Embodiments of the subject matter disclosed herein, generally relate to methods and systems and, more particularly, to mechanisms and techniques for dampening a torsional vibration that appears in a rotating system.
The oil and gas industry has a growing demand for driving various machines at variable speeds. Such machines may include compressors, electrical motors, expanders, gas turbines, pumps, etc. Variable frequency electrical drives increase energy efficiency and provide an increased flexibility for the machines. One mechanism for driving, for example, a large gas compression train is the load commutated inverter (LCI). A gas compression train includes, for example, a gas turbine, a motor, and a compressor. The gas compression train may include more or less electrical machines and turbo-machines. However, a problem introduced by power electronics driven systems is the generation of ripple components in the torque of the electrical machine due to electrical harmonics. The ripple component of the torque may interact with the mechanical system at torsional natural frequencies of the drive train, which is undesirable.
A torsional oscillation or vibration is an oscillatory angular motion that may appear in a shaft having various masses attached to it as shown for example in
As discussed above, the torsional vibrations are typically introduced by the power electronics that drive the electrical motor.
The two controllers 26 and 30 receive as input, signals from sensors 36 and 38, respectively, and these signals are indicative of the torque experienced by the motor 14 and/or the generator 22. In other words, the inverter controller 26 processes the torque value sensed by sensor 36 for generating the inverter delay angle change (Δβ) while the rectifier controller 30 processes the torque value sensed by the sensor 38 for generating the rectifier delay angle change (Δα). The inverter controller 26 and the rectifier controller 30 are independent from each other and these controllers may be implemented together or alone in a given system.
However, determining individually either the rectifier delay angle change (Δα) or the inverter delay angle change (Δβ) is not always practical and/or accurate. Accordingly, it would be desirable to provide systems and methods that use other approaches for damping the vibrational oscillations.
According to an exemplary embodiment, there is a torsional mode damping controller system connected to a converter that drives a drive train including an electrical machine and a non-electrical machine provided. The controller system includes an input interface configured to receive measured data related to variables of the converter or the drive train and a controller connected to the input interface. The controller is configured to calculate at least one dynamic torque component along a section of a shaft of the drive train based on the measured data from the input interface, generate control data for a rectifier and an inverter of the converter for damping a torsional oscillation in the shaft of the drive train based on the at least one dynamic torque component, and send the control data to the rectifier and to the inverter for modulating an active power exchanged between the converter and the electrical machine.
According to another exemplary embodiment, there is a system for driving an electrical machine that is part of a drive train provided. The system includes a rectifier configured to receive an alternative current from a power source and to transform the alternative current into a direct current; a direct current link connected to the rectifier and configured to transmit the direct current; an inverter connected to the direct current link and configured to change a received direct current into an alternative current, an input interface configured to receive measured data related to variables of the converter or the drive train; and a controller connected to the input interface. The controller is configured to calculate at least one dynamic torque component along a section of a shaft of the drive train based on the measured data from the input interface generate control data for the rectifier and for the inverter for damping a torsional oscillation in the shaft of the mechanical system based on the at least one dynamic torque component, and send the control data to the rectifier and the inverter for modulating an active power exchanged between the converter and the electrical machine.
According to still another exemplary embodiment, there is a method for damping a torsional vibration in a drive train including an electrical machine provided. The method includes receiving measured data related to variables of a converter that drives the electrical machine or the drive train or both the converter and the drive train calculating at least one dynamic torque component along a section of a shaft of the drive train based on the measured data; generating control data for a rectifier and an inverter of the converter for damping a torsional oscillation in the shaft of the drive train based on the at least one dynamic torque component; and sending the control data to the rectifier and the inverter for modulating an active power exchanged between the converter and the electrical machine.
According to yet another exemplary embodiment, there is a computer readable medium including computer executable instructions, where the instructions, when executed, implement a method for damping torsional vibrations provided. The computer instructions include the steps recited in the method noted in the previous paragraph.
The accompanying drawings, which are incorporated in and constitute a part of the specification, illustrate one or more embodiments and, together with the description, explain these embodiments. In the drawings:
The following description of the exemplary embodiments refers to the accompanying drawings. The same reference numbers in different drawings identify the same or similar elements. The following detailed description does not limit the invention. Instead, the scope of the invention is defined by the appended claims. The following embodiments are discussed, for simplicity, with regard to the terminology and structure of an electrical motor driven by a load commutated inverter. However, the embodiments to be discussed next are not limited to such a system, but may be applied (with appropriate adjustments) to other systems that are driven with other devices, as for example, a voltage source inverter (VSI).
Reference throughout the specification to “one embodiment” or “an embodiment” means that a particular feature, structure, or characteristic described in connection with an embodiment is included in at least one embodiment of the subject matter disclosed. Thus, the appearance of the phrases “in one embodiment” or “in an embodiment” in various places throughout the specification is not necessarily referring to the same embodiment. Further, the particular features, structures or characteristics may be combined in any suitable manner in one or more embodiments.
According to an exemplary embodiment, a torsional mode damping controller may be configured to obtain electrical and/or mechanical measurements regarding a shaft of an electrical machine (which may be a motor or a generator) and/or a shaft of a turbo-machine that is mechanically connected to the electrical machine and to estimate, based on the electrical and/or mechanical measurements, dynamic torque components and/or a torque vibration at a desired shaft location of a drive train. The dynamic torque components may be a torque, a torsional position, torsional speed or a torsional acceleration of the shaft. Based on one or more dynamic torque components, a controller may adjust/modify one or more parameters of a rectifier that drives the electrical machine to apply a desired torque for damping the torque oscillation. As will be discussed next, there are various data sources for the controller for determining the damping based on the rectifier control.
According to an exemplary embodiment shown in
The connection of various masses (associated with the rotors and impellers of the machines) to a shaft 58 makes the system 50 prone to potential torsional vibrations. These torsional vibrations may twist the shaft 58, which may result in significant lifetime reduction or even destruction of the shaft system (which may include not only the shaft or shafts but also couplings and gearbox depending on the specific situation). The exemplary embodiments provide a mechanism for reducing the torsional vibrations.
To activate the motor 54, electrical power is supplied from the power grid or a local generator 60 in case of island or island like power systems. In order to drive the motor 54 at a variable speed, a load commutated inverter (LCI) 62 is provided between the grid 60 and the motor 54. As shown in
LCI 62 also includes current and voltage sensors, denoted by a circled A and a circled V in
Controller 80 may generate, based on various references 82, and a current idx received from a sensor 84, a rectifier delay angle α for controlling the rectifier 66. Regarding the rectifier delay angle α, it is noted that LCIs are designed to transfer active power from the grid 60 to the motor 54 or vice versa Achieving this transfer with an optimal power factor involves the rectifier delay angle α and the inverter delay angle β. The rectifier delay angle α may be modulated by applying, for example, a sine wave modulation to a reference value. This modulation may be applied for a limited amount of time. In one application, the modulation is applied continuously but the amplitude of the modulation varies. For example, as there is no torsional vibration in the shaft, the amplitude of the modulation may be zero, that is, no modulation only the reference value. In another example, the amplitude of the modulation may be proportional with the detected torsional vibration of the shaft.
Another controller 86 may be used for generating an inverter delay angle β for the inverter 70. Modulating the inverter delay angle β results in modulating the inverter DC voltage which causes a modulation of the DC link current and results in an active power oscillation on the load input power. In other words, modulating only the inverter delay angle in order to achieve torsional mode damping results in the damping power coming mainly from the magnetic energy stored in the DC link 68. Modulation of the inverter delay angle results in rotational energy being transformed into magnetic energy and vice versa, depending whether the rotating shaft is accelerated or decelerated.
Further
According to an exemplary embodiment illustrated in
In this regard it is noted that the air gap torque of an electrical machine is the link between the electrical and mechanical system of a drive train. All harmonics and inter-harmonics in the electrical system are also visible in the air-gap torque. Inter-harmonics at a natural frequency of the mechanical system can excite torsional oscillations and potentially result into dynamic torque values in the mechanical system above the rating of the shaft. Existing torsional mode damping systems may counteract such torsional oscillations but these systems need a signal representative of the dynamic torque of the motor and this signal is obtained from a sensor that effectively monitors the shaft of the motor or shaft components of the motor, such as toothwheels mounted along the shaft of the motor. According to exemplary embodiments, no such signal is needed as the dynamic torque components are evaluated based on electrical measurements. However, as will be discussed later, some exemplary embodiments describe a situation in which available mechanical measurements at other components of the system, for example, the gas turbine, may be used to determine the dynamic torque components along the mechanical shaft.
In other words, an advantage according to an exemplary embodiment is applying torsional mode damping without the need of torsional vibration sensing in the mechanical system. Thus, torsional mode damping can be applied without having to install additional sensing in the electrical or mechanical system as current voltage and/or current and/or speed sensors can be made available at comparably low cost. In this regard, it is noted that mechanical sensors for measuring torque are expensive for high power applications, and sometimes these sensors cannot be added to the existing systems. Thus, the existent torsional mode damping solutions cannot be implemented for such cases as the existent torsional mode damping systems require a sensor for measuring a signal representative of a mechanical parameter of the system that is indicative of torque. On the contrary, the approach of the exemplary embodiment of
Upon receiving the current and voltage indicated in
According to another exemplary embodiment illustrated in
The delay angle changes calculated by the controller 78 in any of the embodiments discussed with regard to
The structure of the controller 78 is discussed now with regard to
In one exemplary embodiment, controller 78 continuously receives electrical measurements from various current and voltage sensors and continuously calculates torsional damping signals based on dynamic torque components calculated based on the electrical measurements. According to this exemplary embodiment, the controller does not determine whether torsional vibrations are present in the shaft but rather continuously calculates the torsional damping signals based on the calculated dynamic torque value. However, if there are no torsional vibrations, the torsional damping signals generated by the controller and sent to the inverter and/or rectifier are not affecting the inverter and/or rectifier, that is, the angle changes provided by the damping signals are negligible or zero. Thus, according to this exemplary embodiment, the signals affect the inverter and/or rectifier only when there are torsional vibrations.
According to an exemplary embodiment, the direct torque or speed measurement at the gas turbine shaft (or estimated speed or torque information in the shaft) enables the controller to modulate an energy transfer in the LCI in counter-phase to the torsional velocity of a torsional oscillation. Damping power exchanged between the generator and the LCI drive max be electronically adjusted and may have a frequency corresponding to a natural frequency of the shaft system. This damping method is effective for mechanical systems with a high Q factor, that is, rotor shaft system made of steel with high torsional stiffness. In addition, this method of applying an oscillating electrical torque to the shaft of the motor and having a frequency corresponding to a resonant frequency of the mechanical system uses little damping power.
Therefore, the above discussed controller may be integrated into a drive system based on the LCI technology without overloading the drive system. This facilitates the implementation of the novel controller to new or existing power systems and makes it economically attractive. The controller max be implemented without having to change the existing power system, for example, extending the control system of one of the LCI drives in the island network.
If the LCI operational speed and torque is varied in a large range, the effectiveness of the torsional mode damping may depend on the grid-side converter current control performance. The torsional mode damping operation results in a small additional DC link current ripple at a torsional natural frequency. As a result, there are two power components at this frequency: the intended component due to inverter firing angle control and an additional component due to the additional current ripple. The phase and magnitude of this additional power component is function of system parameters, current control settings and point of operation. These components result in a power component that is dependent on current control and a component that is dependent on angle modulation.
According to an exemplar embodiment, two alternative ways of power modulation may be implemented by the controller. A first way is to directly use the current reference on the grid side (requires fast current control implementation), for example, α-modulation with a damping component. A second way is to modulate the grid-side and the machine-side angles, resulting into a constant dc-link current, for example, α-β-modulation with a damping frequency component. The current control on the grid-side is part of this damping control and therefore, the current control does not counteract the effect of the angle modulation. In this way, the damping effect is higher and independent from the current control settings.
According to an exemplary embodiment illustrated in
According to an exemplary embodiment illustrated in
According to another exemplary embodiment illustrated in
More specifically, the α- and β-modulation may be correlated as discussed next with reference to
V
DCα
=k·V
ACG·cos(α)
v
DCβ
=k·V
ACM·cos(β), and
V
DCα
=v
DCβ
+V
DCL,
where VACG (is the voltage line to line rms magnitude of the power grid 60 in
By differentiating the last relation with time and imposing the condition that the change of the VDCL in time is zero, the following mathematical relation is obtained between the α-modulation and the β-modulation:
d(VDCα)/dt=−k·VACG·sin(α) and d(VDCβ)/dt=−k·VACM·sin(β),
which results for a small signal variation around the operation point in
dα=(VACM·sin(β))/(VACG·sin(α))·dβ
Based on this last relation, both the α-modulation and β-modulation are performed simultaneously, as shown for example, in
According to an exemplary embodiment illustrated in
According to an exemplary embodiment illustrated in
According to an exemplary embodiment illustrated in
The differential equation of the whole mechanical system is given by:
J(dθ2/dt2)+D(dθ/dt)+Kθ=Text,
where J (torsional matrix), D (damping matrix), and K (torsional stiffness matrix) are matrices connecting the characteristics of the first mass (for example, d10, d12, k12, J1) to the characteristics of the other masses and Text is an external (net) torque applied to the system, for example, by a motor. Based on this model of the mechanical system, a torque or other dynamic torque component of the “n” mass may be determined if characteristics of, for example the first mass are known. In other words the highly accurate sensors provided in the gas turbine may be used to measure at least one of a torsional position, speed, acceleration or torque of the shaft of the gas turbine. Based on this measured value, a dynamic torque component of the motor (“n” mass) or another section of the drive train may be calculated by a processor or controller 78 of the system and thus, control data may be generated for the inverter or rectifier as already discussed above.
In other words, according to this exemplary embodiment, the controller 78 needs to receive mechanical related information from one turbo-machinery that is connected to the motor and based on this mechanical related information the controller is able to control the converter to generate a torque in the motor to damp the torsional vibration. The turbo-machinery may be not only a gas turbine but also a compressor, an expander or other known machines. In one application, no electrical measurements are necessary for performing the damping. However, the electrical measurements may be combined with mechanical measurements for achieving the damping. In one application, the machine that applies the damping (damping machine) is not accessible for mechanical measurements and the dynamic torque component of the damping machine is calculated by mechanical measurements performed on another machine that is mechanically connected to the damping machine.
The disclosed exemplary embodiments provide a system and a method for damping torsional vibrations. It should be understood that this description is not intended to limit the invention. On the contrary, the exemplary embodiments are intended to cover alternatives, modifications and equivalents, which are included in the spirit and scope of the invention as defined by the appended claims. For example, the method may be applied to other electric motor driven mechanical systems, such as large water pumps, pumped hydro power stations, etc. Further, in the detailed description of the exemplary embodiments, numerous specific details are set forth in order to provide a comprehensive understanding of the claimed invention. However, one skilled in the art would understand that various embodiments may be practiced without such specific details.
Although the features and elements of the present exemplary embodiments are described in the embodiments in particular combinations, each feature or element can be used alone without the other features and elements of the embodiments or in various combinations with or without other features and elements disclosed herein.
This written description uses examples of the subject matter disclosed to enable any person skilled in the art to practice the same, including making and using only devices or systems and performing any incorporated methods. The patentable scope of the subject matter is defined by the claims, and may include other examples that occur to those skilled in the art. Such other examples are intended to be within the scope of the claims.
Number | Date | Country | Kind |
---|---|---|---|
CO2010A000011 | Apr 2010 | IT | national |
This is a national stage application under 35 U.S.C. §371(c) of prior-filed, co-pending PCT patent application serial number PCT/EP2011/054948, filed on Mar. 30, 2011, which claims priority to Italian Patent Application Serial No. CO2010A000011, filed on Apr. 1, 2010, the entire contents of which are incorporated herein by reference.
Filing Document | Filing Date | Country | Kind | 371c Date |
---|---|---|---|---|
PCT/EP11/54948 | 3/30/2011 | WO | 00 | 12/13/2012 |