Dome arrays are sheets that carry dome-shaped moveable contacts. They may be used to function as switches of, for example, mobile phones and electric home appliances. The dome array is often a cost-effective solution for a simple switch that allows for a superior tactile interface between a user's equipment and the user. Compared to a membrane polyester switch or a poly dome sheet which were formerly used, dome array sheets provide better tactile properties and have a longer lasting life span. However, with such advances in dome array sheets, there is a need to find ways to provide high performance dome array sheets that may be reused or recycled. Additionally there is a need to provide moveable contacts with noise reduction mechanisms and/or are quiet touch moveable contacts.
The invention described in this document is not limited to the particular systems, methodologies or protocols described, as these may vary. The terminology used herein is for the purpose of describing particular embodiments only, and is not intended to limit the scope of the present disclosure.
It must be noted that as used herein and in the appended claims, the singular forms “a,” “an,” and “the” include plural reference unless the context clearly dictates otherwise. Unless defined otherwise, all technical and scientific terms used herein have the same meanings as commonly understood by one of ordinary skill in the art. As used herein, the term “comprising” means “including, but not limited to.”
An embodiment may be directed to a recyclable dome array sheet. The recyclable dome array sheet may include a carrier sheet, a plurality of moveable contacts and a water soluble adhesive on at least a portion of a lower surface of the carrier sheet and an upper surface of the plurality of moveable contacts. Upon placing the recyclable dome array sheet in a water-based solution, the water soluble adhesive may disassociate, disband or dissolve, thereby allowing the plurality of moveable contacts to separate from the carrier sheet. The plurality of moveable contacts and the carrier sheet may be recovered separately and then recycled. In an embodiment, a water resistant adhesive may be located around at least a portion of an external perimeter of the dome array sheet. In embodiments, the water resistant adhesive may be located around the complete perimeter of the dome array sheet. The water resistant material assists in preserving the environmental performance and integrity of the switch, from factors such as high temperature and humidity.
Another embodiment may be directed to a moveable contact body. The moveable contact body may include a carrier sheet, a moveable contact and an adhesive on at least a portion of a lower surface of a carrier sheet and an upper surface of the moveable contact. The adhesive may be a water soluble, a water dispersible pressure sensitive adhesive, a viscoelastic adhesive or a damping material. The moveable contact body may also include a viscoelastic material on an upper surface of the carrier sheet. At least a portion of a periphery of the moveable contact may be a rolled foot.
Another embodiment may be a membrane switch, including a carrier sheet, a moveable contact, an adhesive layer and an electrical contact. The electrical contact may have a central stationary damping conductive pill. The damping conductive pill may be made of a compliant material. The conductive pill may be a carbon pill or may be of any other conductive material. The carbon pill may further include a soft silicone material, an elastomer or a similar rubber material.
Another embodiment may be a membrane switch with a number of damping mechanisms. The membrane switch may include a carrier sheet, a moveable contact, an adhesive layer, a damping material, and an electrical contact. The damping material may be a viscoelastic material. The adhesive layer may be positioned over an upper layer of the moveable contact and a lower surface of the carrier sheet. The viscoelastic material may be positioned on an upper surface of the carrier sheet. At least a portion of a periphery of the moveable contact may be a rolled foot. Another manner in which to provide noise reduction may be to utilize a central stationary electrical contact of a conductive pill, such as a carbon pill with a damping material located thereon. The damping material on the carbon pill may be a silicone material. In other embodiments, the moveable contact may include additional layers of materials, for example alternating layers of a damping material and a film.
For purposes of the discussion below, the term “adhesive” refers to a compound that binds one object to a second object, either permanently, temporarily, or in a manner that will allow the objects to be separated.
The term “light guide” refers to a sheet of material that receives light from an external source, propagates light from the point of entry throughout the sheet, and distributes light so that light is provided over the surface area of the sheet.
The terms “positioned over” and “positioned under” define a location based relationship between two objects. The term “positioned over” includes positioned above, positioned next to, and positioned below. Similarly, the term “positioned under” includes positioned above, positioned next to, and positioned below. For example, if item X has object A positioned above object B, object A is still positioned above object B if item X is turned upside down or if item X is turned on its side.
The invention is generally directed to membrane switches. In particular the invention is directed to recyclable dome array sheets and to quiet touch movable contacts.
The membrane switch dome-shaped moveable contact body 20 includes a dome-shaped moveable contact 10, a flexible carrier sheet 12 and an adhesive layer 14 positioned or located on or between a lower surface of the carrier sheet 12 and an upper surface of the moveable contact 10. The moveable contact 10 may be secured to the carrier sheet 12 with the adhesive layer 14 in such a manner that the upwardly curved upper surface of the moveable contact may be covered with the carrier sheet 12.
A separator 16 may also be present as illustrated in
As stated above, the moveable contact may be of any shape, preferably having a raised portion, such as a dome-shape. The moveable contact may be a thin, elastic metal plate. In an embodiment, the moveable contact may be an alloy or composite material. Alternatively, the moveable contact may be made of the same metal as the movable contact body or a material which in turn aids in reducing material cost associated with the use of additional precious metals. In other embodiments, the dome-shaped movable contact may be stainless steel, aluminum, or any other material that may be easily recyclable as well as eco-friendly. In other embodiments the stainless steel may be plated with another conductive material, such as nickel, silver, gold and the like. Preferably the material selected decreases manufacturing costs, for example costs associated with monitoring and controlling chemical discharge during a plating process.
The carrier sheet 12 may be a bio-plastic carrier sheet, for example a polyethylene terephthalate (PET) sheet. The sheet may be an electrically insulating material, or a conductive material to form an electrostatic discharge (ESD) shield, or alternatively a combination of both, part electrically insulating and part ESD shield. In alternate embodiments, carrier sheet 12 may be a light guide made up of a flexible material such as polycarbonate.
The recyclable dome array sheet may utilize a water soluble, dispersive, dissolvable or dissipateable adhesive or a water soluble pressure sensitive adhesive. The water soluble adhesive allows for an unobtrusive manner by which to separate the moveable contact 10 from the carrier sheet 12, thereby allowing either or both parts to be recycled. In an embodiment, a used dome array sheet having multiple dome-shaped moveable contacts on for example a carrier sheet, may be recycled to separate the moveable contacts from the carrier sheet. This may be done by, for example, a water based separation process, which allows the water soluble adhesive to disassociate, thereby allowing the dome-shaped moveable contacts to separate or debond from the carrier sheet. The dome shaped moveable contacts and the carrier sheet may then be easily recovered and recycled for future use.
Examples of water soluble, water dissolvable, water dissipateable or water dispersible pressure sensitive adhesives include for example water soluble polyether polyols and water soluble base polymers such as polyacrylates containing sulfonic acid salt groups and the like. Other systems may include for example, a water soluble system based on polymethyl methacrylate plasticized with polyethylene glycol, polyethylene oxide, or various polymers (such as PolyOx® water soluble resins), or a dispersion of a thermoplastic acrylic polymer on the basis of methyl methacrylate and butyl acrylate, polyvinal pyrrolidenes, or dimethyl hydantoin formaldehyde resin, and the like.
The adhesive may be applied to at least a portion of the lower surface of the carrier sheet or an upper surface of the moveable contact or a combination thereof as described further herein. Additionally the adhesive may cover the entire surface area of the dome-shaped moveable contact or alternatively at least a portion thereof.
In an embodiment, a water resistant material adhesive may be located around at least a portion of an external perimeter or periphery of the dome array sheet. The water resistant adhesive alternatively may be located around a complete perimeter of the dome array sheet. The water resistant material assists in preserving the environmental performance and integrity of the switch, from variables such as high temperature and humidity. Examples of water resistant materials that may be used include adhesives comprising polyurethanes, polyvinyl chloride, 3M's UV Screen Printable Adhesives SP-7514 as well as KIWOPRINT® TC 2000 manufactured by KIWO, Inc., and the like.
In other embodiments, as mentioned above, a conductive film may be located or printed on the upper surface of the carrier sheet of a dome-shaped movable contact body. The conductive film may be used to ground static electricity produced during the operation of the membrane switch, for example, depressing an operating section of a push button. The conductive film may be attached by for example a silver-based or carbon-based paste.
In an embodiment, the contacts may be made of a conductive materials, such as a carbon paste pad. The use of a carbon paste pad eliminates the need for expensive elements, such as copper as well as processes that require etching chemicals, which in turn decreases manufacturing costs. Accordingly by utilizing a conductive pill or carbon pad, contact resistance may be increased. For example, the carbon pad may allow the contact resistance to be increased to about greater than 100 Ohms, or even greater than about 50,000 Ohms. Typical dome array designs for example, a silver plated dome over a gold plated contact pad may result in a contact resistance of less than 1 Ohm. Accordingly by using a carbon pad as described herein, the contact resistance is increased thereby reducing the current that flows through the contact for each keypress. This in turn acts to reduce the total energy consumed each time a key is pressed which in turn aids in increasing battery life.
As discussed above in
As indicated above, the adhesive layer 14 may be a continuous layer or alternatively may be a portion of the layer, or may be discontinuous, patterned, and the like. In an exemplary embodiment,
A membrane switch formed with this configuration of the movable contact body may functions as follows. In this embodiment, the peripheral edge of the small hole 10A formed in the top of the movable contact 10 may be brought into contact with the central stationary contact 22A. This allows the movable contact to be more positively brought into contact with the central stationary contact 22A. Additionally, the part of the lower surface of the carrier sheet 12 which is around the small hole 10A of the movable contact 10, is not coated with the adhesive layer 14; that is, the part is employed as a carrier sheet exposed section 12B. Therefore, the entrance of the adhesive layer 14 into the movable contact 10 through the small hole 10A may be prevented.
The invention is also directed to a quiet touch moveable contact. In an embodiment, the moveable contact may include additional layers to significantly reduce a clicking noise while preserving the tactile feel of a membrane switch, which is typically observed by a force and displacement curve. An exemplary embodiment of a quiet touch moveable contact is illustrated in
The moveable contact in
The adhesive layer 140 may be any type of adhesive. In an embodiment the adhesive may be a damping or a vibration absorbing polymer adhesive. For example, it may be an acrylic based viscoelastic adhesive. Examples include acrylic adhesives, silicone adhesives, epoxy adhesives, phenolic adhesives, acrylic-epoxy blends, thermoplastic polyimide adhesive, phenolic adhesives blended with nitrile rubbers, and the like. In an alternate embodiment, the adhesive layer may be any of the adhesives discussed earlier above.
The at least one damping layer 160 may be a damping material or viscoelastic material. The viscoelastic material may include an elastomer, adhesive or plastic. Such materials may be acrylic polymers, ultra-pure polymers, liquid silicone rubbers, and the like. These materials may provide damping in ranges of temperatures as low as 0° C. to as high 105° C. Examples of damping materials include for example, plastic constraining material that may be moldable at ambient temperature. Examples of viscoelastic materials may include polyolefins and vinyl chloride resins, petroleum resin, polybutadiene, isocyanate, rubber, filler and mixtures thereof, include acrylic rubber, butyl rubber, nitrile rubber, natural rubber, fluorosilicone rubber, fluorocarbon rubber, polyethylene, polymethyl methacralate silicone rubber, polyimide, polyether sulphone, polyetherimide, polytetrafluoroethylene, polyesters, polyethylene naphthalene and the like.
The damping layer preferably 160 includes material having a loss factor as a function of frequency that is greater than about 0.01. As another example, the viscoelastic structure may have a loss factor that may be greater than about 1.0 or 1.5. The viscoelastic structure may also have a loss factor that may be greater than about 2.0.
As illustrated in
In other embodiments, additional layers of damping materials to form for example an acoustic layered configuration similar to a sandwich-type configuration may be utilized. For example there may a configuration of at least a damping material, a thin film and an adhesive therebetween. While this configuration is described therein, it is not meant to be limiting, and it is understood that any other material or configuration may be utilized. The thin film may be a film such as a PET film and may be about 25 μm-about 50 μm. An adhesive, such as a damping adhesive may be located on an upper surface of the damping material and a lower surface of the film. The acoustic layer configuration may include multiple repeating units of for example, a damping material, an adhesive, and a film. In other embodiments, there may be a single acoustic layer configuration or alternatively the addition of other layers or configurations in the acoustic layer configuration.
The acoustic layered configuration may be located on the carrier sheet. In an embodiment the acoustic layered configuration may cover at least a portion of the carrier sheet. In other embodiments, the acoustic layered configuration may surround a circumference or outer rim or periphery of the dome-shaped moveable contact. In other embodiments, the acoustic layered configuration may be on a portion of the dome-shaped moveable contact and may surround a portion of the outer periphery of the dome-shaped moveable contact.
To further decrease the sound and increase damping of the moveable contact, a conductive pill, such as a carbon pill 122 may be utilized. The carbon pill may also include a damping material, flexible material or polymer to further aid in damping while preserving electrical conductivity properties of the pill. For example, the carbon pill may include a soft silicone covering or coating, or may even be co-molded with another material. In an embodiment, at least a central portion of the conductive pill may be compliant, for example a carbon loaded silicone rubber material. Factors in selecting a material to increase damping, include for example polymer loss factor, density and geometry.
In an embodiment at least one peripheral edge 105 of the moveable contact may be a shape. For example, as illustrated in
It will be appreciated that various of the above-disclosed and other features and functions, or alternatives thereof, may be desirably combined into many other different systems or applications. Also that various presently unforeseen or unanticipated alternatives, modifications, variations or improvements therein may be subsequently made by those skilled in the art which are also intended to be encompassed by the following claims.
This application claims the priority of U.S. Provisional Application No. 61/156,910, titled “Recyclable Dome Sheet Arrays,” filed Mar. 3, 2009, the contents of which is hereby incorporated by reference in its entirety. NOT APPLICABLE
Number | Date | Country | |
---|---|---|---|
61156910 | Mar 2009 | US |