another one of said at least some of said tissue manipulation arms is constrained to move along another corresponding transverse plane that is substantially transverse to said insertion axis and parallel to said corresponding transverse plane from said first insertion position to another one of said other deployed positions upon application of said actuation motion thereto.
  • 26. The rectal manipulation device of claim 25 further comprising an expandable sheath extending over at least some of said plurality of tissue manipulation arms, said expandable sheath configured to retain said at least some of said plurality of tissue manipulation arms in said first insertion position and expand as said at least some of said plurality of tissue manipulation arms are moved to said other deployed positions.
  • 27. The rectal manipulation device of claim 25 wherein, upon application of said actuation motion to said one of said at least some of said tissue manipulation arms, said one of said at least some of said tissue manipulation arms moves to one of said other deployed positions wherein said tissue manipulation end thereof is located on one lateral side of said insertion axis and, upon application of said actuation motion to said another one of said at least some of said tissue manipulation arms causes said another one of said at least some of said tissue manipulation arms to move to another said other deployed position wherein said tissue manipulation end thereof is located on another lateral side of said insertion axis.
  • 28. The rectal manipulation device of claim 25 wherein said actuation motion is applied to said at least some of said tissue manipulation arms by a tension member operably engaging a deployment portion thereof such that, upon application of tension to said tension member, said at least some of said tissue manipulation arms are moved to at least some of said other deployed positions.
CROSS-REFERENCE TO RELATED APPLICATIONS

This non-provisional patent application claims the benefit of and priority from U.S. Provisional Patent Application Ser. No. 61/452,432, filed Mar. 14, 2011, entitled “Surgical Stapling Instruments”, the entire disclosure of which is hereby incorporated by reference.

US Referenced Citations (747)
Number Name Date Kind
3166072 Sullivan, Jr. Jan 1965 A
3266494 Brownrigg et al. Aug 1966 A
3746002 Haller Jul 1973 A
3863639 Kleaveland Feb 1975 A
4190042 Sinnreich Feb 1980 A
4274398 Scott, Jr. Jun 1981 A
4505272 Utyamyshev et al. Mar 1985 A
4654028 Suma Mar 1987 A
4744363 Hasson May 1988 A
4893622 Green et al. Jan 1990 A
4903697 Resnick et al. Feb 1990 A
4909789 Taguchi et al. Mar 1990 A
4984564 Yuen Jan 1991 A
5002553 Shiber Mar 1991 A
5071430 de Salis et al. Dec 1991 A
5104025 Main et al. Apr 1992 A
5108368 Hammerslag et al. Apr 1992 A
5122156 Granger et al. Jun 1992 A
5139513 Segato Aug 1992 A
5158567 Green Oct 1992 A
5195505 Josefsen Mar 1993 A
5205459 Brinkerhoff et al. Apr 1993 A
5222963 Brinkerhoff et al. Jun 1993 A
5222975 Crainich Jun 1993 A
5234447 Kaster et al. Aug 1993 A
5236440 Hlavacek Aug 1993 A
5258009 Conners Nov 1993 A
5282829 Hermes Feb 1994 A
5285945 Brinkerhoff et al. Feb 1994 A
5304204 Bregen Apr 1994 A
5309927 Welch May 1994 A
5314445 Heidmueller née Degwitz et al. May 1994 A
5330502 Hassler et al. Jul 1994 A
5336232 Green et al. Aug 1994 A
5342395 Jarrett et al. Aug 1994 A
5342396 Cook Aug 1994 A
5350400 Esposito et al. Sep 1994 A
5354250 Christensen Oct 1994 A
5354303 Spaeth et al. Oct 1994 A
5366479 McGarry et al. Nov 1994 A
5374277 Hassler Dec 1994 A
5383888 Zvenyatsky et al. Jan 1995 A
5383895 Holmes et al. Jan 1995 A
5391180 Tovey et al. Feb 1995 A
5404870 Brinkerhoff et al. Apr 1995 A
5405344 Williamson et al. Apr 1995 A
5411508 Bessler et al. May 1995 A
5425745 Green et al. Jun 1995 A
5441494 Ortiz Aug 1995 A
5445644 Pietrafitta et al. Aug 1995 A
5474057 Makower et al. Dec 1995 A
5476479 Green et al. Dec 1995 A
5478354 Tovey et al. Dec 1995 A
5480409 Riza Jan 1996 A
5490819 Nicholas et al. Feb 1996 A
5503635 Sauer et al. Apr 1996 A
5514157 Nicholas et al. May 1996 A
5520609 Moll et al. May 1996 A
5520678 Heckele et al. May 1996 A
5527264 Moll et al. Jun 1996 A
5549621 Bessler et al. Aug 1996 A
5549637 Crainich Aug 1996 A
5554169 Green et al. Sep 1996 A
5556416 Clark et al. Sep 1996 A
5558665 Kieturakis Sep 1996 A
5562690 Green et al. Oct 1996 A
5562701 Huitema et al. Oct 1996 A
5562702 Huitema et al. Oct 1996 A
5571285 Chow et al. Nov 1996 A
5575803 Cooper et al. Nov 1996 A
5575805 Li Nov 1996 A
5607450 Zvenyatsky et al. Mar 1997 A
5613937 Garrison et al. Mar 1997 A
5618303 Marlow et al. Apr 1997 A
5618307 Donlon et al. Apr 1997 A
5620452 Yoon Apr 1997 A
5628743 Cimino May 1997 A
5651762 Bridges Jul 1997 A
5653721 Knodel et al. Aug 1997 A
5667517 Hooven Sep 1997 A
5667526 Levin Sep 1997 A
5667527 Cook Sep 1997 A
5681341 Lunsford et al. Oct 1997 A
5683349 Makower et al. Nov 1997 A
5695504 Gifford, III et al. Dec 1997 A
5695524 Kelley et al. Dec 1997 A
5697943 Sauer et al. Dec 1997 A
5702409 Rayburn et al. Dec 1997 A
5707392 Kortenbach Jan 1998 A
5725554 Simon et al. Mar 1998 A
5728121 Bimbo et al. Mar 1998 A
5730758 Allgeyer Mar 1998 A
5735874 Measamer et al. Apr 1998 A
5738629 Moll et al. Apr 1998 A
5741271 Nakao et al. Apr 1998 A
5749889 Bacich et al. May 1998 A
5749893 Vidal et al. May 1998 A
5752965 Francis et al. May 1998 A
5766188 Igaki Jun 1998 A
5766205 Zvenyatsky et al. Jun 1998 A
5769892 Kingwell Jun 1998 A
5782859 Nicholas et al. Jul 1998 A
5785647 Tompkins et al. Jul 1998 A
5792135 Madhani et al. Aug 1998 A
5797959 Castro et al. Aug 1998 A
5807376 Viola et al. Sep 1998 A
5807378 Jensen et al. Sep 1998 A
5810721 Mueller et al. Sep 1998 A
5810855 Rayburn et al. Sep 1998 A
5814057 Oi et al. Sep 1998 A
5817084 Jensen Oct 1998 A
5839639 Sauer et al. Nov 1998 A
5843096 Igaki et al. Dec 1998 A
5860581 Robertson et al. Jan 1999 A
5931853 McEwen et al. Aug 1999 A
5964774 McKean et al. Oct 1999 A
5997528 Bisch et al. Dec 1999 A
6024748 Manzo et al. Feb 2000 A
RE36720 Green et al. May 2000 E
6056735 Okada et al. May 2000 A
6063097 Oi et al. May 2000 A
6083234 Nicholas et al. Jul 2000 A
6083242 Cook Jul 2000 A
6099551 Gabbay Aug 2000 A
6117158 Measamer et al. Sep 2000 A
6142933 Longo et al. Nov 2000 A
6159200 Verdura et al. Dec 2000 A
6162208 Hipps Dec 2000 A
6165188 Saadat et al. Dec 2000 A
6171330 Benchetrit Jan 2001 B1
6174318 Bates et al. Jan 2001 B1
6214028 Yoon et al. Apr 2001 B1
6231565 Tovey et al. May 2001 B1
6248117 Blatter Jun 2001 B1
6258107 Balázs et al. Jul 2001 B1
6309403 Minor et al. Oct 2001 B1
6325810 Hamilton et al. Dec 2001 B1
6338737 Toledano Jan 2002 B1
6346077 Taylor et al. Feb 2002 B1
6387113 Hawkins et al. May 2002 B1
6391038 Vargas et al. May 2002 B2
6398797 Bombard et al. Jun 2002 B2
6402766 Bowman et al. Jun 2002 B2
RE37814 Allgeyer Aug 2002 E
6436110 Bowman et al. Aug 2002 B2
6436122 Frank et al. Aug 2002 B1
6440146 Nicholas et al. Aug 2002 B2
6443973 Whitman Sep 2002 B1
6494885 Dhindsa Dec 2002 B1
6503257 Grant et al. Jan 2003 B2
6503259 Huxel et al. Jan 2003 B2
6517565 Whitman et al. Feb 2003 B1
6517566 Hovland et al. Feb 2003 B1
6551333 Kuhns et al. Apr 2003 B2
6582364 Butler et al. Jun 2003 B2
6592597 Grant et al. Jul 2003 B2
6605078 Adams Aug 2003 B2
6616686 Coleman et al. Sep 2003 B2
6629988 Weadock Oct 2003 B2
6638285 Gabbay Oct 2003 B2
6638297 Huitema Oct 2003 B1
6645201 Utley et al. Nov 2003 B1
6656193 Grant et al. Dec 2003 B2
6692507 Pugsley et al. Feb 2004 B2
6699235 Wallace et al. Mar 2004 B2
6716232 Vidal et al. Apr 2004 B1
6716233 Whitman Apr 2004 B1
6723087 O'Neill et al. Apr 2004 B2
6726697 Nicholas et al. Apr 2004 B2
6736825 Blatter et al. May 2004 B2
6769590 Vresh et al. Aug 2004 B2
6786896 Madani et al. Sep 2004 B1
6793652 Whitman et al. Sep 2004 B1
6821284 Sturtz et al. Nov 2004 B2
6827712 Tovey et al. Dec 2004 B2
6846307 Whitman et al. Jan 2005 B2
6846308 Whitman et al. Jan 2005 B2
6846309 Whitman et al. Jan 2005 B2
6849071 Whitman et al. Feb 2005 B2
6872214 Sonnenschein et al. Mar 2005 B2
6913608 Liddicoat et al. Jul 2005 B2
6913613 Schwarz et al. Jul 2005 B2
6936042 Wallace et al. Aug 2005 B2
6939358 Palacios et al. Sep 2005 B2
6960220 Marino et al. Nov 2005 B2
6981978 Gannoe Jan 2006 B2
7001408 Knodel et al. Feb 2006 B2
7052454 Taylor May 2006 B2
7056330 Gayton Jun 2006 B2
7063712 Vargas et al. Jun 2006 B2
7066944 Laufer et al. Jun 2006 B2
7077856 Whitman Jul 2006 B2
7087071 Nicholas et al. Aug 2006 B2
7094247 Monassevitch et al. Aug 2006 B2
7108701 Evens et al. Sep 2006 B2
7108709 Cummins Sep 2006 B2
7122028 Looper et al. Oct 2006 B2
7128748 Mooradian et al. Oct 2006 B2
7147650 Lee Dec 2006 B2
7156863 Sonnenschein et al. Jan 2007 B2
7179267 Nolan et al. Feb 2007 B2
7208005 Frecker et al. Apr 2007 B2
7220272 Weadock May 2007 B2
7229408 Douglas et al. Jun 2007 B2
7238195 Viola Jul 2007 B2
7241288 Braun Jul 2007 B2
7252660 Kunz Aug 2007 B2
7267679 McGuckin, Jr. et al. Sep 2007 B2
7300450 Vleugels et al. Nov 2007 B2
7328828 Ortiz et al. Feb 2008 B2
7338505 Belson Mar 2008 B2
7338513 Lee et al. Mar 2008 B2
7354447 Shelton, IV et al. Apr 2008 B2
7377928 Zubik et al. May 2008 B2
7407078 Shelton, IV et al. Aug 2008 B2
7416101 Shelton, IV et al. Aug 2008 B2
7422139 Shelton, IV et al. Sep 2008 B2
7431189 Shelton, IV et al. Oct 2008 B2
7431730 Viola Oct 2008 B2
7434717 Shelton, IV et al. Oct 2008 B2
7438209 Hess et al. Oct 2008 B1
7441684 Shelton, IV et al. Oct 2008 B2
7441685 Boudreaux Oct 2008 B1
7448525 Shelton, IV et al. Nov 2008 B2
7455682 Viola Nov 2008 B2
7464846 Shelton, IV et al. Dec 2008 B2
7464849 Shelton, IV et al. Dec 2008 B2
7467740 Shelton, IV et al. Dec 2008 B2
7472815 Shelton, IV et al. Jan 2009 B2
7473221 Ewers et al. Jan 2009 B2
7481824 Boudreaux et al. Jan 2009 B2
7490749 Schall et al. Feb 2009 B2
7491232 Bolduc et al. Feb 2009 B2
7494499 Nagase et al. Feb 2009 B2
7500979 Hueil et al. Mar 2009 B2
7506791 Omaits et al. Mar 2009 B2
7510107 Timm et al. Mar 2009 B2
7517356 Heinrich Apr 2009 B2
7547312 Bauman et al. Jun 2009 B2
7549564 Boudreaux Jun 2009 B2
7549998 Braun Jun 2009 B2
7568603 Shelton, IV et al. Aug 2009 B2
7588175 Timm et al. Sep 2009 B2
7588176 Timm et al. Sep 2009 B2
7597229 Boudreaux et al. Oct 2009 B2
7604150 Boudreaux Oct 2009 B2
7604151 Hess et al. Oct 2009 B2
7607557 Shelton, IV et al. Oct 2009 B2
7644848 Swayze et al. Jan 2010 B2
7648519 Lee et al. Jan 2010 B2
7658311 Boudreaux Feb 2010 B2
7665647 Shelton, IV et al. Feb 2010 B2
7669746 Shelton, IV Mar 2010 B2
7669747 Weisenburgh, II et al. Mar 2010 B2
7670334 Hueil et al. Mar 2010 B2
7673780 Shelton, IV et al. Mar 2010 B2
7673781 Swayze et al. Mar 2010 B2
7673782 Hess et al. Mar 2010 B2
7673783 Morgan et al. Mar 2010 B2
7674255 Braun Mar 2010 B2
7686201 Csiky Mar 2010 B2
7686826 Lee et al. Mar 2010 B2
7691098 Wallace et al. Apr 2010 B2
7699844 Utley et al. Apr 2010 B2
7699859 Bombard et al. Apr 2010 B2
7708758 Lee et al. May 2010 B2
7721931 Shelton, IV et al. May 2010 B2
7721934 Shelton, IV et al. May 2010 B2
7721936 Shalton, IV et al. May 2010 B2
7731072 Timm et al. Jun 2010 B2
7735703 Morgan et al. Jun 2010 B2
7736306 Brustad et al. Jun 2010 B2
7738971 Swayze et al. Jun 2010 B2
7740159 Shelton, IV et al. Jun 2010 B2
7753245 Boudreaux et al. Jul 2010 B2
7753904 Shelton, IV et al. Jul 2010 B2
7766209 Baxter, III et al. Aug 2010 B2
7766210 Shelton, IV et al. Aug 2010 B2
7770775 Shelton, IV et al. Aug 2010 B2
7776060 Mooradian et al. Aug 2010 B2
7780685 Hunt et al. Aug 2010 B2
7789889 Zubik et al. Sep 2010 B2
7793812 Moore et al. Sep 2010 B2
7794475 Hess et al. Sep 2010 B2
7798386 Schall et al. Sep 2010 B2
7799039 Shelton, IV et al. Sep 2010 B2
7803151 Whitman Sep 2010 B2
7806891 Nowlin et al. Oct 2010 B2
7810692 Hall et al. Oct 2010 B2
7810693 Broehl et al. Oct 2010 B2
7819296 Hueil et al. Oct 2010 B2
7819297 Doll et al. Oct 2010 B2
7819298 Hall et al. Oct 2010 B2
7819299 Shelton, IV et al. Oct 2010 B2
7828808 Hinman et al. Nov 2010 B2
7832408 Shelton, IV et al. Nov 2010 B2
7832612 Baxter, III et al. Nov 2010 B2
7837080 Schwemberger Nov 2010 B2
7845537 Shelton, IV et al. Dec 2010 B2
7846149 Jankowski Dec 2010 B2
7857185 Swayze et al. Dec 2010 B2
7857186 Baxter, III et al. Dec 2010 B2
7861906 Doll et al. Jan 2011 B2
7866527 Hall et al. Jan 2011 B2
7871418 Thompson et al. Jan 2011 B2
7883461 Albrecht et al. Feb 2011 B2
7900805 Shelton, IV et al. Mar 2011 B2
7905380 Shelton, IV et al. Mar 2011 B2
7905381 Baxter, III et al. Mar 2011 B2
7913891 Doll et al. Mar 2011 B2
7914543 Roth et al. Mar 2011 B2
7918377 Measamer et al. Apr 2011 B2
7922061 Shelton, IV et al. Apr 2011 B2
7934630 Shelton, IV et al. May 2011 B2
7942890 D'Agostino et al. May 2011 B2
7954682 Giordano et al. Jun 2011 B2
7954684 Boudreaux Jun 2011 B2
7954686 Baxter, III et al. Jun 2011 B2
7955253 Ewers et al. Jun 2011 B2
7955257 Frasier et al. Jun 2011 B2
7959051 Smith et al. Jun 2011 B2
7966799 Morgan et al. Jun 2011 B2
7980443 Scheib et al. Jul 2011 B2
8002696 Suzuki Aug 2011 B2
8002795 Beetel Aug 2011 B2
8020743 Shelton, IV Sep 2011 B2
8034077 Smith et al. Oct 2011 B2
8056787 Boudreaux et al. Nov 2011 B2
8066167 Measamer et al. Nov 2011 B2
D650074 Hunt et al. Dec 2011 S
8083120 Shelton, IV et al. Dec 2011 B2
8097017 Viola Jan 2012 B2
8113410 Hall et al. Feb 2012 B2
8123767 Bauman et al. Feb 2012 B2
8128645 Sonnenschein et al. Mar 2012 B2
8136712 Zingman Mar 2012 B2
8141762 Bedi et al. Mar 2012 B2
8157145 Shelton, IV et al. Apr 2012 B2
8157153 Shelton, IV et al. Apr 2012 B2
8161977 Shelton, IV et al. Apr 2012 B2
8167185 Shelton, IV et al. May 2012 B2
8172124 Shelton, IV et al. May 2012 B2
8186555 Shelton, IV et al. May 2012 B2
8186560 Hess et al. May 2012 B2
8196795 Moore et al. Jun 2012 B2
8196796 Shelton, IV et al. Jun 2012 B2
8205781 Baxter, III et al. Jun 2012 B2
8210411 Yates et al. Jul 2012 B2
8211125 Spivey Jul 2012 B2
8215531 Shelton, IV et al. Jul 2012 B2
8220688 Laurent et al. Jul 2012 B2
8220690 Hess et al. Jul 2012 B2
8226553 Shelton, IV et al. Jul 2012 B2
8241271 Millman et al. Aug 2012 B2
8267300 Boudreaux Sep 2012 B2
8292155 Shelton, IV et al. Oct 2012 B2
8308040 Huang et al. Nov 2012 B2
8317070 Hueil et al. Nov 2012 B2
8322455 Shelton, IV et al. Dec 2012 B2
8322589 Boudreaux Dec 2012 B2
8333313 Boudreaux et al. Dec 2012 B2
8348129 Bedi et al. Jan 2013 B2
8348131 Omaits et al. Jan 2013 B2
8348837 Wenchell Jan 2013 B2
8348972 Soltz et al. Jan 2013 B2
8353437 Boudreaux Jan 2013 B2
8353438 Baxter, III et al. Jan 2013 B2
8353439 Baxter, III et al. Jan 2013 B2
8360296 Zingman Jan 2013 B2
8360297 Shelton, IV et al. Jan 2013 B2
8365976 Hess et al. Feb 2013 B2
8371491 Huitema et al. Feb 2013 B2
8372094 Bettuchi et al. Feb 2013 B2
8393514 Shelton, IV et al. Mar 2013 B2
8397971 Yates et al. Mar 2013 B2
8398669 Kim Mar 2013 B2
8408439 Huang et al. Apr 2013 B2
8414577 Boudreaux et al. Apr 2013 B2
8424740 Shelton, IV et al. Apr 2013 B2
8444036 Shelton, IV May 2013 B2
8453907 Laurent et al. Jun 2013 B2
8453908 Bedi et al. Jun 2013 B2
8453914 Laurent et al. Jun 2013 B2
8459520 Giordano et al. Jun 2013 B2
8459525 Yates et al. Jun 2013 B2
8464923 Shelton, IV Jun 2013 B2
8474677 Woodard, Jr. et al. Jul 2013 B2
8479969 Shelton, IV Jul 2013 B2
8485412 Shelton, IV et al. Jul 2013 B2
8485413 Scheib et al. Jul 2013 B2
8485970 Widenhouse et al. Jul 2013 B2
8517239 Scheib et al. Aug 2013 B2
8517243 Giordano et al. Aug 2013 B2
8517244 Shelton, IV et al. Aug 2013 B2
8529600 Woodard, Jr. et al. Sep 2013 B2
8540128 Shelton, IV et al. Sep 2013 B2
8540129 Baxter, III et al. Sep 2013 B2
8540130 Moore et al. Sep 2013 B2
8540131 Swayze Sep 2013 B2
8540133 Bedi et al. Sep 2013 B2
8561870 Baxter, III et al. Oct 2013 B2
8567656 Shelton, IV et al. Oct 2013 B2
8573461 Shelton, IV et al. Nov 2013 B2
8573465 Shelton, IV et al. Nov 2013 B2
20020095175 Brock et al. Jul 2002 A1
20030220660 Kortenbach et al. Nov 2003 A1
20040006372 Racenet et al. Jan 2004 A1
20040097987 Pugsley et al. May 2004 A1
20040098040 Taniguchi et al. May 2004 A1
20040111081 Whitman et al. Jun 2004 A1
20040147909 Johnston et al. Jul 2004 A1
20040167572 Roth et al. Aug 2004 A1
20040193177 Houghton et al. Sep 2004 A1
20040193189 Kortenbach et al. Sep 2004 A1
20040243176 Hahnen et al. Dec 2004 A1
20040254566 Plicchi et al. Dec 2004 A1
20040254608 Huitema et al. Dec 2004 A1
20040260315 Dell et al. Dec 2004 A1
20040267310 Racenet et al. Dec 2004 A1
20050033357 Braun Feb 2005 A1
20050059997 Bauman et al. Mar 2005 A1
20050070929 Dalessandro et al. Mar 2005 A1
20050085693 Belson et al. Apr 2005 A1
20050107824 Hillstead et al. May 2005 A1
20050131390 Heinrich et al. Jun 2005 A1
20050131457 Douglas et al. Jun 2005 A1
20050177181 Kagan et al. Aug 2005 A1
20050182298 Ikeda et al. Aug 2005 A1
20050187576 Whitman et al. Aug 2005 A1
20050192628 Viola Sep 2005 A1
20050203550 Laufer et al. Sep 2005 A1
20050216055 Scirica et al. Sep 2005 A1
20050240222 Shipp Oct 2005 A1
20050256452 DeMarchi et al. Nov 2005 A1
20060020258 Strauss et al. Jan 2006 A1
20060025811 Shelton et al. Feb 2006 A1
20060025812 Shelton et al. Feb 2006 A1
20060025813 Shelton et al. Feb 2006 A1
20060041188 Dirusso et al. Feb 2006 A1
20060047303 Ortiz et al. Mar 2006 A1
20060047307 Ortiz et al. Mar 2006 A1
20060052825 Ransick et al. Mar 2006 A1
20060085033 Criscuolo et al. Apr 2006 A1
20060161185 Saadat et al. Jul 2006 A1
20060173470 Oray et al. Aug 2006 A1
20060201989 Ojeda Sep 2006 A1
20060212069 Shelton et al. Sep 2006 A1
20060235469 Viola Oct 2006 A1
20060241692 McGuckin, Jr. et al. Oct 2006 A1
20060252993 Freed et al. Nov 2006 A1
20060258904 Stefanchik et al. Nov 2006 A1
20060259073 Miyamoto et al. Nov 2006 A1
20060271102 Bosshard et al. Nov 2006 A1
20070027468 Wales et al. Feb 2007 A1
20070027469 Smith et al. Feb 2007 A1
20070055219 Whitman et al. Mar 2007 A1
20070073341 Smith Mar 2007 A1
20070078484 Talarico et al. Apr 2007 A1
20070102472 Shelton, IV May 2007 A1
20070106317 Shelton, IV et al. May 2007 A1
20070118175 Butler et al. May 2007 A1
20070129605 Schaaf Jun 2007 A1
20070135803 Belson Jun 2007 A1
20070170225 Shelton, IV et al. Jul 2007 A1
20070175949 Shelton, IV et al. Aug 2007 A1
20070175950 Shelton, IV et al. Aug 2007 A1
20070175951 Shelton, IV et al. Aug 2007 A1
20070175955 Shelton, IV et al. Aug 2007 A1
20070194079 Hueil et al. Aug 2007 A1
20070194082 Morgan et al. Aug 2007 A1
20070203510 Bettuchi Aug 2007 A1
20070225562 Spivey et al. Sep 2007 A1
20070239028 Houser et al. Oct 2007 A1
20070244471 Malackowski Oct 2007 A1
20070270784 Smith et al. Nov 2007 A1
20070276189 Abel et al. Nov 2007 A1
20070299427 Yeung et al. Dec 2007 A1
20080029570 Shelton et al. Feb 2008 A1
20080029573 Shelton et al. Feb 2008 A1
20080029574 Shelton et al. Feb 2008 A1
20080029575 Shelton et al. Feb 2008 A1
20080078800 Hess et al. Apr 2008 A1
20080078802 Hess et al. Apr 2008 A1
20080082114 McKenna et al. Apr 2008 A1
20080082125 Murray et al. Apr 2008 A1
20080140115 Stopek Jun 2008 A1
20080154299 Livneh Jun 2008 A1
20080167522 Giordano et al. Jul 2008 A1
20080169328 Shelton Jul 2008 A1
20080169329 Shelton et al. Jul 2008 A1
20080169331 Shelton et al. Jul 2008 A1
20080169332 Shelton et al. Jul 2008 A1
20080169333 Shelton et al. Jul 2008 A1
20080172088 Smith et al. Jul 2008 A1
20080242939 Johnston Oct 2008 A1
20080255413 Zemlok et al. Oct 2008 A1
20080296346 Shelton, IV et al. Dec 2008 A1
20080308602 Timm et al. Dec 2008 A1
20080308603 Shelton et al. Dec 2008 A1
20090001121 Hess et al. Jan 2009 A1
20090001124 Hess et al. Jan 2009 A1
20090001130 Hess et al. Jan 2009 A1
20090005807 Hess et al. Jan 2009 A1
20090005808 Hess et al. Jan 2009 A1
20090005809 Hess et al. Jan 2009 A1
20090012556 Boudreaux et al. Jan 2009 A1
20090149871 Kagan et al. Jun 2009 A9
20090198272 Kerver et al. Aug 2009 A1
20090206125 Huitema et al. Aug 2009 A1
20090206126 Huitema et al. Aug 2009 A1
20090206131 Weisenburgh, II et al. Aug 2009 A1
20090206132 Hueil et al. Aug 2009 A1
20090206133 Morgan et al. Aug 2009 A1
20090206137 Hall et al. Aug 2009 A1
20090206139 Hall et al. Aug 2009 A1
20090206141 Huitema et al. Aug 2009 A1
20090206142 Huitema et al. Aug 2009 A1
20090209946 Swayze et al. Aug 2009 A1
20090209979 Yates et al. Aug 2009 A1
20090209990 Yates et al. Aug 2009 A1
20090242610 Shelton, Iv et al. Oct 2009 A1
20090292176 Bonadio et al. Nov 2009 A1
20100069942 Shelton, Iv Mar 2010 A1
20100076475 Yates et al. Mar 2010 A1
20100087840 Ebersole et al. Apr 2010 A1
20100089970 Smith et al. Apr 2010 A1
20100133317 Shelton, IV et al. Jun 2010 A1
20100179382 Shelton, IV et al. Jul 2010 A1
20100193566 Scheib et al. Aug 2010 A1
20100222901 Swayze et al. Sep 2010 A1
20100224669 Shelton, IV et al. Sep 2010 A1
20100228091 Widenhouse et al. Sep 2010 A1
20100243709 Hess et al. Sep 2010 A1
20100292540 Hess et al. Nov 2010 A1
20100294829 Giordano et al. Nov 2010 A1
20100301095 Shelton, IV et al. Dec 2010 A1
20100305552 Shelton, IV et al. Dec 2010 A1
20100312261 Suzuki et al. Dec 2010 A1
20100331880 Stopek Dec 2010 A1
20110006099 Hall et al. Jan 2011 A1
20110006101 Hall et al. Jan 2011 A1
20110022032 Zemlok et al. Jan 2011 A1
20110024477 Hall et al. Feb 2011 A1
20110024478 Shelton, IV Feb 2011 A1
20110024479 Swensgard et al. Feb 2011 A1
20110060363 Hess et al. Mar 2011 A1
20110068148 Hall et al. Mar 2011 A1
20110087276 Bedi et al. Apr 2011 A1
20110087279 Shah et al. Apr 2011 A1
20110114697 Baxter, III et al. May 2011 A1
20110114700 Baxter, III et al. May 2011 A1
20110118761 Baxter, III et al. May 2011 A1
20110125176 Yates et al. May 2011 A1
20110125177 Yates et al. May 2011 A1
20110132964 Weisenburgh, II et al. Jun 2011 A1
20110144430 Spivey et al. Jun 2011 A1
20110147433 Shelton, IV et al. Jun 2011 A1
20110147434 Hueil et al. Jun 2011 A1
20110155781 Swensgard et al. Jun 2011 A1
20110155784 Shelton, IV et al. Jun 2011 A1
20110155786 Shelton, IV Jun 2011 A1
20110155787 Baxter, III et al. Jun 2011 A1
20110163147 Laurent et al. Jul 2011 A1
20110174861 Shelton, IV et al. Jul 2011 A1
20110174862 Shelton, IV et al. Jul 2011 A1
20110192882 Hess et al. Aug 2011 A1
20110275901 Shelton, IV Nov 2011 A1
20110276083 Shelton, IV et al. Nov 2011 A1
20110288573 Yates et al. Nov 2011 A1
20110290851 Shelton, IV Dec 2011 A1
20110290853 Shelton, IV et al. Dec 2011 A1
20110290854 Timm et al. Dec 2011 A1
20110290855 Moore et al. Dec 2011 A1
20110290856 Shelton, IV et al. Dec 2011 A1
20110295242 Spivey et al. Dec 2011 A1
20110295269 Swensgard et al. Dec 2011 A1
20110295270 Giordano et al. Dec 2011 A1
20110295295 Shelton, IV et al. Dec 2011 A1
20120024934 Shelton, IV et al. Feb 2012 A1
20120024935 Shelton, IV et al. Feb 2012 A1
20120024936 Baxter, III et al. Feb 2012 A1
20120029272 Shelton, IV et al. Feb 2012 A1
20120029544 Shelton, IV et al. Feb 2012 A1
20120029547 Shelton, IV et al. Feb 2012 A1
20120046692 Smith et al. Feb 2012 A1
20120071711 Shelton, IV et al. Mar 2012 A1
20120071866 Kerr et al. Mar 2012 A1
20120074196 Shelton, IV et al. Mar 2012 A1
20120074198 Huitema et al. Mar 2012 A1
20120074200 Schmid et al. Mar 2012 A1
20120074201 Baxter, III et al. Mar 2012 A1
20120080332 Shelton, IV et al. Apr 2012 A1
20120080335 Shelton, IV et al. Apr 2012 A1
20120080336 Shelton, IV et al. Apr 2012 A1
20120080337 Shelton, IV et al. Apr 2012 A1
20120080338 Shelton, IV et al. Apr 2012 A1
20120080339 Shelton, IV et al. Apr 2012 A1
20120080340 Shelton, IV et al. Apr 2012 A1
20120080344 Shelton, IV Apr 2012 A1
20120080345 Morgan et al. Apr 2012 A1
20120080477 Leimbach et al. Apr 2012 A1
20120080478 Morgan et al. Apr 2012 A1
20120080479 Shelton, IV Apr 2012 A1
20120080480 Woodard, Jr. et al. Apr 2012 A1
20120080481 Widenhouse et al. Apr 2012 A1
20120080482 Schall et al. Apr 2012 A1
20120080483 Riestenberg et al. Apr 2012 A1
20120080484 Morgan et al. Apr 2012 A1
20120080485 Woodard, Jr. et al. Apr 2012 A1
20120080486 Woodard, Jr. et al. Apr 2012 A1
20120080488 Shelton, IV et al. Apr 2012 A1
20120080489 Shelton, IV et al. Apr 2012 A1
20120080490 Shelton, IV et al. Apr 2012 A1
20120080491 Shelton, IV et al. Apr 2012 A1
20120080493 Shelton, IV et al. Apr 2012 A1
20120080496 Schall et al. Apr 2012 A1
20120080498 Shelton, IV et al. Apr 2012 A1
20120080499 Schall et al. Apr 2012 A1
20120080500 Morgan et al. Apr 2012 A1
20120080501 Morgan et al. Apr 2012 A1
20120080502 Morgan et al. Apr 2012 A1
20120080503 Woodard, Jr. et al. Apr 2012 A1
20120083833 Shelton, IV et al. Apr 2012 A1
20120083834 Shelton, IV et al. Apr 2012 A1
20120083835 Shelton, IV et al. Apr 2012 A1
20120083836 Shelton, IV et al. Apr 2012 A1
20120132450 Timm et al. May 2012 A1
20120138660 Shelton, IV Jun 2012 A1
20120160721 Shelton, IV et al. Jun 2012 A1
20120175399 Shelton et al. Jul 2012 A1
20120199630 Shelton, IV Aug 2012 A1
20120199631 Shelton, IV et al. Aug 2012 A1
20120199632 Spivey et al. Aug 2012 A1
20120203247 Shelton, IV et al. Aug 2012 A1
20120234890 Aronhalt et al. Sep 2012 A1
20120234891 Aronhalt et al. Sep 2012 A1
20120234892 Aronhalt et al. Sep 2012 A1
20120234893 Schuckmann et al. Sep 2012 A1
20120234895 O'Connor et al. Sep 2012 A1
20120234896 Ellerhorst et al. Sep 2012 A1
20120234897 Shelton, IV et al. Sep 2012 A1
20120234898 Shelton, IV et al. Sep 2012 A1
20120234899 Scheib et al. Sep 2012 A1
20120238823 Hagerty et al. Sep 2012 A1
20120238824 Widenhouse et al. Sep 2012 A1
20120238826 Yoo et al. Sep 2012 A1
20120238829 Shelton, IV et al. Sep 2012 A1
20120239009 Mollere et al. Sep 2012 A1
20120239010 Shelton, IV et al. Sep 2012 A1
20120239082 Shelton, IV et al. Sep 2012 A1
20120241491 Aldridge et al. Sep 2012 A1
20120241492 Shelton, IV et al. Sep 2012 A1
20120241493 Baxter, III et al. Sep 2012 A1
20120241496 Mandakolathur Vasudevan et al. Sep 2012 A1
20120241497 Mandakolathur Vasudevan et al. Sep 2012 A1
20120241498 Gonzalez et al. Sep 2012 A1
20120241499 Baxter, III et al. Sep 2012 A1
20120241500 Timmer et al. Sep 2012 A1
20120241501 Swayze et al. Sep 2012 A1
20120241502 Aldridge et al. Sep 2012 A1
20120241503 Baxter, III et al. Sep 2012 A1
20120241505 Alexander, III et al. Sep 2012 A1
20120248169 Widenhouse et al. Oct 2012 A1
20120253298 Henderson et al. Oct 2012 A1
20120265230 Yates et al. Oct 2012 A1
20120283707 Giordano et al. Nov 2012 A1
20120283748 Ortiz et al. Nov 2012 A1
20120286019 Hueil et al. Nov 2012 A1
20120292367 Morgan et al. Nov 2012 A1
20120292370 Hess et al. Nov 2012 A1
20120298719 Shelton, IV et al. Nov 2012 A1
20120298722 Hess et al. Nov 2012 A1
20120312860 Ming et al. Dec 2012 A1
20120318842 Anim et al. Dec 2012 A1
20120318843 Henderson et al. Dec 2012 A1
20120318844 Shelton, IV et al. Dec 2012 A1
20130012931 Spivey et al. Jan 2013 A1
20130012957 Shelton, IV et al. Jan 2013 A1
20130018361 Bryant Jan 2013 A1
20130020375 Shelton, IV et al. Jan 2013 A1
20130020376 Shelton, IV et al. Jan 2013 A1
20130023861 Shelton, IV et al. Jan 2013 A1
20130026208 Shelton, IV et al. Jan 2013 A1
20130026210 Shelton, IV et al. Jan 2013 A1
20130056518 Swensgard Mar 2013 A1
20130056520 Swensgard Mar 2013 A1
20130056521 Swensgard Mar 2013 A1
20130056522 Swensgard Mar 2013 A1
20130075443 Giordano et al. Mar 2013 A1
20130075448 Schmid et al. Mar 2013 A1
20130075449 Schmid et al. Mar 2013 A1
20130075450 Schmid et al. Mar 2013 A1
20130079814 Hess et al. Mar 2013 A1
20130087597 Shelton, IV et al. Apr 2013 A1
20130105551 Zingman May 2013 A1
20130116668 Shelton, IV et al. May 2013 A1
20130116669 Shelton, IV et al. May 2013 A1
20130126581 Yates et al. May 2013 A1
20130126582 Shelton, IV et al. May 2013 A1
20130126583 Hueil et al. May 2013 A1
20130146641 Shelton, IV et al. Jun 2013 A1
20130146642 Shelton, IV et al. Jun 2013 A1
20130146643 Schmid et al. Jun 2013 A1
20130153636 Shelton, IV et al. Jun 2013 A1
20130153641 Shelton, IV et al. Jun 2013 A1
20130168435 Huang et al. Jul 2013 A1
20130172929 Hess et al. Jul 2013 A1
20130175317 Yates et al. Jul 2013 A1
20130175321 Shelton, IV et al. Jul 2013 A1
20130175322 Yates et al. Jul 2013 A1
20130181030 Hess et al. Jul 2013 A1
20130181033 Shelton, IV et al. Jul 2013 A1
20130181034 Shelton, IV et al. Jul 2013 A1
20130184718 Smith et al. Jul 2013 A1
20130184719 Shelton, IV et al. Jul 2013 A1
20130186932 Shelton, IV et al. Jul 2013 A1
20130186933 Shelton, IV et al. Jul 2013 A1
20130186934 Shelton, IV et al. Jul 2013 A1
20130186936 Shelton, IV Jul 2013 A1
20130190733 Giordano et al. Jul 2013 A1
20130190757 Yates et al. Jul 2013 A1
20130193188 Shelton, IV et al. Aug 2013 A1
20130193189 Swensgard et al. Aug 2013 A1
20130197556 Shelton, IV et al. Aug 2013 A1
20130200132 Moore et al. Aug 2013 A1
20130206814 Morgan et al. Aug 2013 A1
20130214030 Aronhalt et al. Aug 2013 A1
20130221063 Aronhalt et al. Aug 2013 A1
20130221064 Aronhalt et al. Aug 2013 A1
20130221065 Aronhalt et al. Aug 2013 A1
20130248576 Laurent et al. Sep 2013 A1
20130248577 Leimbach et al. Sep 2013 A1
20130256365 Shelton, IV et al. Oct 2013 A1
20130256366 Shelton, IV et al. Oct 2013 A1
20130256367 Scheib et al. Oct 2013 A1
20130256368 Timm et al. Oct 2013 A1
20130256369 Schmid et al. Oct 2013 A1
20130256371 Shelton, IV et al. Oct 2013 A1
20130256372 Baxter, III et al. Oct 2013 A1
20130256373 Schmid et al. Oct 2013 A1
20130256377 Schmid et al. Oct 2013 A1
20130256378 Schmid et al. Oct 2013 A1
20130256379 Schmid et al. Oct 2013 A1
20130256380 Schmid et al. Oct 2013 A1
20130256382 Swayze et al. Oct 2013 A1
20130256383 Aronhalt et al. Oct 2013 A1
20130261648 Laurent et al. Oct 2013 A1
Foreign Referenced Citations (674)
Number Date Country
2012200178 Jul 2013 AU
2458946 Mar 2003 CA
2512960 Jan 2006 CA
2514274 Jan 2006 CA
2488482 May 2002 CN
1523725 Aug 2004 CN
1634601 Jul 2005 CN
1868411 Nov 2006 CN
1915180 Feb 2007 CN
101011286 Aug 2007 CN
101095621 Jan 2008 CN
101023879 Mar 2013 CN
273689 May 1914 DE
1775926 Jan 1972 DE
3036217 Apr 1982 DE
3212828 Nov 1982 DE
3210466 Sep 1983 DE
3709067 Sep 1988 DE
9412228 Sep 1994 DE
19509116 Sep 1996 DE
19851291 Jan 2000 DE
19924311 Nov 2000 DE
69328576 Jan 2001 DE
20016423 Feb 2001 DE
10052679 May 2001 DE
20112837 Oct 2001 DE
20121753 Apr 2003 DE
10314072 Oct 2004 DE
202007003114 Jun 2007 DE
0122046 Oct 1984 EP
0070230 Oct 1985 EP
0156774 Oct 1985 EP
0387980 Oct 1985 EP
0033548 May 1986 EP
0129442 Nov 1987 EP
0276104 Jul 1988 EP
0178940 Jan 1991 EP
0178941 Jan 1991 EP
0248844 Jan 1993 EP
0545029 Jun 1993 EP
0277959 Oct 1993 EP
0233940 Nov 1993 EP
0261230 Nov 1993 EP
0639349 Feb 1994 EP
0324636 Mar 1994 EP
0593920 Apr 1994 EP
0594148 Apr 1994 EP
0427949 Jun 1994 EP
0523174 Jun 1994 EP
0600182 Jun 1994 EP
0310431 Nov 1994 EP
0375302 Nov 1994 EP
0376562 Nov 1994 EP
0630612 Dec 1994 EP
0634144 Jan 1995 EP
0646356 Apr 1995 EP
0646357 Apr 1995 EP
0653189 May 1995 EP
0669104 Aug 1995 EP
0511470 Oct 1995 EP
0674876 Oct 1995 EP
0679367 Nov 1995 EP
0392547 Dec 1995 EP
0685204 Dec 1995 EP
0364216 Jan 1996 EP
0699418 Mar 1996 EP
0702937 Mar 1996 EP
0705571 Apr 1996 EP
0711611 May 1996 EP
0484677 Jun 1996 EP
0541987 Jul 1996 EP
0667119 Jul 1996 EP
0708618 Mar 1997 EP
0770355 May 1997 EP
0503662 Jun 1997 EP
0447121 Jul 1997 EP
0625077 Jul 1997 EP
0633749 Aug 1997 EP
0710090 Aug 1997 EP
0578425 Sep 1997 EP
0625335 Nov 1997 EP
0552423 Jan 1998 EP
0592244 Jan 1998 EP
0648476 Jan 1998 EP
0649290 Mar 1998 EP
0598618 Sep 1998 EP
0676173 Sep 1998 EP
0678007 Sep 1998 EP
0603472 Nov 1998 EP
0605351 Nov 1998 EP
0878169 Nov 1998 EP
0879742 Nov 1998 EP
0695144 Dec 1998 EP
0722296 Dec 1998 EP
0760230 Feb 1999 EP
0623316 Mar 1999 EP
0650701 Mar 1999 EP
0537572 Jun 1999 EP
0923907 Jun 1999 EP
0843906 Mar 2000 EP
0552050 May 2000 EP
0833592 May 2000 EP
0830094 Sep 2000 EP
1034747 Sep 2000 EP
1034748 Sep 2000 EP
0694290 Nov 2000 EP
1050278 Nov 2000 EP
1053719 Nov 2000 EP
1053720 Nov 2000 EP
1055399 Nov 2000 EP
1055400 Nov 2000 EP
1080694 Mar 2001 EP
1090592 Apr 2001 EP
1095627 May 2001 EP
1256318 May 2001 EP
0806914 Sep 2001 EP
0768840 Dec 2001 EP
0908152 Jan 2002 EP
0872213 May 2002 EP
0862386 Jun 2002 EP
0949886 Sep 2002 EP
1238634 Sep 2002 EP
0858295 Dec 2002 EP
0656188 Jan 2003 EP
0717960 Feb 2003 EP
1284120 Feb 2003 EP
1287788 Mar 2003 EP
0717966 Apr 2003 EP
0869742 May 2003 EP
0829235 Jun 2003 EP
0887046 Jul 2003 EP
0852480 Aug 2003 EP
0891154 Sep 2003 EP
0813843 Oct 2003 EP
0873089 Oct 2003 EP
0856326 Nov 2003 EP
1374788 Jan 2004 EP
0741996 Feb 2004 EP
0814712 Feb 2004 EP
1402837 Mar 2004 EP
0705570 Apr 2004 EP
0959784 Apr 2004 EP
1407719 Apr 2004 EP
1086713 May 2004 EP
0996378 Jun 2004 EP
1426012 Jun 2004 EP
0833593 Jul 2004 EP
1442694 Aug 2004 EP
0888749 Sep 2004 EP
0959786 Sep 2004 EP
1459695 Sep 2004 EP
1254636 Oct 2004 EP
1473819 Nov 2004 EP
1477119 Nov 2004 EP
1479345 Nov 2004 EP
1479347 Nov 2004 EP
1479348 Nov 2004 EP
0754437 Dec 2004 EP
1025807 Dec 2004 EP
1001710 Jan 2005 EP
1520521 Apr 2005 EP
1520522 Apr 2005 EP
1520523 Apr 2005 EP
1520525 Apr 2005 EP
1522264 Apr 2005 EP
1523942 Apr 2005 EP
1550408 Jul 2005 EP
1557129 Jul 2005 EP
1064883 Aug 2005 EP
1067876 Aug 2005 EP
0870473 Sep 2005 EP
1157666 Sep 2005 EP
0880338 Oct 2005 EP
1158917 Nov 2005 EP
1344498 Nov 2005 EP
0906764 Dec 2005 EP
1330989 Dec 2005 EP
0771176 Jan 2006 EP
1621138 Feb 2006 EP
1621139 Feb 2006 EP
1621141 Feb 2006 EP
1621145 Feb 2006 EP
1621151 Feb 2006 EP
1034746 Mar 2006 EP
1201196 Mar 2006 EP
1632191 Mar 2006 EP
1647231 Apr 2006 EP
1065981 May 2006 EP
1082944 May 2006 EP
1652481 May 2006 EP
1382303 Jun 2006 EP
1253866 Jul 2006 EP
1032318 Aug 2006 EP
1045672 Aug 2006 EP
1617768 Aug 2006 EP
1693015 Aug 2006 EP
1400214 Sep 2006 EP
1702567 Sep 2006 EP
1129665 Nov 2006 EP
1400206 Nov 2006 EP
1721568 Nov 2006 EP
1256317 Dec 2006 EP
1285633 Dec 2006 EP
1728473 Dec 2006 EP
1728475 Dec 2006 EP
1479346 Jan 2007 EP
1484024 Jan 2007 EP
1754445 Feb 2007 EP
1759812 Mar 2007 EP
1767163 Mar 2007 EP
1769756 Apr 2007 EP
1769758 Apr 2007 EP
1581128 May 2007 EP
1780825 May 2007 EP
1785097 May 2007 EP
1790293 May 2007 EP
1800610 Jun 2007 EP
1300117 Aug 2007 EP
1813199 Aug 2007 EP
1813200 Aug 2007 EP
1813201 Aug 2007 EP
1813202 Aug 2007 EP
1813203 Aug 2007 EP
1813207 Aug 2007 EP
1813209 Aug 2007 EP
1837041 Sep 2007 EP
0922435 Oct 2007 EP
1487359 Oct 2007 EP
1599146 Oct 2007 EP
1839596 Oct 2007 EP
2110083 Oct 2007 EP
1857057 Nov 2007 EP
1402821 Dec 2007 EP
1872727 Jan 2008 EP
1671593 Feb 2008 EP
1897502 Mar 2008 EP
1611856 Apr 2008 EP
1908417 Apr 2008 EP
1330201 Jun 2008 EP
1702568 Jul 2008 EP
1943955 Jul 2008 EP
1943957 Jul 2008 EP
1943964 Jul 2008 EP
1943976 Jul 2008 EP
1593337 Aug 2008 EP
1970014 Sep 2008 EP
1980213 Oct 2008 EP
1759645 Nov 2008 EP
1990014 Nov 2008 EP
1552795 Dec 2008 EP
1693008 Dec 2008 EP
1759640 Dec 2008 EP
1997439 Dec 2008 EP
2000102 Dec 2008 EP
2005894 Dec 2008 EP
2008595 Dec 2008 EP
1736104 Mar 2009 EP
1749486 Mar 2009 EP
2039302 Mar 2009 EP
2039316 Mar 2009 EP
1721576 Apr 2009 EP
1733686 Apr 2009 EP
2044890 Apr 2009 EP
1550409 Jun 2009 EP
1550413 Jun 2009 EP
1719461 Jun 2009 EP
1745748 Aug 2009 EP
2090237 Aug 2009 EP
2090241 Aug 2009 EP
2090244 Aug 2009 EP
2090245 Aug 2009 EP
2090256 Aug 2009 EP
2095777 Sep 2009 EP
2098170 Sep 2009 EP
2110082 Oct 2009 EP
2111803 Oct 2009 EP
1813208 Nov 2009 EP
1908426 Nov 2009 EP
2116195 Nov 2009 EP
1607050 Dec 2009 EP
1815804 Dec 2009 EP
1875870 Dec 2009 EP
2151204 Feb 2010 EP
2165660 Mar 2010 EP
1566150 Apr 2010 EP
1813206 Apr 2010 EP
1769754 Jun 2010 EP
1854416 Jun 2010 EP
2198787 Jun 2010 EP
1647286 Sep 2010 EP
1535565 Oct 2010 EP
1702570 Oct 2010 EP
1785098 Oct 2010 EP
2005896 Oct 2010 EP
2030578 Nov 2010 EP
1627605 Dec 2010 EP
1994890 Jan 2011 EP
2286738 Feb 2011 EP
1690502 Mar 2011 EP
2292153 Mar 2011 EP
1769755 Apr 2011 EP
2090240 Apr 2011 EP
2305135 Apr 2011 EP
1813205 Jun 2011 EP
2090243 Jun 2011 EP
2329773 Jun 2011 EP
1908414 Nov 2011 EP
2153781 Nov 2011 EP
1847225 Dec 2011 EP
1785102 Jan 2012 EP
2090253 Mar 2012 EP
2005895 Aug 2012 EP
2090248 Aug 2012 EP
2090252 Oct 2012 EP
2517637 Oct 2012 EP
2517645 Oct 2012 EP
2517649 Oct 2012 EP
2517651 Oct 2012 EP
1884206 Mar 2013 EP
459743 Nov 1913 FR
999646 Feb 1952 FR
1112936 Mar 1956 FR
2598905 Nov 1987 FR
2765794 Jan 1999 FR
939929 Oct 1963 GB
1210522 Oct 1970 GB
1217159 Dec 1970 GB
1339394 Dec 1973 GB
2109241 Jun 1983 GB
2272159 May 1994 GB
2284242 May 1995 GB
2336214 Oct 1999 GB
2425903 Nov 2006 GB
50-33988 Apr 1975 JP
S 5850053 Jan 1983 JP
61-98249 May 1986 JP
S 61502036 Sep 1986 JP
S 63-59764 Mar 1988 JP
S 63-147449 Jun 1988 JP
63-203149 Aug 1988 JP
H 02-279149 Nov 1990 JP
3-12126 Jan 1991 JP
H 05-084242 Apr 1993 JP
5-212039 Aug 1993 JP
6007357 Jan 1994 JP
H 6-30945 Feb 1994 JP
H 06-26812 Apr 1994 JP
H 6-121798 May 1994 JP
7051273 Feb 1995 JP
7-124166 May 1995 JP
7-255735 Oct 1995 JP
8-33642 Feb 1996 JP
8033641 Feb 1996 JP
8-164141 Jun 1996 JP
H 08-182684 Jul 1996 JP
8229050 Sep 1996 JP
H 09-501081 Feb 1997 JP
2000-14632 Jan 2000 JP
2000033071 Feb 2000 JP
2000-112002 Apr 2000 JP
2000171730 Jun 2000 JP
2000287987 Oct 2000 JP
2000325303 Nov 2000 JP
2001-514541 Sep 2001 JP
2001-517473 Oct 2001 JP
2001286477 Oct 2001 JP
2002143078 May 2002 JP
2002369820 Dec 2002 JP
2003-500153 Jan 2003 JP
2003-164066 Jun 2003 JP
2003-521301 Jul 2003 JP
2004-162035 Jun 2004 JP
2004-531280 Oct 2004 JP
2004-532084 Oct 2004 JP
2004-329624 Nov 2004 JP
2004-344663 Dec 2004 JP
2005-028147 Feb 2005 JP
2005-28148 Feb 2005 JP
2005-028149 Feb 2005 JP
2005-505309 Feb 2005 JP
2005505322 Feb 2005 JP
2005-103280 Apr 2005 JP
2005-103281 Apr 2005 JP
2005-511131 Apr 2005 JP
2005103293 Apr 2005 JP
2005131163 May 2005 JP
2005131164 May 2005 JP
2005131173 May 2005 JP
2005131211 May 2005 JP
2005131212 May 2005 JP
2005-144183 Jun 2005 JP
2005137423 Jun 2005 JP
2005152416 Jun 2005 JP
2005-523105 Aug 2005 JP
2005524474 Aug 2005 JP
2006-034975 Feb 2006 JP
2006-034980 Feb 2006 JP
2006-506106 Feb 2006 JP
2006-218297 Aug 2006 JP
2006-281405 Oct 2006 JP
2006-346445 Dec 2006 JP
2007-098130 Apr 2007 JP
3906843 Apr 2007 JP
2007-117725 May 2007 JP
2007-222615 Jun 2007 JP
2007-203051 Aug 2007 JP
2007-203057 Aug 2007 JP
2007524435 Aug 2007 JP
2007-229448 Sep 2007 JP
2007-325922 Dec 2007 JP
2008-68073 Mar 2008 JP
2008-283459 Nov 2008 JP
2009-506799 Feb 2009 JP
2010-098844 Apr 2010 JP
2008830 Mar 1994 RU
2141279 Nov 1999 RU
2187249 Aug 2002 RU
2189091 Sep 2002 RU
2225170 Mar 2004 RU
189517 Jan 1967 SU
328636 Sep 1972 SU
674747 Jul 1979 SU
1009439 Apr 1983 SU
1022703 Jun 1983 SU
1333319 Aug 1987 SU
886900 Dec 1987 SU
1377053 Feb 1988 SU
1509051 Sep 1989 SU
1561964 May 1990 SU
1708312 Jan 1992 SU
1722476 Mar 1992 SU
1752361 Aug 1992 SU
1814161 May 1993 SU
WO 8202824 Sep 1982 WO
WO 9115157 Oct 1991 WO
WO 9220295 Nov 1992 WO
WO 9221300 Dec 1992 WO
WO 9308755 May 1993 WO
WO 9313718 Jul 1993 WO
WO 9314690 Aug 1993 WO
WO 9315648 Aug 1993 WO
WO 9315850 Aug 1993 WO
WO 9319681 Oct 1993 WO
WO 9400060 Jan 1994 WO
WO 9411057 May 1994 WO
WO 9412108 Jun 1994 WO
WO 9418893 Sep 1994 WO
WO 9422378 Oct 1994 WO
WO 9423659 Oct 1994 WO
WO 9424943 Nov 1994 WO
WO 94-24947 Nov 1994 WO
WO 9502369 Jan 1995 WO
WO 9503743 Feb 1995 WO
WO 9506817 Mar 1995 WO
WO 9509576 Apr 1995 WO
WO 9509577 Apr 1995 WO
WO 9514436 Jun 1995 WO
WO 9517855 Jul 1995 WO
WO 9518383 Jul 1995 WO
WO 9518572 Jul 1995 WO
WO 9519739 Jul 1995 WO
WO 9520360 Aug 1995 WO
WO 9523557 Sep 1995 WO
WO 9524865 Sep 1995 WO
WO 9525471 Sep 1995 WO
WO 9526562 Oct 1995 WO
WO 9529639 Nov 1995 WO
WO 9604858 Feb 1996 WO
WO 9618344 Jun 1996 WO
WO 9619151 Jun 1996 WO
WO 9619152 Jun 1996 WO
WO 9620652 Jul 1996 WO
WO 9621119 Jul 1996 WO
WO 9622055 Jul 1996 WO
WO 9623448 Aug 1996 WO
WO 9624301 Aug 1996 WO
WO 9627337 Sep 1996 WO
WO 9631155 Oct 1996 WO
WO 9635464 Nov 1996 WO
WO 9639085 Dec 1996 WO
WO 9639086 Dec 1996 WO
WO 9639087 Dec 1996 WO
WO 9639088 Dec 1996 WO
WO 9639089 Dec 1996 WO
WO 9700646 Jan 1997 WO
WO 9700647 Jan 1997 WO
WO 9701989 Jan 1997 WO
WO 9706582 Feb 1997 WO
WO 9710763 Mar 1997 WO
WO 9710764 Mar 1997 WO
WO 9711648 Apr 1997 WO
WO 9711649 Apr 1997 WO
WO 9715237 May 1997 WO
WO 9724073 Jul 1997 WO
WO 9724993 Jul 1997 WO
WO 9730644 Aug 1997 WO
WO 9734533 Sep 1997 WO
WO 9737598 Oct 1997 WO
WO 9739688 Oct 1997 WO
WO 9817180 Apr 1998 WO
WO 9827880 Jul 1998 WO
WO 9830153 Jul 1998 WO
WO 9847436 Oct 1998 WO
WO 9903407 Jan 1999 WO
WO 9903408 Jan 1999 WO
WO 9903409 Jan 1999 WO
WO 9912483 Mar 1999 WO
WO 9912487 Mar 1999 WO
WO 9912488 Mar 1999 WO
WO 9915086 Apr 1999 WO
WO 9915091 Apr 1999 WO
WO 9923933 May 1999 WO
WO 9923959 May 1999 WO
WO 9925261 May 1999 WO
WO 9929244 Jun 1999 WO
WO 9934744 Jul 1999 WO
WO 9945849 Sep 1999 WO
WO 9948430 Sep 1999 WO
WO 9951158 Oct 1999 WO
WO 0024322 May 2000 WO
WO 0024330 May 2000 WO
WO 0041638 Jul 2000 WO
WO 0048506 Aug 2000 WO
WO 0053112 Sep 2000 WO
WO 0054653 Sep 2000 WO
WO 0057796 Oct 2000 WO
WO 0064365 Nov 2000 WO
WO 0072762 Dec 2000 WO
WO 0072765 Dec 2000 WO
WO 0103587 Jan 2001 WO
WO 0105702 Jan 2001 WO
WO 0110482 Feb 2001 WO
WO 0135845 May 2001 WO
WO 0154594 Aug 2001 WO
WO 0158371 Aug 2001 WO
WO 0162158 Aug 2001 WO
WO 0162161 Aug 2001 WO
WO 0162162 Aug 2001 WO
WO 0162164 Aug 2001 WO
WO 0162169 Aug 2001 WO
WO 0178605 Oct 2001 WO
WO 0191646 Dec 2001 WO
WO 0200121 Jan 2002 WO
WO 0207608 Jan 2002 WO
WO 0207618 Jan 2002 WO
WO 0217799 Mar 2002 WO
WO 0219920 Mar 2002 WO
WO 0219932 Mar 2002 WO
WO 0230297 Apr 2002 WO
WO 0232322 Apr 2002 WO
WO 0236028 May 2002 WO
WO 0243571 Jun 2002 WO
WO 02058568 Aug 2002 WO
WO 02060328 Aug 2002 WO
WO 02067785 Sep 2002 WO
WO 02098302 Dec 2002 WO
WO 03000138 Jan 2003 WO
WO 03001329 Jan 2003 WO
WO 03013363 Feb 2003 WO
WO 03013372 Feb 2003 WO
WO 03015604 Feb 2003 WO
WO 03020106 Mar 2003 WO
WO 03020139 Mar 2003 WO
WO 03024339 Mar 2003 WO
WO 03079909 Mar 2003 WO
WO 03030743 Apr 2003 WO
WO 03037193 May 2003 WO
WO 03047436 Jun 2003 WO
WO 03055402 Jul 2003 WO
WO 03057048 Jul 2003 WO
WO 03057058 Jul 2003 WO
WO 03063694 Aug 2003 WO
WO 03077769 Sep 2003 WO
WO 03079911 Oct 2003 WO
WO 03082126 Oct 2003 WO
WO 03086206 Oct 2003 WO
WO 03088845 Oct 2003 WO
WO 03090630 Nov 2003 WO
WO 03094743 Nov 2003 WO
WO 03094745 Nov 2003 WO
WO 03094746 Nov 2003 WO
WO 03094747 Nov 2003 WO
WO 03101313 Dec 2003 WO
WO 03105698 Dec 2003 WO
WO 03105702 Dec 2003 WO
WO 2004006980 Jan 2004 WO
WO 2004011037 Feb 2004 WO
WO 2004019769 Mar 2004 WO
WO 2004019803 Mar 2004 WO
WO 2004021868 Mar 2004 WO
WO 2004028585 Apr 2004 WO
WO 2004032754 Apr 2004 WO
WO 2004032760 Apr 2004 WO
WO 2004032762 Apr 2004 WO
WO 2004032763 Apr 2004 WO
WO 2004034875 Apr 2004 WO
WO 2004047626 Jun 2004 WO
WO 2004047653 Jun 2004 WO
WO 2004049956 Jun 2004 WO
WO 2004052426 Jun 2004 WO
WO 2004056276 Jul 2004 WO
WO 2004056277 Jul 2004 WO
WO 2004062516 Jul 2004 WO
WO 2004078050 Sep 2004 WO
WO 2004078051 Sep 2004 WO
WO 2004078236 Sep 2004 WO
WO 2004086987 Oct 2004 WO
WO 2004096015 Nov 2004 WO
WO 2004096057 Nov 2004 WO
WO 2004103157 Dec 2004 WO
WO 2004105593 Dec 2004 WO
WO 2004105621 Dec 2004 WO
WO 2004112618 Dec 2004 WO
WO 2004112652 Dec 2004 WO
WO 2005027983 Mar 2005 WO
WO 2005037329 Apr 2005 WO
WO 2005044078 May 2005 WO
WO 2005055846 Jun 2005 WO
WO 2005072634 Aug 2005 WO
WO 2005078892 Aug 2005 WO
WO 2005079675 Sep 2005 WO
WO 2005096954 Oct 2005 WO
WO 2005112806 Dec 2005 WO
WO 2005112808 Dec 2005 WO
WO 2005115251 Dec 2005 WO
WO 2005115253 Dec 2005 WO
WO 2005117735 Dec 2005 WO
WO 2005122936 Dec 2005 WO
WO 2006023486 Mar 2006 WO
WO 2006023578 Mar 2006 WO
WO 2006027014 Mar 2006 WO
WO 2006044490 Apr 2006 WO
WO 2006044581 Apr 2006 WO
WO 2006044810 Apr 2006 WO
WO 2006051252 May 2006 WO
WO 2006059067 Jun 2006 WO
WO 2006083748 Aug 2006 WO
WO 2006092563 Sep 2006 WO
WO 2006092565 Sep 2006 WO
WO 2006115958 Nov 2006 WO
WO 2006125940 Nov 2006 WO
WO 2006132992 Dec 2006 WO
WO 2007002180 Jan 2007 WO
WO 2007016290 Feb 2007 WO
WO 2007018898 Feb 2007 WO
WO 2007098220 Aug 2007 WO
WO 2007121579 Nov 2007 WO
WO 2007131110 Nov 2007 WO
WO 2007137304 Nov 2007 WO
WO 2007139734 Dec 2007 WO
WO 2007142625 Dec 2007 WO
WO 2007147439 Dec 2007 WO
WO 2008021969 Feb 2008 WO
WO 2008039249 Apr 2008 WO
WO 2008039270 Apr 2008 WO
WO 2008045383 Apr 2008 WO
WO 2008057281 May 2008 WO
WO 2008070763 Jun 2008 WO
WO 2008089404 Jul 2008 WO
WO 2008101080 Aug 2008 WO
WO 2008109125 Sep 2008 WO
WO 2008124748 Oct 2008 WO
WO 2009023851 Feb 2009 WO
WO 2009046394 Apr 2009 WO
WO 2009137761 Nov 2009 WO
WO 2009143092 Nov 2009 WO
WO 2010028332 Mar 2010 WO
WO 2010030434 Mar 2010 WO
WO 2010054404 May 2010 WO
WO 2010063795 Jun 2010 WO
WO 2010098871 Sep 2010 WO
WO 2012021671 Feb 2012 WO
WO 2012044820 Apr 2012 WO
WO 2012044844 Apr 2012 WO
Non-Patent Literature Citations (28)
Entry
The Free Dictionary definition of “align” as accessed on Sep. 10, 2013; http://www.thefreedictionary.com/align.
International Search Report for PCT/US2012/028886, dated Nov. 23, 2012 (6 pages).
Disclosed Anonymously, “Motor-Driven Surgical Stapler Improvements,” Research Disclosure Database No. 526041, Published: Feb. 2008.
C.C. Thompson et al., “Peroral Endoscopic Reduction of Dilated Gastrojejunal Anastomosis After Roux-en-Y Gastric Bypass: A Possible New Option for Patients with Weight Regain,” Surg Endosc (2006) vol. 20, pp. 1744-1748.
B.R. Coolman, DVM , MS et al., “Comparison of Skin Staples With Sutures for Anastomosis of the Small Intestine in Dogs,” Abstract; http://www.blackwell-synergy.com/doi/abs/10.1053/jvet.2000.7539?cookieSet=1&journalCode=vsu which redirects to http://www3.interscience.wiley.com/journal/119040681/abstract?CRETRY=1&SRETRY=0; [online] accessed: Sep. 22, 2008 (2 pages).
The Sodem Aseptic Battery Transfer Kit, Sodem Systems, (2000), 3 pages.
“Biomedical Coatings,” Fort Wayne Metals, Research Products Corporation, obtained online at www.fwmetals.com on Jun. 21, 2010 (1 page).
Van Meer et al., “A Disposable Plastic Compact Wrist for Smart Minimally Invasive Surgical Tools,” LAAS/CNRS (Aug. 2005).
Breedveld et al., “A New, Easily Miniaturized Sterrable Endoscope,” IEEE Engineering in Medicine and Biology Magazine (Nov./Dec. 2005).
D. Tuite, Ed., “Get the Lowdown on Ultracapacitors,” Nov. 15, 2007; [online] URL: http://electronicdesign.com/Articles/Print.cfm?ArticleID=17465, accessed Jan. 15, 2008 (5 pages).
Datasheet for Panasonic TK Relays Ultra Low Profile 2 A Polarized Relay, Copyright Matsushita Electric Works, Ltd. (Known of at least as early as Aug. 17, 2010), 5 pages.
ASTM procedure D2240-00, “Standard Test Method for Rubber Property-Durometer Hardness,” (Published Aug. 2000).
ASTM procedure D2240-05, “Standard Test Method for Rubber Property-Durometer Hardness,” (Published Apr. 2010).
Covidien Brochure, “Endo GIA™ Reloads with Tri-Staple™ Technology,” (2010), 1 page.
Covidien Brochure, “Endo GIA™ Reloads with Tri-Staple™ Technology and Endo GIA™ Ultra Universal Staplers,” (2010), 2 pages.
Covidien Brochure, “Endo GIA™ Black Reload with Tri-Staple™ Technology,” (2012), 2 pages.
Covidien Brochure, “Endo GIA™ Curved Tip Reload with Tri-Staple™ Technology,” (2012), 2 pages.
Covidien Brochure, “Endo GIA™ Reloads with Tri-Stapler™ Technology,” (2010), 2 pages.
Covidien Brochure, “Endo GIA™ Ultra Universal Stapler,” (2010), 2 pages.
Miyata et al., “Biomolecule-Sensitive Hydrogels,” Advanced Drug Delivery Reviews, 54 (2002) pp. 79-98.
Jeong et al., “Thermosensitive Sol-Gel Reversible Hydrogels,” Advanced Drug Delivery Reviews, 54 (2002) pp. 37-51.
Byrne et al., “Molecular Imprinting Within Hydrogels,” Advanced Drug Delivery Reviews, 54 (2002) pp. 149-161.
Qiu et al., “Environment-Sensitive Hydrogels for Drug Delivery,” Advanced Drug Delivery Reviews, 53 (2001) pp. 321-339.
Hoffman, “Hydrogels for Biomedical Applications,” Advanced Drug Delivery Reviews, 43 (2002) pp. 30-12.
Hoffman, “Hydrogels for Biomedical Applications,” Advanced Drug Delivery Reviews, 54 (2002) pp. 30-12.
Peppas, “Physiologically Responsive Hydrogels,” Journal of Bioactive and Compatible Polymers, vol. 6 (Jul. 1991) pp. 241-246.
Ebara, “Carbohydrate-Derived Hydrogels and Microgels,” Engineered Carbohydrate-Based Materials for Biomedical Applications: Polymers, Surfaes, Dendrimers, Nanoparticles, and Hydrogels, Edited by Ravin Narain, 2011, pp. 337-345.
Peppas, Editor “Hydrogels in Medicine and Pharmacy,” vol. I, Fundamentals, CRC Press, 1986.
Related Publications (1)
Number Date Country
20120239075 A1 Sep 2012 US
Provisional Applications (1)
Number Date Country
61452432 Mar 2011 US