The technical field relates to a rectifier circuit and a wireless communication device using the rectifier circuit.
In a wireless communication system using radio frequency identification (RFID) technology, when an antenna included in a data carrier receives a carrier wave transmitted from an antenna included in a reader/writer, an electromotive force is induced by electromagnetic induction. Then, a rectifier circuit included in the data carrier generates direct current from alternating current induced in the antenna.
In general, a rectifier circuit included in a data carrier includes a so-called diode-connected MOS transistor (hereinafter referred to as a “transistor”) in which a gate is connected to a source or a drain. The rectifier circuit rectifies an AC signal to a DC signal.
In order to prevent breakdown of the diode-connected transistor included in the rectifier circuit, peak reverse voltage that is approximately three times as high as AC voltage to be rectified is needed. Here, the level of AC voltage input to the rectifier circuit included in the data carrier varies depending on the distance between the antenna of the reader/writer and the antenna of the data carrier. Therefore, it is necessary to select a transistor to be used in consideration of the maximum AC voltage input to the rectifier circuit.
Reverse current which flows in a reverse-bias state correlates with off-state current of the diode-connected transistor. A free electron in the reverse current is accelerated by an electric field and causes collisional ionization; thus, the breakdown phenomenon occurs.
Therefore, it is important to use a transistor whose off-state current is small as the diode-connected transistor included in the rectifier circuit in order to prevent breakdown of the transistor and increase reliability of the rectifier circuit.
By the way, it is known that a transistor in which an oxide semiconductor is used for a channel formation region has small off-state current.
In Non-Patent Document 1, a rectifier circuit including a transistor in which an oxide semiconductor is used for a channel formation region is proposed.
Non-Patent Document 1 discloses a full-wave voltage doubler rectifier circuit (FIG. 4(a) in Non-Patent Document 1) and a half-wave rectifier circuit (FIG. 4(b) in Non-Patent Document 1) each of which includes a transistor whose channel is formed using indium gallium zinc oxide (IGZO) and off-state current is 10−12 A/μm.
Here, a half-wave rectifier circuit is a circuit which rectifies only a half cycle of alternating current. In contrast, a full-wave voltage doubler rectifier circuit is a circuit in which two half-wave rectifier circuits are connected in series and which rectifies a full cycle of the alternating current including the remaining half cycle, which is not rectified by the half-wave rectifier circuit. Therefore, the output of the full-wave voltage doubler rectifier circuit is approximately twice as high as the output of the half-wave rectifier circuit.
However, when AC voltage with a voltage amplitude of 10 V is rectified by the full-wave voltage doubler rectifier circuit of Non-Patent Document 1 (FIG. 4(a) in Non-Patent Document 1), the resulting DC voltage is approximately 4.8 V (FIG. 5(a) in Non-Patent Document 1). When AC voltage with a voltage amplitude of 10 V is rectified by the half-wave rectifier circuit (FIG. 4(b) in Non-Patent Document 1), the resulting DC voltage is approximately 5 V (FIG. 5(b) in Non-Patent Document 1).
These results are analyzed in Non-Patent Document 1 as follows: since two high-resistance transistors (the transistors in which an oxide semiconductor is used for the channel formation regions) are used in the full-wave voltage doubler rectifier circuit (
The off-state current of the transistor disclosed in Non-Patent Document 1, in which an oxide semiconductor is used for the channel formation region, is 10−12 A/μm; this means that the transistor is resistant to breakdown due to application of a reverse bias as compared to a polysilicon transistor. However, characteristics of a normal rectifier circuit are not obtained in the transistor of Non-Patent Document 1 and the rectification efficiency is insufficient.
An object is to provide a rectifier circuit whose reliability is increased and rectification efficiency is improved by using a diode-connected transistor in which an oxide semiconductor is used for a channel formation region for prevention of breakdown of the transistor.
An embodiment of the present invention is a rectifier circuit including a transistor, a terminal to which an AC signal is input, a capacitor, and an output terminal. A gate of the transistor and one of a source and a drain of the transistor are electrically connected to the terminal to which an AC signal is input. The other of the source and the drain of the transistor and a first electrode of the capacitor are electrically connected to the output terminal. A ground potential is electrically connected to a second electrode of the capacitor. A channel formation region of the transistor includes an oxide semiconductor. The carrier density in the oxide semiconductor is lower than 1×1014/cm3.
Another embodiment of the present invention is a rectifier circuit including a transistor, a terminal to which an AC signal is input, a capacitor, and an output terminal. A gate of the transistor and one of a source and a drain of the transistor are electrically connected to the terminal to which an AC signal is input. The other of the source and the drain of the transistor and a first electrode of the capacitor are electrically connected to the output terminal. A ground potential is electrically connected to a second electrode of the capacitor. A channel formation region of the transistor includes an oxide semiconductor. The off-state current of the transistor at room temperature is less than or equal to 10 zA/μm when source-drain voltage is 3.1 V.
Another embodiment of the present invention is a method for manufacturing a rectifier circuit including a transistor, a terminal to which an AC signal is input, a capacitor, and an output terminal. In the rectifier circuit, a gate of the transistor and one of a source and a drain of the transistor are electrically connected to the terminal to which an AC signal is input, the other of the source and the drain of the transistor and a first electrode of the capacitor are electrically connected to the output terminal, and a ground potential is electrically connected to a second electrode of the capacitor. The method for manufacturing the rectifier circuit includes the steps of forming a channel formation region of the transistor with the use of a first oxide semiconductor; performing first heat treatment for removing hydrogen, water, and a hydroxyl group on the first oxide semiconductor so that a second oxide semiconductor is formed; and performing second heat treatment for repairing oxygen deficiency in the second oxide semiconductor in an oxygen atmosphere or an atmosphere including nitrogen and oxygen, successively to the first heat treatment, so that a third oxide semiconductor is formed. In the method for manufacturing the rectifier circuit, the third oxide semiconductor is used for the channel formation region of the transistor.
Another embodiment of the present invention is a rectifier circuit including a first transistor, a second transistor, a terminal to which an AC signal is input, a first capacitor, a second capacitor, and an output terminal A first electrode of the first capacitor is electrically connected to the terminal to which an AC signal is input. One of a source and a drain of the first transistor, a gate of the first transistor, and one of a source and a drain of the second transistor are electrically connected to a second electrode of the first capacitor. The other of the source and the drain of the first transistor and a first electrode of the second capacitor are electrically connected to the output terminal A ground potential, a gate of the second transistor, and the other of the source and the drain of the second transistor are electrically connected to a second electrode of the second capacitor. Channel formation regions of the first transistor and the second transistor include an oxide semiconductor. The carrier density in the oxide semiconductor is lower than 1×1014/cm3.
Another embodiment of the present invention is a rectifier circuit including a first transistor, a second transistor, a terminal to which an AC signal is input, a first capacitor, a second capacitor, and an output terminal A first electrode of the first capacitor is electrically connected to the terminal to which an AC signal is input. One of a source and a drain of the first transistor, a gate of the first transistor, and one of a source and a drain of the second transistor are electrically connected to a second electrode of the first capacitor. The other of the source and the drain of the first transistor and a first electrode of the second capacitor are electrically connected to the output terminal A ground potential, a gate of the second transistor, and the other of the source and the drain of the second transistor are electrically connected to a second electrode of the second capacitor. Channel formation regions of the first transistor and the second transistor include an oxide semiconductor. The off-state current of each of the first transistor and the second transistor at room temperature is less than or equal to 10 zA/μm when source-drain voltage is 3.1 V.
Another embodiment of the present invention is a method for manufacturing a rectifier circuit including a first transistor, a second transistor, a terminal to which an AC signal is input, a first capacitor, a second capacitor, and an output terminal. In the rectifier circuit, a first electrode of the first capacitor is electrically connected to the terminal to which an AC signal is input; one of a source and a drain of the first transistor, a gate of the first transistor, and one of a source and a drain of the second transistor are electrically connected to a second electrode of the first capacitor; the other of the source and the drain of the first transistor and a first electrode of the second capacitor are electrically connected to the output terminal; and a ground potential, a gate of the second transistor, and the other of the source and the drain of the second transistor are electrically connected to a second electrode of the second capacitor. The method for manufacturing the rectifier circuit includes the steps of forming channel formation regions of the first transistor and the second transistor with the use of a first oxide semiconductor; performing first heat treatment for removing hydrogen, water, and a hydroxyl group on the first oxide semiconductor so that a second oxide semiconductor is formed; and performing second heat treatment for repairing oxygen deficiency in the second oxide semiconductor in an oxygen atmosphere or an atmosphere including nitrogen and oxygen, successively to the first heat treatment, so that a third oxide semiconductor is formed. In the method for manufacturing the rectifier circuit, the third oxide semiconductor is used for the channel formation regions of the first transistor and the second transistor.
Another embodiment of the present invention is a wireless communication device including a transistor, a terminal to which an AC signal is input, a capacitor, an output terminal, and an antenna. A gate of the transistor and one of a source and a drain of the transistor are electrically connected to the terminal to which an AC signal is input. The other of the source and the drain of the transistor and a first electrode of the capacitor are electrically connected to the output terminal. A ground potential is electrically connected to a second electrode of the capacitor. The AC signal is a signal received by the antenna. A channel formation region of the transistor includes an oxide semiconductor. The carrier density in the oxide semiconductor is lower than 1×1014/cm3.
Another embodiment of the present invention is a wireless communication device including a transistor, a terminal to which an AC signal is input, a capacitor, an output terminal, and an antenna. A gate of the transistor and one of a source and a drain of the transistor are electrically connected to the terminal to which an AC signal is input. The other of the source and the drain of the transistor and a first electrode of the capacitor are electrically connected to the output terminal. A ground potential is electrically connected to a second electrode of the capacitor. The AC signal is a signal received by the antenna. A channel formation region of the transistor includes an oxide semiconductor. The off-state current of the transistor at room temperature is less than or equal to 10 zA/μm when source-drain voltage is 3.1 V.
Another embodiment of the present invention is a method for manufacturing a wireless communication device including a transistor, a terminal to which an AC signal is input, a capacitor, an output terminal, and an antenna. In the wireless communication device, a gate of the transistor and one of a source and a drain of the transistor are electrically connected to the terminal to which an AC signal is input, the other of the source and the drain of the transistor and a first electrode of the capacitor are electrically connected to the output terminal, a ground potential is electrically connected to a second electrode of the capacitor, and the AC signal is a signal received by the antenna. The method for manufacturing the wireless communication device includes at least the steps of forming a channel formation region of the transistor with the use of a first oxide semiconductor; performing first heat treatment for removing hydrogen, water, and a hydroxyl group on the first oxide semiconductor so that a second oxide semiconductor is formed; and performing second heat treatment for repairing oxygen deficiency in the second oxide semiconductor in an oxygen atmosphere or an atmosphere including nitrogen and oxygen, successively to the first heat treatment, so that a third oxide semiconductor is formed.
Another embodiment of the present invention is a wireless communication device including a first transistor, a second transistor, a terminal to which an AC signal is input, a first capacitor, a second capacitor, an output terminal, and an antenna. A first electrode of the first capacitor is electrically connected to the terminal to which an AC signal is input. One of a source and a drain of the first transistor, a gate of the first transistor, and one of a source and a drain of the second transistor are electrically connected to a second electrode of the first capacitor. The other of the source and the drain of the first transistor and a first electrode of the second capacitor are electrically connected to the output terminal. A ground potential, a gate of the second transistor, and the other of the source and the drain of the second transistor are electrically connected to a second electrode of the second capacitor. The AC signal is a signal received by the antenna. Channel formation regions of the first transistor and the second transistor include an oxide semiconductor. The carrier density in the oxide semiconductor is lower than 1×1014/cm3.
Another embodiment of the present invention is a wireless communication device including a first transistor, a second transistor, a terminal to which an AC signal is input, a first capacitor, a second capacitor, an output terminal, and an antenna. A first electrode of the first capacitor is electrically connected to the terminal to which an AC signal is input. One of a source and a drain of the first transistor, a gate of the first transistor, and one of a source and a drain of the second transistor are electrically connected to a second electrode of the first capacitor. The other of the source and the drain of the first transistor and a first electrode of the second capacitor are electrically connected to the output terminal. A ground potential, a gate of the second transistor, and the other of the source and the drain of the second transistor are electrically connected to a second electrode of the second capacitor. The AC signal is a signal received by the antenna. Channel formation regions of the first transistor and the second transistor include an oxide semiconductor. The off-state current of each of the first transistor and the second transistor at room temperature is less than or equal to 10 zA/μm when source-drain voltage is 3.1 V.
Another embodiment of the present invention is a method for manufacturing a wireless communication device including a first transistor, a second transistor, a terminal to which an AC signal is input, a first capacitor, a second capacitor, an output terminal, and an antenna. In the wireless communication device, a first electrode of the first capacitor is electrically connected to the terminal to which an AC signal is input; one of a source and a drain of the first transistor, a gate of the first transistor, and one of a source and a drain of the second transistor are electrically connected to a second electrode of the first capacitor; the other of the source and the drain of the first transistor and a first electrode of the second capacitor are electrically connected to the output terminal; a ground potential, a gate of the second transistor, and the other of the source and the drain of the second transistor are electrically connected to a second electrode of the second capacitor; and the AC signal is a signal received by the antenna. The method for manufacturing the wireless communication device includes the steps of forming channel formation regions of the first transistor and the second transistor with the use of a first oxide semiconductor; performing first heat treatment for removing hydrogen, water, and a hydroxyl group on the first oxide semiconductor so that a second oxide semiconductor is formed; and performing second heat treatment for repairing oxygen deficiency in the second oxide semiconductor in an oxygen atmosphere or an atmosphere including nitrogen and oxygen, successively to the first heat treatment, so that a third oxide semiconductor is formed. In the method for manufacturing the wireless communication device, the third oxide semiconductor is used for the channel formation regions of the first transistor and the second transistor.
Another embodiment of the present invention is a wireless communication device including any of the above rectifier circuits.
A rectifier circuit in which dielectric breakdown is difficult to occur can be provided. Accordingly, the lifetime of a wireless communication device including the rectifier circuit can be increased.
In the accompanying drawings:
As a transistor included in a rectifier circuit, a transistor described below is used, in which an oxide semiconductor that is purified and made electrically i-type (intrinsic) or substantially i-type (intrinsic) is used for a channel formation region.
<Transistor in which Oxide Semiconductor is Used for Channel Formation Region>
An oxide semiconductor disclosed in this specification will be described. Impurities such as hydrogen, water, a hydroxyl group, or hydroxide (also referred to as a hydrogen compound) which serve as donors are intentionally removed from the oxide semiconductor included in the transistor, and then oxygen which is simultaneously reduced in the step of removing these impurities is supplied, so that the oxide semiconductor is purified and made electrically i-type (intrinsic) or substantially i-type (intrinsic). The purpose of this treatment is to suppress fluctuation in electric characteristics of the transistor.
Hydrogen included in the oxide semiconductor is removed as much as possible; thus, the carrier density in the oxide semiconductor is lower than 1×1014/cm3, preferably lower than 1×1012/cm3, further preferably lower than 1×1010/cm3.
In an oxide semiconductor, which is a wide bandgap semiconductor, the density of the minority carrier is low and the minority carrier is difficult to be induced. Thus, it can be said that, in the transistor in which an oxide semiconductor is used for the channel formation region, tunneling current is difficult to be generated; consequently, off-state current is difficult to flow.
In addition, impact ionization and avalanche breakdown are less likely to occur in the transistor in which the oxide semiconductor, which is a wide bandgap semiconductor, is used for the channel formation region. The hot carrier deterioration is mainly caused by increase in the number of carriers due to avalanche breakdown and by injection of the carriers accelerated to high speed to a gate insulating film. Therefore, it can be said that the transistor in which an oxide semiconductor is used for the channel formation region has resistance to hot carrier deterioration.
Note that in this specification, off-state current refers to current that flows between a source and a drain of an n-channel transistor whose threshold voltage Vth is positive when a given gate voltage of higher than or equal to −20 V and lower than or equal to −5 V is applied at room temperature. Note that the room temperature refers to a temperature of higher than or equal to 15° C. and lower than or equal to 25° C.
The current value per micrometer in a channel width W at room temperature of the transistor in which an oxide semiconductor that is purified and made electrically i-type (intrinsic) or substantially i-type (intrinsic) is used for the channel formation region is less than or equal to 10−16 A/μm, preferably less than or equal to 10−18 A/μm, which is equal to 1 zA/μm (a: atto), further preferably less than or equal to 10−21 A/μm, which is equal to 1 zA/μm (z: zepto).
<Result of Measurement of Off-State Current>
Results of measurement of off-state current of a transistor in which an oxide semiconductor that is purified and made electrically i-type (intrinsic) or substantially i-type (intrinsic) is used for a channel formation region will be described.
First, an element for characteristic evaluation which is used for a method for measuring current will be described with reference to
One of a source and a drain of the transistor M30 is connected to a power source which supplies voltage V2. The other of the source and the drain of the transistor M30 is connected to one of a source and a drain of the transistor M31. A gate of the transistor M30 is connected to a wiring through which voltage Vext_b2 is supplied.
The other of the source and the drain of the transistor M31 is connected to a power source which supplies voltage V1. A gate of the transistor M31 is connected to a wiring through which voltage Vext_b1 is supplied.
One of a source and a drain of the transistor M32 is connected to the power source which supplies the voltage V2. The other of the source and the drain of the transistor M32 is connected to an output terminal A gate of the transistor M32 is connected to one terminal of the capacitor C30.
One of a source and a drain of the transistor M33 is connected to the output terminal. The other of the source and the drain of the transistor M33 is connected to a gate thereof.
The other terminal of the capacitor C30 is connected to the power source which supplies the voltage V2.
Next, a method for measuring current with the use of the element for characteristic evaluation illustrated in
After that, the voltage Vext_b1 with which the transistor M31 is turned off is input to the gate of the transistor M31, so that the transistor M31 is turned off. After the transistor M31 is turned off, the voltage V1 is set to low. Here, the transistor M30 is still off. The voltage V2 as well as the voltage V1 is set to low.
In the above manner, the initial period is completed. In the state where the initial period is completed, a potential difference is generated between the node A and the one of the source and the drain of the transistor M30. Further, a potential difference is generated between the node A and the other of the source and the drain of the transistor M31. Accordingly, electric charge slightly flows through the transistor M30 and the transistor M31. That is, off-state current is generated.
Next, a measurement period of the off-state current will be described. In the measurement period, the voltage V1 and the voltage V2 are both fixed to low. In addition, the node A is in a floating state. As a result, electric charge flows through the transistor M30, and the amount of electric charge stored in the node A is changed as time passes. In other words, the potential of the node A is changed and output potential Vout of the output terminal is also changed.
Next, a method for calculating the off-state current on the basis of the obtained output potential Vout will be described. A potential VA of the node A is expressed by Formula 1 as a function of the output potential Vout.
[Formula 1]
VA=F(Vout) (1)
Electric charge QA of the node A is expressed by Formula 2.
[Formula 2]
QA=CAVA+const (2)
CA: capacitance connected to the node A (the sum of the capacitance of the capacitor C30 and the other capacitance).
Current IA of the node A can be obtained by differentiating electric charge flowing to the node A (or electric charge flowing from the node A) with respect to time. Accordingly, the current IA of the node A is expressed by Formula 3.
In current measurement described below, the transistors M30 and M31 in the element for characteristic evaluation are each a transistor in which an oxide semiconductor that is purified and made electrically i-type (intrinsic) or substantially i-type (intrinsic) is used for the channel formation region. In each of the transistors, W/L is 50/10 [μm]. In addition, in the measurement systems 30 connected in parallel, respective capacitance values of the capacitors C30 are 100 fF, 1 pF, and 3 pF.
The high voltage is set at 5 V, and the low voltage is set at 0 V. The voltage V1 is basically low in the measurement period; the voltage V1 is set to high for only 100 msec in every 10 sec to 300 sec because an output circuit needs to be operated at a timing of measuring the output potential Vout. In addition, Δt in Formula 3 is approximately 30000 [sec].
<Configuration of Rectifier Circuit>
A rectifier circuit illustrated in
The rectifier circuit rectifies an AC signal input to the terminal 10 and outputs a DC signal from the terminal 11. This rectifier circuit includes the capacitor C1 and the diode-connected transistor M1 in which an oxide semiconductor that is purified and made electrically i-type (intrinsic) or substantially i-type (intrinsic) is used for a channel formation region.
Note that in
A rectifier circuit illustrated in
The rectifier circuit rectifies an AC signal input to the terminal 10 and outputs a DC signal from the terminal 11. This rectifier circuit includes the capacitors C2 and C3 and the diode-connected transistors M2 and M3 in which an oxide semiconductor that is purified and made electrically i-type (intrinsic) or substantially i-type (intrinsic) is used for channel formation regions.
A loss of power P in the rectifier circuit is expressed by Formula 4.
[Formula 4]
P=I2RDS(ON) (4)
I: current, RDs(ON): on-state resistance of transistor.
According to Formula 4, the higher the on-state resistance (the smaller the on-state current) of the transistor is, the more the loss of power in the rectifier circuit is.
Here, drain current IDS of the transistor in a saturation region is expressed by Formula 5.
μ: mobility, C: capacitance per unit area of gate oxide film, W: channel width, VG: gate voltage, VTH: threshold voltage, L: channel length.
According to Formula 5, the following first to third conditions need to be satisfied in order to increase the on-state current of the transistor. The first condition is improvement in the mobility μ. The second condition is reduction in the channel length L. The third condition is increase in the channel width W.
That is, increase in the channel width W and the on-state current of the transistor can be given as one of way for reducing the loss of power. However, since the value of the channel width W also correlates with the value of the off-state current, there is a limit on the value of the channel width W. As described above, when a transistor whose off-state current is large is used in a rectifier circuit, the possibility of dielectric breakdown due to a breakdown phenomenon or heat generation is increased.
Here, the off-state current at room temperature of the transistor in which an oxide semiconductor that is purified and made electrically i-type (intrinsic) or substantially i-type (intrinsic) is used for the channel formation region is less than or equal to 10 zA/μm when the source-drain voltage is 3.1 V.
It is assumed that the on-state current of the transistor is increased by three orders of magnitude by increasing the channel width W thereof, for example. In this case, the off-state current is also increased by three orders of magnitude; however, the off-state current is still less than or equal to 10−18 A/μm. This value is smaller than 10−9 A/μm, which is the off-state current of a transistor in which polysilicon is used for a channel formation region, and it can be said that the transistor in which the oxide semiconductor is used for the channel formation region is difficult to be broken.
Accordingly, by providing the transistor in which an oxide semiconductor that is purified and made electrically i-type (intrinsic) or substantially i-type (intrinsic) is used for the channel formation region in a rectifier circuit, a rectifier circuit in which the loss of power is small, that is, the rectification efficiency is excellent and dielectric breakdown is difficult to occur can be provided.
An example of a method for manufacturing a transistor in which an oxide semiconductor that is purified and made electrically i-type (intrinsic) or substantially i-type (intrinsic) is used for a channel formation region will be described with reference to
First, an insulating layer 101 is formed as a base film over a substrate 100. The insulating layer 101 is preferably formed while residual moisture is removed from a treatment chamber. This is to prevent hydrogen, water, a hydroxyl group, hydrate, or the like from being included in the insulating layer 101.
Next, an oxide semiconductor layer is formed over the insulating layer 101 by a sputtering method. Before forming the oxide semiconductor layer, the substrate 100 provided with the insulating layer 101 is preferably pre-heated. This is to prevent hydrogen, water, and a hydroxyl group from being included in the oxide semiconductor layer as much as possible. Impurities such as hydrogen or water absorbed in the substrate 100 are removed and exhausted by the preheating.
A metal oxide target including zinc oxide as a main component can be used as a target for the oxide semiconductor layer. For example, a target having a composition ratio of In2O3:Ga2O3:ZnO=1:1:1, that is, In:Ga:Zn=1:1:0.5 can be used. Other than this, a target having a composition ratio of In:Ga:Zn=1:1:1 or In:Ga:Zn=1:1:2 can be used.
Further, a metal oxide such as In—Sn—Ga—Zn—O, In—Sn—Zn—O, In—Al—Zn—O, Sn—Ga—Zn—O, Al—Ga—Zn—O, Sn—Al—Zn—O, In—Zn—O, Sn—Zn—O, Al—Zn—O, Zn—Mg—O, Sn—Mg—O, In—Mg—O, In—O, Sn—O, or Zn—O can be used as a target.
Further, a thin film expressed by InMO3(ZnO)m (m>0 and m is not a natural number) may be used as the oxide semiconductor layer. Here, M is one or more metal elements selected from Ga, Al, Mn, and Co. For example, Ga, Ga and Al, Ga and Mn, or Ga and Co may be used as M.
The formed oxide semiconductor layer is processed into an island-shaped oxide semiconductor layer 102 by a first photolithography process (see
A temperature for performing the heat treatment is higher than or equal to 400° C. and lower than or equal to 750° C., preferably higher than or equal to 400° C. and lower than a strain point of the substrate. Further, the heat treatment is performed in an atmosphere that does not include water, hydrogen, or the like.
After the heat treatment, it is preferable that the oxide semiconductor layer 102 be successively heated in an oxygen atmosphere or an atmosphere including nitrogen and oxygen (e.g., the volume ratio of nitrogen:oxygen=4:1). This is to repair oxygen deficiency, which occurs in the oxide semiconductor layer 102.
Then, a first electrode 103a and a second electrode 103b are formed over the insulating layer 101 and the oxide semiconductor layer 102 (see
Next, a gate insulating layer 104 is formed over the insulating layer 101, the oxide semiconductor layer 102, the first electrode 103a, and the second electrode 103b (see
Next, openings 105a and 105b reaching the first electrode 103a and the second electrode 103b are formed by removing part of the gate insulating layer 104 (see
Then, a gate electrode 106, a first wiring 107a, and a second wiring 107b are formed over the gate insulating layer 104 and the openings 105a and 105b (see
In the above manner, the transistor in which an oxide semiconductor that is purified and made electrically i-type (intrinsic) or substantially i-type (intrinsic) is used for a channel formation region can be manufactured.
As for the size of the transistor M1 in
A graph 90 is a graph of input AC voltage. The voltage amplitude is approximately 10 V. A graph 91 is a graph of output DC voltage. In the graph 91, ripples are small and an average value of 3.91 V is obtained.
As for the size of each of the transistors M2 and M3 in
A graph 92 is a graph of input AC voltage. The voltage amplitude is approximately 10 V. A graph 93 is a graph of output DC voltage. In the graph 93, ripples are small and an average value of 6.80 V is obtained.
Thus, with a rectifier circuit including a transistor in which an oxide semiconductor that is purified and made electrically i-type (intrinsic) or substantially i-type (intrinsic) is used for a channel formation region, high-quality DC current in which the loss of power is small and ripples are reduced can be obtained. In other words, the rectification efficiency of the rectifier circuit can be improved.
This application is based on Japanese Patent Application serial no. 2010-049159 filed with Japan Patent Office on Mar. 5, 2010, the entire contents of which are hereby incorporated by reference.
Number | Date | Country | Kind |
---|---|---|---|
2010-049159 | Mar 2010 | JP | national |
Number | Name | Date | Kind |
---|---|---|---|
5731856 | Kim et al. | Mar 1998 | A |
5744864 | Cillessen et al. | Apr 1998 | A |
6294274 | Kawazoe et al. | Sep 2001 | B1 |
6563174 | Kawasaki et al. | May 2003 | B2 |
6727522 | Kawasaki et al. | Apr 2004 | B1 |
6777829 | Devilbiss et al. | Aug 2004 | B2 |
7049190 | Takeda et al. | May 2006 | B2 |
7061014 | Hosono et al. | Jun 2006 | B2 |
7064346 | Kawasaki et al. | Jun 2006 | B2 |
7105868 | Nause et al. | Sep 2006 | B2 |
7109934 | Devilbiss et al. | Sep 2006 | B2 |
7211825 | Shih et al | May 2007 | B2 |
7282782 | Hoffman et al. | Oct 2007 | B2 |
7297977 | Hoffman et al. | Nov 2007 | B2 |
7323356 | Hosono et al. | Jan 2008 | B2 |
7385224 | Ishii et al. | Jun 2008 | B2 |
7402506 | Levy et al. | Jul 2008 | B2 |
7411209 | Endo et al. | Aug 2008 | B2 |
7424265 | Umeda | Sep 2008 | B2 |
7453065 | Saito et al. | Nov 2008 | B2 |
7453087 | Iwasaki | Nov 2008 | B2 |
7462862 | Hoffman et al. | Dec 2008 | B2 |
7468304 | Kaji et al. | Dec 2008 | B2 |
7501293 | Ito et al. | Mar 2009 | B2 |
7575966 | Lai et al. | Aug 2009 | B2 |
7674650 | Akimoto et al. | Mar 2010 | B2 |
7732819 | Akimoto et al. | Jun 2010 | B2 |
7840181 | Umeda et al. | Nov 2010 | B2 |
7890054 | Umeda et al. | Feb 2011 | B2 |
7923733 | Kamata | Apr 2011 | B2 |
8129714 | Yano | Mar 2012 | B2 |
8642402 | Yano et al. | Feb 2014 | B2 |
20010046027 | Tai et al. | Nov 2001 | A1 |
20020056838 | Ogawa | May 2002 | A1 |
20020132454 | Ohtsu et al. | Sep 2002 | A1 |
20030189401 | Kido et al. | Oct 2003 | A1 |
20030218222 | Wager, III et al. | Nov 2003 | A1 |
20040038446 | Takeda et al. | Feb 2004 | A1 |
20040127038 | Carcia et al. | Jul 2004 | A1 |
20040245858 | Devilbiss et al. | Dec 2004 | A1 |
20050017302 | Hoffman | Jan 2005 | A1 |
20050199959 | Chiang et al. | Sep 2005 | A1 |
20050282505 | Umeda et al. | Dec 2005 | A1 |
20060035452 | Carcia et al. | Feb 2006 | A1 |
20060043377 | Hoffman et al. | Mar 2006 | A1 |
20060091793 | Baude et al. | May 2006 | A1 |
20060108529 | Saito et al. | May 2006 | A1 |
20060108636 | Sano et al. | May 2006 | A1 |
20060110867 | Yabuta et al. | May 2006 | A1 |
20060113536 | Kumomi et al. | Jun 2006 | A1 |
20060113539 | Sano et al. | Jun 2006 | A1 |
20060113549 | Den et al. | Jun 2006 | A1 |
20060113565 | Abe et al. | Jun 2006 | A1 |
20060169973 | Isa et al. | Aug 2006 | A1 |
20060170111 | Isa et al. | Aug 2006 | A1 |
20060197092 | Hoffman et al. | Sep 2006 | A1 |
20060208977 | Kimura | Sep 2006 | A1 |
20060228974 | Thelss et al. | Oct 2006 | A1 |
20060231882 | Kim et al. | Oct 2006 | A1 |
20060238135 | Kimura | Oct 2006 | A1 |
20060244107 | Sugihara et al. | Nov 2006 | A1 |
20060284171 | Levy et al. | Dec 2006 | A1 |
20060284172 | Ishii | Dec 2006 | A1 |
20060292777 | Dunbar | Dec 2006 | A1 |
20070024187 | Shin et al. | Feb 2007 | A1 |
20070046191 | Saito | Mar 2007 | A1 |
20070052025 | Yabuta | Mar 2007 | A1 |
20070054507 | Kaji et al. | Mar 2007 | A1 |
20070090365 | Hayashi et al. | Apr 2007 | A1 |
20070108446 | Akimoto | May 2007 | A1 |
20070152217 | Lai et al. | Jul 2007 | A1 |
20070172591 | Seo et al. | Jul 2007 | A1 |
20070187678 | Hirao et al. | Aug 2007 | A1 |
20070187760 | Furuta et al. | Aug 2007 | A1 |
20070194379 | Hosono et al. | Aug 2007 | A1 |
20070252928 | Ito et al. | Nov 2007 | A1 |
20070272922 | Kim et al. | Nov 2007 | A1 |
20070287296 | Chang | Dec 2007 | A1 |
20080006877 | Mardilovich et al. | Jan 2008 | A1 |
20080038882 | Takechi et al. | Feb 2008 | A1 |
20080038929 | Chang | Feb 2008 | A1 |
20080050595 | Nakagawara et al. | Feb 2008 | A1 |
20080073653 | Iwasaki | Mar 2008 | A1 |
20080083950 | Pan et al. | Apr 2008 | A1 |
20080106191 | Kawase | May 2008 | A1 |
20080128689 | Lee et al. | Jun 2008 | A1 |
20080129195 | Ishizaki et al. | Jun 2008 | A1 |
20080158926 | Umeda et al. | Jul 2008 | A1 |
20080166834 | Kim et al. | Jul 2008 | A1 |
20080182358 | Cowdery-Corvan et al. | Jul 2008 | A1 |
20080197344 | Yano | Aug 2008 | A1 |
20080224133 | Park et al. | Sep 2008 | A1 |
20080254569 | Hoffman et al. | Oct 2008 | A1 |
20080258139 | Ito et al. | Oct 2008 | A1 |
20080258140 | Lee et al. | Oct 2008 | A1 |
20080258141 | Park et al. | Oct 2008 | A1 |
20080258143 | Kim et al. | Oct 2008 | A1 |
20080296568 | Ryu et al. | Dec 2008 | A1 |
20080318523 | Umeda et al. | Dec 2008 | A1 |
20090068773 | Lai et al. | Mar 2009 | A1 |
20090073325 | Kuwabara et al. | Mar 2009 | A1 |
20090114910 | Chang | May 2009 | A1 |
20090134399 | Sakakura et al. | May 2009 | A1 |
20090152506 | Umeda et al. | Jun 2009 | A1 |
20090152541 | Maekawa et al. | Jun 2009 | A1 |
20090200557 | Kamata | Aug 2009 | A1 |
20090278122 | Hosono et al. | Nov 2009 | A1 |
20090280600 | Hosono et al. | Nov 2009 | A1 |
20100001259 | Saitho et al. | Jan 2010 | A1 |
20100055832 | Akimoto et al. | Mar 2010 | A1 |
20100065844 | Tokunaga | Mar 2010 | A1 |
20100092800 | Itagaki et al. | Apr 2010 | A1 |
20100109002 | Itagaki et al. | May 2010 | A1 |
20100283055 | Inoue | Nov 2010 | A1 |
20110101789 | Salter et al. | May 2011 | A1 |
20110148835 | Yamazaki | Jun 2011 | A1 |
20110240988 | Yano et al. | Oct 2011 | A1 |
20110310063 | Kurokawa | Dec 2011 | A1 |
Number | Date | Country |
---|---|---|
1607900 | Dec 2005 | EP |
1737044 | Dec 2006 | EP |
1852804 | Nov 2007 | EP |
2226847 | Sep 2010 | EP |
60-198861 | Oct 1985 | JP |
63-210022 | Aug 1988 | JP |
63-210023 | Aug 1988 | JP |
63-210024 | Aug 1988 | JP |
63-215519 | Sep 1988 | JP |
63-239117 | Oct 1988 | JP |
63-265818 | Nov 1988 | JP |
05-251705 | Sep 1993 | JP |
08-264794 | Oct 1996 | JP |
11-505377 | May 1999 | JP |
2000-044236 | Feb 2000 | JP |
2000-150900 | May 2000 | JP |
2002-076356 | Mar 2002 | JP |
2002-289859 | Oct 2002 | JP |
2003-086000 | Mar 2003 | JP |
2003-086808 | Mar 2003 | JP |
2004-103957 | Apr 2004 | JP |
2004-273614 | Sep 2004 | JP |
2004-273732 | Sep 2004 | JP |
2006-034085 | Feb 2006 | JP |
2008-011584 | Jan 2008 | JP |
2008-166749 | Jul 2008 | JP |
2008-311342 | Dec 2008 | JP |
2009-099847 | May 2009 | JP |
2009-212499 | Sep 2009 | JP |
I292249 | Jan 2008 | TW |
WO-03079524 | Sep 2003 | WO |
WO-2004114391 | Dec 2004 | WO |
WO-2007148653 | Dec 2007 | WO |
WO-2008096768 | Aug 2008 | WO |
WO-2010023889 | Mar 2010 | WO |
Entry |
---|
Fortunato.E et al., “Wide-Bandgap High-Mobility ZnO Thin-Film Transistors Produced at Room Temperature,”, Appl. Phys. Lett. (Applied Physics Letters) , Sep. 27, 2004, vol. 85, No. 13, pp. 2541-2543. |
Dembo.H et al., “RFCPUS on Glass and Plastic Substrates Fabricated by TFT Transfer Technology,”, IEDM 05: Technical Digest of International Electron Devices Meeting, Dec. 5, 2005, pp. 1067-1069. |
Ikeda.T et al., “Full-Functional System Liquid Crystal Display Using Cg-Silicon Technology,”, SID Digest '04 : SID International Symposium Digest of Technical Papers, 2004, vol. 35, pp. 860-863. |
Nomura.K et al., “Room-Temperature Fabrication of Transparent Flexible Thin-Film Transistors Using Amorphous Oxide Semiconductors,”, Nature, Nov. 25, 2004, vol. 432, pp. 488-492. |
Park.J et al., “Improvements in the Device Characteristics of Amorphous Indium Gallium Zinc Oxide Thin-Film Transistors By Ar Plasma Treatment,”, Appl. Phys. Lett. (Applied Physics Letters) , Jun. 26, 2007, vol. 90, No. 26, pp. 262106-1-262106-3. |
Takahashi.M et al., “Theoretical Analysis of IGZO Transparent Amorphous Oxide Semiconductor,”, IDW '08 : Proceedings of the 15th International Display Workshops, Dec. 3, 2008, pp. 1637-1640. |
Hayashi.R et al., “42.1: Invited Paper: Improved Amorphous In—Ga—Zn—O TFTs,”, SID Digest '08 : SID International Symposium Digest of Technical Papers, May 20, 2008, vol. 39, pp. 621-624. |
Prins.M et al., “A Ferroelectric Transparent Thin-Film Transistor,”, Appl. Phys. Lett. (Applied Physics Letters) , Jun. 17, 1996, vol. 68, No. 25, pp. 3650-3652. |
Nakamura.M et al., “The phase relations in the In2O3—Ga2ZnO4—ZnO system at 1350° C.,”, Journal of Solid State Chemistry, Aug. 1, 1991, vol. 93, No. 2, pp. 298-315. |
Kimizuka.N et al., “Syntheses and Single-Crystal Data of Homologous Compounds, In2O3(ZnO)m (m=3, 4, and 5), InGaO3(ZnO)3, and Ga2O3(ZnO)m (m=7, 8, 9, and 16) in the In2O3—ZnGa2O4—ZnO System,”, Journal of Solid State Chemistry, Apr. 1, 1995, vol. 116, No. 1, pp. 170-178. |
Nomura.K et al., “Thin-Film Transistor Fabricated in Single-Crystalline Transparent Oxide Semiconductor,”, Science, May 23, 2003, vol. 300, No. 5623, pp. 1269-1272. |
Masuda.S et al., “Transparent thin film transistors using ZnO as an active channel layer and their electrical properties,”, J. Appl. Phys. (Journal of Applied Physics) , Feb. 1, 2003, vol. 93, No. 3, pp. 1624-1630. |
Asakuma.N et al., “Crystallization and Reduction of Sol-Gel-Derived Zinc Oxide Films by Irradiation With Ultraviolet Lamp,”, Journal of Sol-Gel Science and Technology, 2003, vol. 26, pp. 181-184. |
Osada.T et al., “15.2: Development of Driver-Integrated Panel using Amorphous In—Ga—Zn—Oxide TFT,”, SID Digest '09 : SID International Symposium Digest of Technical Papers, May 31, 2009, pp. 184-187. |
Nomura.K et al., “Carrier transport in transparent oxide semiconductor with intrinsic structural randomness probed using single-crystalline InGaO3(ZnO)5 films,”, Appl. Phys. Lett. (Applied Physics Letters) , Sep. 13, 2004, vol. 85, No. 11, pp. 1993-1995. |
Li.C et al., “Modulated Structures of Homologous Compounds InMO3(ZnO)m (M=In,Ga; m=Integer) Described by Four-Dimensional Superspace Group,”, Journal of Solid State Chemistry, 1998, vol. 139, pp. 347-355. |
Son.K et al., “42.4L: Late-News Paper: 4 Inch QVGA AMOLED Driven by the Threshold Voltage Controlled Amorphous GIZO (Ga2O3—In2O3—ZnO) TFT,”, SID Digest '08 : SID International Symposium Digest of Technical Papers, May 20, 2008, vol. 39, pp. 633-636. |
Lee.J et al., “World's Largest (15-Inch) XGA AMLCD Panel Using IGZO Oxide TFT,”, SID Digest '08 : SID International Symposium Digest of Technical Papers, May 20, 2008, vol. 39, pp. 625-628. |
Nowatari.H et al., “60.2: Intermediate Connector With Suppressed Voltage Loss for White Tandem OLEDs,”, SID Digest '09 : SID International Symposium Digest of Technical Papers, May 31, 2009, vol. 40, pp. 899-902. |
Kanno.H et al., “White Stacked Electrophosphorecent Organic Light-Emitting Devices Employing MoO3 as a Charge-Generation Layer,”, Adv. Mater. (Advanced Materials), 2006, vol. 18, No. 3, pp. 339-342. |
Tsuda.K et al., “Ultra Low Power Consumption Technologies for Mobile TFT-LCDs ,”, IDW '02 : Proceedings of the 9th International Display Workshops, Dec. 4, 2002, pp. 295-298. |
Van de Walle.C, “Hydrogen as a Cause of Doping in Zinc Oxide,”, Phys. Rev. Lett. (Physical Review Letters), Jul. 31, 2000, vol. 85, No. 5, pp. 1012-1015. |
Fung.T et al., “2-D Numerical Simulation of High Performance Amorphous In—Ga—Zn—O TFTs for Flat Panel Displays,”, AM-FPD '08 Digest of Technical Papers, Jul. 2, 2008, pp. 251-252, The Japan Society of Applied Physics. |
Jeong.J et al., “3.1: Distinguished Paper: 12.1-Inch WXGA AMOLED Display Driven by Indium-Gallium-Zinc Oxide TFTs Array,”, SID Digest '08 : SID International Symposium Digest of Technical Papers, May 20, 2008, vol. 39, No. 1, pp. 1-4. |
Park.J et al., “High performance amorphous oxide thin film transistors with self-aligned top-gate structure,”, IEDM 09: Technical Digest of International Electron Devices Meeting, Dec. 7, 2009, pp. 191-194. |
Kurokawa.Y et al., “UHF RFCPUs on Flexible and Glass Substrates for Secure RFID Systems,”, Journal of Solid-State Circuits , 2008, vol. 43, No. 1, pp. 292-299. |
Ohara.H et al., “Amorphous In—Ga—Zn—Oxide TFTs with Suppressed Variation for 4.0 inch QVGA AMOLED Display,”, AM-FPD '09 Digest of Technical Papers, Jul. 1, 2009, pp. 227-230, The Japan Society of Applied Physics. |
Coates.D et al., “Optical Studies of the Amorphous Liquid-Cholesteric Liquid Crystal Transition:The “Blue Phase”,”, Physics Letters, Sep. 10, 1973, vol. 45A, No. 2, pp. 115-116. |
Cho.D et al., “21.2:Al and Sn-Doped Zinc Indium Oxide Thin Film Transistors for AMOLED Back-Plane,”, SID Digest '09 : SID International Symposium Digest of Technical Papers, May 31, 2009, pp. 280-283. |
Lee.M et al., “15.4:Excellent Performance of Indium-Oxide-Based Thin-Film Transistors by DC Sputtering,”, SID Digest '09 : SID International Symposium Digest of Technical Papers, May 31, 2009, pp. 191-193. |
Jin.D et al., “65.2:Distinguished Paper:World-Largest (6.5″) Flexible Full Color Top Emission AMOLED Display on Plastic Film and Its Bending Properties,”, SID Digest '09 : SID International Symposium Digest of Technical Papers, May 31, 2009, pp. 983-985. |
Sakata.J et al., “Development of 4.0-In. AMOLED Display With Driver Circuit Using Amorphous In—Ga—Zn—Oxide TFTs,”, IDW '09 : Proceedings of the 16th International Display Workshops, 2009, pp. 689-692. |
Park.J et al., “Amorphous Indium-Gallium-Zinc Oxide TFTs and Their Application for Large Size AMOLED,”, AM-FPD '08 Digest of Technical Papers, Jul. 2, 2008, pp. 275-278. |
Park.S et al., “Challenge to Future Displays: Transparent AM-OLED Driven by PEALD Grown ZnO TFT,”, IMID '07 Digest, 2007, pp. 1249-1252. |
Godo.H et al., “Temperature Dependence of Characteristics and Electronic Structure for Amorphous In—Ga—Zn—Oxide TFT,”, AM-FPD '09 Digest of Technical Papers, Jul. 1, 2009, pp. 41-44. |
Osada.T et al., “Development of Driver-Integrated Panel Using Amorphous In—Ga—Zn—Oxide TFT,”, AM-FPD '09 Digest of Technical Papers, Jul. 1, 2009, pp. 33-36. |
Hirao.T et al., “Novel Top-Gate Zinc Oxide Thin-Film Transistors (ZnO TFTs) for AMLCDs,”, Journal of the SID, 2007, vol. 15, No. 1, pp. 17-22. |
Hosono.H, “68.3:Invited Paper:Transparent Amorphous Oxide Semiconductors for High Performance TFT,”, SID Digest '07 : SID International Symposium Digest of Technical Papers, 2007, vol. 38, pp. 1830-1833. |
Godo.H et al., “P-9:Numerical Analysis on Temperature Dependence of Characteristics of Amorphous In—Ga—Zn—Oxide TFT,”, SID Digest '09 : SID International Symposium Digest of Technical Papers, May 31, 2009, pp. 1110-1112. |
Ohara.H et al., “21.3:4.0 In. QVGA AMOLED Display Using In—Ga—Zn—Oxide TFTs With a Novel Passivation Layer,”, SID Digest '09 : SID International Symposium Digest of Technical Papers, May 31, 2009, pp. 284-287. |
Miyasaka.M, “SUFTLA Flexible Microelectronics on Their Way to Business,”, SID Digest '07 : SID International Symposium Digest of Technical Papers, 2007, vol. 38, pp. 1673-1676. |
Chern.H et al., “An Analytical Model for the Above-Threshold Characteristics of Polysilicaon Thin-Film Transistors,”, IEEE Transactions on Electron Devices, Jul. 1, 1995, vol. 42, No. 7, pp. 1240-1246. |
Kikuchi.H et al., “39.1:Invited Paper:Optically Isotropic Nano-Structured Liquid Crystal Composites for Display Applications,”, SID Digest '09 : SID International Symposium Digest of Technical Papers, May 31, 2009, pp. 578-581. |
Asaoka.Y et al., “29.1:Polarizer-Free Reflective LCD Combined With Ultra Low-Power Driving Technology,”, SID Digest '09 : SID International Symposium Digest of Technical Papers, May 31, 2009, pp. 395-398. |
Lee.H et al., “Current Status of, Challenges to, and Perspective View of AM-OLED ,”, IDW '06 : Proceedings of the 13th International Display Workshops, Dec. 7, 2006, pp. 663-666. |
Kikuchi.H et al., “62.2:Invited Paper:Fast Electro-Optical Switching in Polymer-Stabilized Liquid Crystalline Blue Phases for Display Application,”, SID Digest '07 : SID International Symposium Digest of Technical Papers, 2007, vol. 38, pp. 1737-1740. |
Nakamura.M, “Synthesis of Homologous Compound with New Long-Period Structure,”, NIRIM Newsletter, Mar. 1, 1995, vol. 150, pp. 1-4. |
Kikuchi.H et al., “Polymer-Stabilized Liquid Crystal Blue Phases,”, Nature Materials, Sep. 2, 2002, vol. 1, pp. 64-68. |
Kimizuka.N et al., “Spinel,YbFe2O4, and Yb2Fe3O7 Types of Structures for Compounds in the In2O3 and Sc2O3—A2O3—BO Systems [A; Fe, Ga, or Al; B: Mg, Mn, Fe, Ni, Cu,or Zn] at Temperatures Over 1000° C.,”, Journal of Solid State Chemistry, 1985, vol. 60, pp. 382-384. |
Kitzerow.H et al., “Observation of Blue Phases in Chiral Networks,”, Liquid Crystals, 1993, vol. 14, No. 3, pp. 911-916. |
Costello.M et al., “Electron Microscopy of a Cholesteric Liquid Crystal and Its Blue Phase,”, Phys. Rev. A (Physical Review. A), May 1, 1984, vol. 29, No. 5, pp. 2957-2959. |
Meiboom.S et al., “Theory of the Blue Phase of Cholesteric Liquid Crystals,”, Phys. Rev. Lett. (Physical Review Letters), May 4, 1981, vol. 46, No. 18, pp. 1216-1219. |
Park.Sang-Hee et al., “42.3: Transparent ZnO Thin Film Transistor for the Application of High Aperture Ratio Bottom Emission AM-OLED Display,”, SID Digest '08 : SID International Symposium Digest of Technical Papers, May 20, 2008, vol. 39, pp. 629-632. |
Orita.M et al., “Mechanism of Electrical Conductivity of Transparent InGaZnO4,”, Phys. Rev. B (Physical Review. B), Jan. 15, 2000, vol. 61, No. 3, pp. 1811-1816. |
Nomura.K et al., “Amorphous Oxide Semiconductors for High-Performance Flexible Thin-Film Transistors,”, Jpn. J. Appl. Phys. (Japanese Journal of Applied Physics) , 2006, vol. 45, No. 5B, pp. 4303-4308. |
Janotti.A et al., “Native Point Defects in ZnO,”, Phys. Rev. B (Physical Review. B), Oct. 4, 2007, vol. 76, No. 16, pp. 165202-1-165202-22. |
Park.J et al., “Electronic Transport Properties of Amorphous Indium-Gallium-Zinc Oxide Semiconductor Upon Exposure to Water,”, Appl. Phys. Lett. (Applied Physics Letters) , 2008, vol. 92, pp. 072104-1-072104-3. |
Hsieh.H et al., “P-29:Modeling of Amorphous Oxide Semiconductor Thin Film Transistors and Subgap Density of States,”, SID Digest '08 : SID International Symposium Digest of Technical Papers, 2008, vol. 39, pp. 1277-1280. |
Janotti.A et al., “Oxygen Vacancies in ZnO,”, Appl. Phys. Lett. (Applied Physics Letters) , 2005, vol. 87, pp. 122102-1-122102-3. |
Oba.F et al., “Defect energetics in ZnO: A hybrid Hartree-Fock density functional study,”, Phys. Rev. B. (Physical Review. B), 2008, vol. 77, pp. 245202-1-245202-6. |
Orita.M et al., “Amorphous transparent conductive oxide InGaO3(ZnO)m (m<4):a Zn4s conductor,”, Philosophical Magazine, 2001, vol. 81, No. 5, pp. 501-515. |
Hosono.H et al., “Working hypothesis to explore novel wide band gap electrically conducting amorphous oxides and examples,”, J. Non-Cryst. Solids (Journal of Non-Crystalline Solids), 1996, vol. 198-200, pp. 165-169. |
Mo.Y et al., “Amorphous Oxide TFT Backplanes for Large Size AMOLED Displays,”, IDW '08 : Proceedings of the 6th International Display Workshops, Dec. 3, 2008, pp. 581-584. |
Kim.S et al., “High-Performance oxide thin film transistors passivated by various gas plasmas,”, 214th ECS Meeting, 2008, No. 2317, ECS. |
Clark.S et al., “First Principles Methods Using CASTEP,”, Zeitschrift fur Kristallographie, 2005, vol. 220, pp. 567-570. |
Lany.S et al., “Dopability, Intrinsic Conductivity, and Nonstoichiometry of Transparent Conducting Oxides,”, Phys. Rev. Lett. (Physical Review Letters), Jan. 26, 2007, vol. 98, pp. 0455001-1-045501-4. |
Park.J et al., “Dry etching of ZnO films and plasma-induced damage to optical properties,”, J. Vac. Sci. Technol. B (Journal of Vacuum Science & Technology B), Mar. 1, 2003, vol. 21, No. 2, pp. 800-803. |
Oh.M et al., “Improving the Gate Stability of ZnO Thin-Film Transistors With Aluminum Oxide Dielectric Layers,”, J. Electrochem. Soc. (Journal of the Electrochemical Society), 2008, vol. 155, No. 12, pp. H1009-H1014. |
Ueno.K et al., “Field-Effect Transistor on SrTiO3 With Sputtered Al2O3 Gate Insulator,”, Appl. Phys. Lett. (Applied Physics Letters) , Sep. 1, 2003, vol. 83, No. 9, pp. 1755-1757. |
Cho.S et al., “Oxide TFT Rectifier with RF Antenna,”, IDW '09 :Proceedings of the 16th International Display Workshops, Dec. 9, 2009, pp. 1815-1817. |
International Search Report (Application No. PCT/JP2011/053597) Dated Apr. 26, 2011. |
Written Opinion (Application No. PCT/JP2011/053597) Dated Apr. 26, 2011. |
Taiwanese Office Action (Application No. 100106921) Dated May 11, 2015. |
Number | Date | Country | |
---|---|---|---|
20110216566 A1 | Sep 2011 | US |