1. Field of the Invention
The present invention relates generally to frequency multiplier circuits, and more specifically to frequency doubler circuits for producing a relatively pure output for use in radio equipment.
2. Discussion of the Related Art
In radio communications, in order to reduce the number of oscillators, it is desirable to multiply the frequency of a local oscillator to effectively derive another local oscillator. For example, a frequency doubler is a circuit that produces an output signal at the twice the frequency of the input signal, the input signal or fundamental frequency being suppressed from the output. Typically, frequency doubling is realized by feeding the input signal through nonlinear devices, such as diodes or transistors, and then extracting the doubled or first output harmonic and rejecting the other frequency components.
One common frequency doubler is a rectifier type doubler that rectifies and doubles an input signal, then uses complex LC filtering to remove the unwanted harmonics. However, it is very complicated to implement such filtering on an integrated circuit and to remove the unwanted harmonics and maintain low noise over a wide input signal level range, such as from −10 to 0 dBm. Additionally, due to poor inductor Q (quality factor) and grounding in an integrated circuit implementation, it is very difficult to achieve good filter response for proper harmonic and spurious rejection.
Another approach is an injection lock type doubler, which is known to be very unreliable, e.g., gets out of lock easily. Such injection lock type doublers also require complex filtering to reject unwanted harmonics and spurious content.
Another well known approach is an unbalanced multi-tanh doubler, which is an ideal frequency doubler that generates only the desired doubled harmonic. The unbalanced multi-tanh doubler includes unbalanced emitter-coupled differential pairs with emitter area ratio K and relies on current summation and cancellation. Again, complex filtering is required for the rejection of unwanted harmonics. Disadvantageously, this doubler has a limited dynamic range with acceptable noise output performance. Thus, it is not able to maintain a low distortion output for a wide range of input levels and amplitude fluctuations.
It is with respect to these and other background information factors that the present invention has evolved.
The present invention advantageously addresses the needs above as well as other needs by providing a frequency multiplier circuit that has a high dynamic range to maintain a low distortion output for a wide range of input levels and amplitude fluctuations that in many cases does not rely on filtering to remove unwanted harmonics and spurious content.
In one embodiment, the invention can be characterized as a frequency doubler device comprising a first rectifier doubler stage adapted to receive a first input signal having a first frequency and adapted to output a first rectified signal having multiple harmonics; a second rectifier doubler stage adapted to receive a second input signal having the first frequency and offset in phase from the first input signal and adapted to output a second rectified signal, wherein the second rectified signal has the multiple harmonics and is offset in phase from the first rectified signal; and a differential amplifier stage coupled to the first rectifier doubler stage and the second rectifier doubler stage and adapted to sum the first rectified signal and the second rectified signal to produce an output signal. The output signal includes a desired output harmonic having a frequency that is double the first frequency. The summing results in the substantial cancellation of unwanted output harmonics in the output signal.
In another embodiment, the invention can be characterized as a frequency multiplier device comprising a first rectifier stage adapted to receive a first input signal having a first frequency and adapted to output a first rectified signal having multiple harmonics; a second rectifier stage adapted to receive a second input signal having the first frequency and offset in phase from the first input signal and adapted to output a second rectified signal, wherein the second rectified signal has the multiple harmonics and is offset in phase from the first rectified signal; and a differential amplifier stage coupled to the first rectifier stage and the second rectifier stage and adapted to sum the first rectified signal and the second rectified signal to produce an output signal. The output signal includes a desired output harmonic having a frequency that is a multiple of the first frequency. The summing results in the substantially cancellation of unwanted output harmonics in the output signal.
In a further embodiment, the invention may be characterized as a method of frequency multiplication comprising the steps of: doubling a first input signal having a first frequency to produce a first doubled signal having a second frequency and multiple harmonics, the second frequency approximately twice the first frequency; doubling a second input signal having the first frequency and offset in phase from the first input signal to produce a second doubled signal, wherein the second doubled signal has the second frequency and the multiple harmonics and is offset in phase from the first doubled signal; and summing the first doubled signal and the second doubled signal to produce an output signal including a desired output harmonic having the second frequency, wherein the summing results in the substantial cancellation of unwanted output harmonics in the output signal.
In yet another embodiment, the invention may be characterized as a method of frequency multiplication comprising the steps of: multiplying a first input signal having a first frequency to produce a first multiplied signal having a second frequency and multiple harmonics, the second frequency a multiple of the first frequency; multiplying a second input signal having the first frequency and offset in phase from the first input signal to produce a second multiplied signal, wherein the second multiplied signal has the second frequency and the multiple harmonics and is offset in phase from the first multiplied signal; and summing the first multiplied signal and the second multiplied signal to produce an output signal including a desired output harmonic having the second frequency, wherein the summing results in the substantial cancellation of unwanted output harmonics in the output signal.
The above and other aspects, features and advantages of the present invention will be more apparent from the following more particular description thereof, presented in conjunction with the following drawings wherein:
Corresponding reference characters indicate corresponding components throughout the several views of the drawings.
The following description is not to be taken in a limiting sense, but is made merely for the purpose of describing the general principles of the invention. The scope of the invention should be determined with reference to the claims.
Generally an improved frequency multiplier circuit (e.g., a frequency doubler) is described with reference to
According to several embodiments of the invention, a frequency multiplier circuit is provided that does not require filtering for rejection. According to several embodiments, the input signal to be multiplied, e.g., doubled, is passed through a polyphase network, which produces two signals having the same frequency but offset in phase. Next, in a frequency doubler, each input signal is doubled using a known rectifier type doubler for each input signal, then the resulting doubled and phase offset outputs are combined using a differential amplifier to harmonically cancel the unwanted harmonics, e.g., even output harmonics are canceled. Advantageously, in embodiments where the presence of odd output harmonics is not harmful, this multiplier circuit does not require filtering for harmonic rejection. Furthermore, in embodiments where the presence of odd output harmonics is harmful, less filtering is required for harmonic rejection.
Referring first to
Input signal 114, for example, a sinusoidal signal from an oscillator (such as a local oscillator of a radio frequency (RF) device), is to be multiplied. As is well known in the art, a local oscillator typically includes a crystal oscillator, which produces a signal having a known frequency f1. However, it is often desired to utilize multiples of the frequency f1 in other portions of the RF device. For example, a frequency doubler will produce an output that is twice that of its input, i.e., 2f1.
According to one embodiment, input signal 114, for example, a sinusoidal signal from an oscillator (such as a local oscillator of a radio device), is input to the polyphase network 102. In this embodiment, the input signal is a differential signal having a frequency of 2.1 GHz. It is noted that the input signal may have any desired frequency and that 2.1 GHz is used by way of example. The polyphase network 102 outputs two signals offset in phase from each other. In preferred embodiments, the two output signals 116 and 118 are in quadrature phase, i.e., signals 116 and 118 have the same frequency as input signal 114, but are offset in phase by approximately 90 degrees.
Any R-C polyphase network as understood in the art may be used; however, as described further below, in preferred embodiments, an improved polyphase network is implemented which provides better performance than conventional polyphase networks. Such an improved polyphase network is described with reference to
Next, the signals 116 and 118 are buffered by buffer circuit 104 and output as signals 120 and 122. Thus, signals 120 and 122 are differential signals having the same frequency as signals 114, 116, 118 but are offset in phase by approximately 90 degrees. The buffer circuit 104 may be any known buffer circuit and provides good isolation for the oscillator providing the input signal 114. In some embodiments, the buffer circuit 104 also protects the polyphase network 102 from any impedance changes in the later stages of the circuit. It is noted that a buffer circuit is not required to practice a frequency doubler in accordance with the invention. For example, in some implementations, the buffer circuit 104 is eliminated. In embodiments without a buffer circuit 104, signals 116 and 120 are identical and signals 118 and 122 are identical.
Signals 120 and 122 are input to the frequency doubler portion 106, which produces an output signal 128 that is twice the frequency of input signal 114. Thus, the output signal 128 includes the desired 1st output harmonic of the input signal, the fundamental frequency f1 being suppressed. For example, in one embodiment, the output signal 128 includes a differential signal having a frequency of 4.2 GHz.
According to several embodiments of the invention, the frequency doubler portion 106 includes the rectifier doubler circuit 108 and the differential amplifier stage 110. Each of signals 120 and 122 is input to a respective rectifier type frequency doubler of the rectifier doubler circuit 108, which outputs signals 124 and 126. Signals 124 and 126 are rectified differential signals that are doubled in frequency in comparison to signals 120 and 122. Again, signals 124 and 126 are quadrature signals designed to be offset in phase by 90 degrees. The functionality and implementation of the rectifier type frequency doublers within the rectifier doubler circuit 108 is well known in the art.
However, it is well known with rectifier type frequency doublers that the signals 124 and 126 are rich with harmonics, in particular, even output harmonics relative to the desired harmonic output, e.g., the 2nd, 4th, 6th and 8th output harmonics. Rather than using complex L-C filtering to remove the even output harmonics and spurious content, according to several embodiments, signals 124 and 126 are summed together by the differential amplifier stage 110. Advantageously, the differential amplifier stage 110 cancels the even output harmonics relative to the desired output harmonic and generates signal 128 which is a relatively pure sine wave having double the frequency of the input signal 114. It is noted that the signals 124 and 126 include odd output harmonics, e.g., the 1st, 3rd, 5th and 7th output harmonics. The 1st output harmonic is the desired harmonic output having twice the frequency of the input signal 114. Thus, as a departure from the known art, the frequency doubler may be easily implemented on the integrated circuit device 130. Furthermore, the frequency doubler may be implemented without requiring expensive and difficult to implement L-C filtering in embodiments in which the presence of additional odd harmonics is not harmful. Thus, in these embodiments, the problem of implementing high performance on chip LC filters due to poor inductor quality is entirely avoided. Further advantageously, the frequency doubler according to several embodiments has a high dynamic range which maintains a low distortion output for a wide range of input levels and amplitude fluctuations. It is noted that in embodiments where the presence of additional odd output harmonics in the output signal is harmful, less LC filtering is required than is traditionally known since the even output harmonics are substantially canceled without filtering, i.e., only the unwanted odd output harmonics need to filtered.
It is noted that as would be expected, the cancellation mechanism in the differential amplifier stage 110 is sensitive to phase input and signal quality. For example, in order for the frequency doubler portion 106 to perform optimally, the input signals 120 and 122 should have very little phase error. For example, in one implementation, phase error between the quadrature inputs should be less than 2 degrees. In this implementation, phase error greater than 2 degrees may not completely cancel the unwanted output harmonics. However, it is noted that 2 degrees as used above is by way of example and that in other implementations, more or less phase error may result in the unwanted output harmonics not being sufficiently canceled.
Thus, a high quality R-C polyphase network implementation should be employed as the polyphase network 102. As such, in preferred embodiments and as will be described in detail below with reference to
It should be noted that in many embodiments, the frequency doubler portion 106 will work with any known polyphase network or other polyphase device, e.g., a simple flip flop or a conventional R-C polyphase network at the emitter of the driving transistor device(s); however, in applications having stringent requirements (e.g., wireless indoor communications), the frequency doubler portion 106 of several embodiments works optimally best with a polyphase network that provides a clean output that has very little phase error.
The power supply circuit 112 is a centralized power supply that provides DC power to the various stages and circuits of
In one embodiment, such a frequency doubler 100 is implemented within a pre-mixer stage that is used as an input to a mixer. For example, the output signal 128 may pass through another polyphase network (used for image rejection in the subsequent mixer stage), then another buffer circuit (for impedance isolation) and finally a pulse shaping circuit prior to being input to the mixer. It should be understood that the output of such a frequency multiplier circuit may be used for other purposes than as an input to a mixer.
Referring next to
As illustrated, the input signals 120 and 122 are shown as sinusoidal waveforms offset by approximately 90 degrees to each other. The coupling capacitors 202 act to AC couple the rectifier doubler stages to the previous stage and to block any DC components. Each rectifier doubler stage 204 and 206 is a differential pair including two transistors with emitter outputs as a rectification circuit. For example, the first rectifier doubler stage 204 includes transistors Q3 and Q4 while the second rectifier doubler stage 206 includes transistors Q5 and Q6. Input signals 120 and 122 are coupled to the base of the respective ones of Q3, Q4, Q5 and Q6, while Vcc provides DC voltage to the collectors of the transistors and to the bias circuit 208. The bias circuit 208 inputs bias current Ibias from the power supply circuit 112 to provide the proper bias currents at the base of each transistor to cause each rectifier double stage 204 and 206 to become a current source and to ensure the proper switching between Q3 and Q4 as well as between Q5 and Q6. The operation of these rectifier doubler stages and the proper bias circuit is well understood in the art, and is thus not described further. As is known, the output signal 124 is taken off of the emitter of the first rectifier doubler stage 204, while output signal 126 is taken from the emitter of the second rectifier doubler stage 206. Signals 124 and 126 are rectified signals having double the frequency of the input signals 120 and 122, as illustrated in FIG. 2. However, each of these signals 124 and 126 remain offset in phase by approximately 90 degrees with respect to each other, as shown in the illustrated output waveforms.
As is well known in the art, the output of rectifier type doublers is rich in harmonics. For example, the fundamental frequency (input signal) has been suppressed and each output 124 and 126 includes the desired doubled output harmonic and other odd and even output harmonics. It is generally known that in many applications, the even output harmonics are harmful, while odd output harmonics are not. Given an input signal having frequency ƒ1(t) where:
ƒ1(t)=Acos (ωt) Eq. (1)
where A is the amplitude (assuming A=1), ω is the angular frequency (where ω=2πƒ), and assuming ƒ=2 GHz, then the Fourier series of a rectified and doubled signal ƒ2 (t) (e.g., signal 124) is as follows:
where n is the output harmonic index. The Fourier series expansion of Eq. (2) can be expressed as:
Based on this Fourier series expansion, the output harmonics can be calculated to be −14dBc, −21dBc and −26dBc for the 2nd, 3rd and 4th output harmonic levels respectively, which has been verified in a SPICE simulation.
At this point, a conventional frequency doubler using complex LC filters is used to remove or suppress the unwanted output harmonics (e.g., the 2nd, 4th and 6th harmonics or even harmonics). In contrast, according to several embodiments of the invention, the signals 124 and 126 are summed by the differential amplifier circuit of
Referring next to
As illustrated, coupling capacitors 302 act to AC couple the outputs of the rectifier doubler circuit 108 to the differential amplifier stage 110. As is well known, the differential amplifier stage 110 includes two transistor devices Q7 and Q8. Input signals 124 and 126 (rectified and doubled signals offset in phase by approximately 90 degrees) are coupled to the base of the respective ones of Q7 and Q8, while Vcc and Rc provides DC voltage to the collectors of the transistors and to the bias circuit 304. The bias circuit 304 inputs the appropriate bias current Ibias from the power supply circuit 112 to provide the proper bias currents at the base of each transistor Q7 and Q8 to cause the transistors to become current sources. It is noted that a small value capacitor 306 has been added in parallel to each emitter resistor Re to compensate for tolerance changes. This helps to ensure good matching between the transistor pair over process tolerance. The output of the differential amplifier stage 110 is taken at the collector of each transistor Q7 and Q8 as signal 128. As is well known in a differential pair, when the transistors Q7 and Q8 are conducting, signal 128 is the summation of input signals 124 and 126, e.g., signal 128 is the result of the difference between signals 124 and 126. The operation of the differential pair stage 110 and the proper bias circuit 304 needed to operate transistors Q7 and Q8 is well understood in the art.
Referring briefly to
As described above, given an input sine wave ƒ1(t) of Eq. (1), and rectified signal ƒ2(t) 124 from the first rectifier doubler stage 204:
and rectified signal ƒ3(t) 126 from the second rectifier doubler stage 206 that is offset approximately 90 degrees in phase from ƒ2(t):
where phase offset and amp offset are the phase offset and amplitude offset between signals 124 and 126, i.e., ƒ2(t) and ƒ3(t).
As illustrated in
ƒ4(t)=ƒ2(t)−ƒ3(t) Eq. (6)
As can be clearly seen in
Referring next to
Advantageously, since the signals 124 and 126 are offset in phase, the summation of signals 124 and 126 substantially cancels the even output harmonics. For example, harmonic outputs at 8 GHz, 16 GHz, 24 GHz and 32 GHz are not shown in FIG. 5. These harmonics are the even output harmonics (i.e., the 2nd, 4th, 6th and 8th output harmonics). Advantageously, these even harmonics are canceled or suppressed without the use of complex LC filters. This enables a simpler integrated circuit (IC) implementation since both the rectifier doubler circuit 108 and the differential amplifier stage 110 are easily implemented on an IC device 130. It is noted that in embodiments in which the presence of odd output harmonics is not desired in the output signal, additional LC filtering should be used to remove the remaining unwanted output harmonics as is known in the art. However, less LC filtering is required in such embodiments relative to traditional frequency doubler approaches, since the even output harmonics have been canceled.
In actual use, it is noted that the even output harmonics are actually present in the output signal 128; however, these even output harmonics are suppressed considerably relative to the power of the desired output harmonic 502, i.e., for all practical purposes, the unwanted even output harmonics are substantially canceled. For example, in a SPICE simulation, the harmonic cancellation of the 2nd output harmonic (i.e., the output harmonic at 8 GHz) is 42 dBc, while the 3rd output harmonic 504 at 12 GHz is 46 dBc lower than the desired output harmonic 502. For most applications, such levels of reduction are more than adequate and are considered cancellation. Thus, according to one embodiment, the summation of signals 124 and 126 results in at least a 20 dBc reduction, more preferably, at least a 30 dBc reduction, and most preferably, at least a 40 dBc reduction in one or more unwanted harmonics of the output signal. In particular, the summation of signals 124 and 126 results in at least a 20 dBc reduction, more preferably, at least a 30 dBc reduction, and most preferably, at least a 40 dBc reduction in a first even output harmonic relative to the desired harmonic output. Preferably, the reduction levels above occur to all unwanted even output harmonics.
In one embodiment, the input frequency range is 2.1-2.2 GHz, the input signal range is from −10 to 0 dBm, the output phase noise must be less than −150 dBc/Hz, the 6 GHz spurious output must be less than −38 dBc, the frequency doubling phase noise degradation should be within a 2 degree accuracy, and the output level variation should be less than 2 dB. Such a doubler circuit described herein will operate under such conditions without requiring LC filters to remove unwanted output harmonics. The system parameters described are by way of example, and it is understood that in other embodiments, the frequency doubler circuit may be implemented in a system having different requirements.
Advantageously, the frequency doubler portion 106 of this embodiment is useful for mixer LO operation or any other application which requires frequency multiplication. It is further understood that one of skill in the art could further multiply the signal output from the frequency doubler to effectively multiply, e.g., quadruple, the frequency of the input signal. For example, another frequency doubler stage may be cascaded at the output of frequency doubler portion 106 to produce a signal having a frequency quadruple that of the input signal.
Additionally, it is noted that the cancellation mechanism of the rectifier doubler circuit 108 and the differential amplifier is sensitive to phase input and signal quality. Referring to
It is also understood that although the performance requirements to be met in the preferred embodiments are quite stringent, in other applications with less stringent requirements, such a frequency doubler portion 106 may be used with any known polyphase network and produce an acceptable output at double the frequency of the input signal.
Next, an improved polyphase network is described, which may be used for example, in the frequency multiplier circuits described above. Initially, referring to
Typically, a conventional polyphase network is driven by the emitter follower (EF) stage of a bipolar junction transistor (BJT), which provides a low impedance input to the polyphase network 700. In other words, each input of the polyphase network 700 is taken at the emitter of a respective transistor. In conventional polyphase networks, if the input signal is not clean, the outputs will include undesirable harmonics and spurious content. For example, the phase offset from the desired 90 degrees may be calculated to be as much as 7 degrees in a non-clean incoming signal or sine wave having a 20 dBc harmonic present. Additionally, in an application using the polyphase network 700 for image rejection for a mixer, exact quadrature is important. For example, a polyphase network producing quadrature outputs that are 4 degrees offset and having a 0.5 dB magnitude imbalance can degrade image rejection to 27 dBc. The structure and operation of an R-C polyphase network such as illustrated in well known in the art.
Referring next to
Referring next to
As illustrated, the input signal 802 is shown as a sinusoidal waveform, the positive component coupled to Q9 and the negative component coupled to Q10. The coupling capacitors 804 act to AC couple the circuit to any previous stages and to block any DC components. Vcc provides DC voltage to the polyphase network 806 collectors and to the bias circuit 810. The bias circuit 810 inputs bias current bias from a power supply (e.g., the power supply circuit 112) to provide the proper bias currents at the base of each transistor Q9 and Q10 to cause each transistor to become a current source. The small value emitter inductors 808 are coupled in series to the emitter resistors Re and are provided to improve distortion to compensate for tolerance changes. The operation of the proper bias circuit 810 needed to operate transistors Q9 and Q10 is well understood in the art.
The polyphase network 806 comprises a traditional two pole R-C polyphase network however with the addition of shunt inductors 824, 826 each coupled in parallel to an input of the polyphase network 806 (similar to the network 710 of
A traditional R-C polyphase network such as illustrated in
In contrast, in this embodiment, the polyphase network 806 is coupled to the collector of the transistors Q9 and Q10 in a common emitter configuration with the additional shunt inductors. In this case, the impedance is high at the collector creating a current source. Thus, the input to the polyphase network 806 is a high impedance source. The shunt inductors 824 and 826 provide an additional filtering on the high side of the frequency response to produce bandpass filtering. Thus, the output creates a resonant frequency that is close to the desired frequency. In other words, unwanted harmonics and spurious content are filtered by the polyphase network 806 to produce a more pure output. In contrast, the traditional polyphase network 700 only provides a low pass response and does not filter higher frequencies.
Furthermore, as would be appreciated in the art, the addition of a similar shunt inductor to the known polyphase network of
Thus, according to several embodiments, the polyphase network 806 is placed at the collector terminal which provides amplification of the output signal in comparison to locating the polyphase network in the emitter follower configuration. Furthermore, a shunt inductor is added in parallel to each input of the polyphase network 806 which increases the impedance at the collector which further increases the amplification, resulting in a better signal to noise ratio. Additionally, the shunt inductors are selected so that they are in resonance with the capacitive reactance of the polyphase network in order to provide bandpass shaping of the output signal, in addition to outputs offset in phase. Advantageously, the polyphase network helps to reject incoming undesirable spurious content and harmonics. Furthermore, this polyphase network reduces circuit complexity and power consumption, as well as improves phase performance in comparison to traditional approaches. Reduced complexity and power consumption are particularly advantageous in integrated circuit implementations.
It is noted that such a polyphase network may be implemented at the input to a frequency multiplier circuit, such as described above with reference to
Referring next to
solving for XL, the reactance (and thus the inductance value) of the shunt inductor can be determined to operate the polyphase network at a given Q where:
Thus, the shunt inductor takes advantage of the residual capacitive reactance, such that the inductor preferably operates in resonance therewith. Additionally, amplification is provided since voltage gain Vg at the collector is a function of the current gain gm and the impedance of the inductor ZL and can be expressed as:
Vg=gmZL Eq. (12)
Thus, the increased impedance due to the presence of the inductor provides further amplification to the output signal, in addition to that provided by the fact that the polyphase network is coupled to the collector of the transistors.
Referring next to
Referring next to
While the invention herein disclosed has been described by means of specific embodiments and applications thereof, numerous modifications and variations could be made thereto by those skilled in the art without departing from the scope of the invention set forth in the claims.
This patent document relates to the following patent document filed concurrently herewith, which is incorporated herein by reference: U.S. patent application Ser. No. 10/602,364, of Kwok; entitled POLY-PHASE NETWORK WITH RESONANT CIRCUIT BANDPASS SHAPING.
Number | Name | Date | Kind |
---|---|---|---|
3710146 | Ohsawa | Jan 1973 | A |
3796960 | Frizzell et al. | Mar 1974 | A |
4048571 | Jacobson | Sep 1977 | A |
4639679 | Kasperkovitz et al. | Jan 1987 | A |
4931921 | Anderson | Jun 1990 | A |
5434522 | Fikart et al. | Jul 1995 | A |
5694091 | Hennig | Dec 1997 | A |
6348830 | Rebeiz et al. | Feb 2002 | B1 |
Number | Date | Country |
---|---|---|
10211523 | Jul 2003 | DE |
362176308 | Aug 1987 | JP |
Number | Date | Country | |
---|---|---|---|
20040257129 A1 | Dec 2004 | US |