This application generally relates to the field of medical diagnostic instruments and more specifically to a low cost, ecologically friendly blood pressure sleeve or cuff that is biodegradable or capable of being recycled.
Sphygmomanometers are commonly known and established medical diagnostic instruments used for measuring patient blood pressure. In one well known version, a reusable cuff or sleeve made from fluid-impermeable material is wrapped about the limb (e.g., arm or leg) of the patient. Various sized sleeves are made, depending on the class (i.e., child, adult, neonatal) of the patient. Most sleeves of this type are defined by either a pair of planar sheets that are sealed together or are formed from a single sheet, the sleeve either having a contained bladder or an inflatable interior compartment. These sleeves further typically include hook and loop fasteners disposed at specific locations on opposing sides in order to permit releasable and adjustable attachment to and removal of the sleeve from a patient. The bladder or interior inflatable compartment is inflated using pneumatic means, such as a pump, which is tethered to the cuff by means of a flexible hose attached to a barb that is provided on the exterior of the sleeve. Pressure variations in the sleeve can then be detected by a gage housing having a dial indicator that is attached to the cuff. In mechanical versions, the gage housing contains a movement mechanism having a pressure responsive element, such as a diaphragm, wherein pressure variations are imparted to a dial indicator on the gage housing, according to the well-known oscillometric technique. Electronic blood pressure measuring versions, which may or may not include a pump directly within the gage housing, are also known, such as those manufactured by Welch Allyn, Inc. and Omron Corporation, among others, the results being displayed for example, using an LCD. In the latter types of devices, either the oscillometric (pulsatile) method or the auscultatory method of pressure measurement can be utilized, the latter being used in combination with a stethoscope or microphone.
These diagnostic instruments are repeatedly found in a doctor's office or within examination rooms within a medical facility or a hospital. With regard to a medical facility or hospital and depending upon the number of procedures that are performed on a patient during an examination or a typical hospital or urgent care visit, there are reasons why a blood pressure sleeve should not be reused, for example, the potential for cross contamination of infectious fluids between patients, among others.
Therefore, there is a need presently to inexpensively provide a disposable blood pressure sleeve, without degrading quality or accuracy in measurement or the use of same.
In the course of developing a sleeve that is disposable, additional consideration must be made with regard to environmental/ecological issues, including landfill, emission and other related concerns.
According to one aspect, there is disclosed a blood pressure cuff comprising a sleeve and an inflatable section within at least a portion of the interior of the sleeve. A port fluidly interconnects with the interior of said inflatable section, said port extending outwardly from an exterior surface of said sleeve and in which the cuff is entirely made from a single material, thereby enabling recyclability of the cuff.
In one version, the sleeve is manufactured from at least one sheet of a suitable lightweight material that is also fluid-impermeable, such as polypropylene, the at least one polypropylene sheet having a coated side and an uncoated nonwoven side, the at least one sheet being formed into the sleeve, including the inflatable portion.
According to one embodiment, the sleeve is configured to be releasably attachable onto the limb of a patient in overlaying relation, the sleeve having a slotted portion opposite an extending port such that the protruding port extends through the slotted portion when the sleeve is wrapped about the limb. The slotted portion advantageously provides a limit to the range of limb sizes to which the cuff can be attached. For example, various child/adult and neonatal cuff versions can be provided. The sleeve can be secured to the patient for wrapping such as by adhesives, clips, hook and loop fasteners or using other releasable means. In one embodiment, the port and the slotted portions are centered along the width dimension of the cuff, enabling the cuff to be attached more generally about the limb of a patient as opposed to presently used cuffs.
The extending port according to one version is a socket that is configured to receive at least one of a hose adapter and a gage housing that is used to inflate the sleeve through pneumatic means, such as a bulb or pump wherein the sleeve is readily adaptable for use in connection with either mechanical and/or electronic blood pressure measurement apparatus. The socket is configured to permit the at least one of a hose adapter and a gage housing engaged in the socket to be rotatable about an axis of the socket.
In one version, means are provided that can prevent the sleeve from being reused. In one such version, hook and loop fasteners are provided as closure means for the cuff in which the sleeve material itself serves as the function of loop fasteners and in which the attachability (i.e., the shear strength) of the hook fasteners to the loop fasteners degrades with each use, thereby rendering the sleeve incapable of intended use after one or a finite number of uses. Alternatively, other disabling means can be provided depending on the closure means, such as a tear strip that destroys the sleeve and preventing the sleeve from being rewrapped following removal from the patient.
According to another version, there is provided a disposable blood pressure cuff, said cuff comprising a sleeve having an interior; and an inflatable portion within at least a portion of said sleeve interior, the cuff including a port that directly and fluidly interconnects with the interior of said inflatable portion, said cuff being biodegradable. In one version, the cuff is made from a material that is treated with an additive that renders said cuff biodegradable after a predetermined time period. According to one version, the cuff is made from at least one of polypropylene and polyethylene.
According to another version there is provided a blood pressure cuff comprising a flexible sleeve including an inflatable portion, a port extending from an exterior surface of the inflatable portion and a slotted portion sized for receiving the port when the sleeve is circumferentially wrapped about the limb of a patient.
The slotted portion can be sized in order to limit the range of limb sizes to which the cuff can be attached. In one version, the slotted portion and port are aligned with one another, each being disposed at substantially the center of the width dimension of the sleeve. Advantageously, the cuff can be wrapped in at least two opposite orientations about the limb of a patient and in which the port is in the same location relative to the patient in each orientation.
According to yet another aspect, there is provided a method for manufacturing a blood pressure cuff, comprising the steps of providing a flexible sleeve member having an interior and made from a fluid impermeable material, adding an external port to the sleeve member, the external port including an opening in fluid communication with an inflatable portion of the sleeve member and creating a slotted portion in a side of the sleeve opposite from the external port in which the slotted portion is sized to receive the external port when the cuff is wrapped about the limb of a patient.
In one version, the sleeve member is partially or entirely made from a recyclable material, such as polypropylene. In another version, the sleeve member is made from a biodegradable material such as polypropylene or polyethylene.
In one version, the sleeve member is treated with an additive enabling the sleeve member to be biodegradable after a predetermined time period.
In another version, the sleeve member is provided with closure means for releasably securing the sleeve in a wrapped configuration. The closure means in one embodiment can include hook and loop fasteners in which the exterior surface of the sleeve is made from a material that provides adhesion to a hook fastener portion of the sleeve, thereby serving as loop fasteners.
According to another aspect, there is provided a method for sequentially dispensing blood pressure cuffs, said method comprising the steps of providing a plurality of blood pressure cuffs in a stacked relation. Each of the cuffs are made from a highly flexible fluid impermeable material in which dispensing of same by pulling a portion of a cuff and pulling the first cuff from the stack as contained within an enclosure that allows the cuffs to be removed one at a time and in which each succeeding cuff is advanced for sequential dispense within the container.
In one exemplary version, a box-like enclosure having a dispense slot disposed therein is sized to receive a portion of each stacked cuff or sleeve, enabling each said sleeve to be pulled sequentially therefrom and in which the sleeves are either biodegradable or recyclable.
In another version, the cuffs can be packaged in other forms for ready dispense, such as in roll form.
One advantage provided by the herein described apparatus is that an ecologically friendly blood pressure cuff can be manufactured and dispensed for use at relatively low cost. In at least one version and to enable closure of the cuff about the patient, hook and loop fasteners can be employed. However, by having the sleeve made from a material that enables adhesion to a typical hook fastener, there is no need to specifically incorporate loop fasteners in the sleeve. Moreover, by providing an inherent loop fastener in combination with the slotted portion, enables the attachment point to be further from the edge of the sleeve, thereby not only improving adhesion, but also minimizing the required adhesion area between the respective hook and loop fasteners. Moreover, the material of the sleeve can be selected such that adhesion of the sleeve material forming the inherent loop fasteners degrades with each attachment and detachment from the patient, the sleeve will no longer be useful within a finite number of applications.
Another advantage using a blood pressure cuff as described herein is that cross-contamination between patients can be effectively minimized.
Yet another advantage is that the herein described sleeves, though disposable in nature, do not significantly degrade the environment or cause ecological issues. One factor for making an ecologically friendly, yet disposable cuff is through the homogeneity of material used in the manufacture of the sleeves. By manufacturing the cuff, including the port, entirely from a single material readily and advantageously permits recyclability of this product. Even if the port is not made from the precise material, the cuff still is highly capable of being adequately recycled. Selection of a suitable material such as polypropylene or polyethylene further permits the cuff to be incinerated without any toxic byproduct emissions, as found for example, in the case of known polyvinylchloride (PVC) cuffs. Alternatively, the cuff can be made from a combination of materials, such as polyethylene and polypropylene, that are treated with at least one additive that enables the cuff to be biodegradable after a predetermined time period.
Another advantage of the herein described sleeve is that the slotted portion creates a range finder for limiting the size limb of patient to which the sleeve can be attached. The slotted portion in combination with the external port further provides additional securement of the sleeve while the sleeve portion also acts as a guide to insure the sleeve is properly wrapped about the limb of a patient.
Yet another advantage realized by the present sleeve is that the port and slotted portion can be positioned “on center” with respect to the sleeve; that is, each can be positioned at substantially the center of the width dimension of the sleeve. This positioning permits the sleeve to be attached without having to first position the sphygmomanometer port relative to the patient, other than with respect to the brachial artery. That is to say, the direction of wrap of the cuff becomes inconsequential and therefore simplifies use. Moreover and due to this symmetrical location of the port, the port can be utilized as the arterial marker.
Still another advantage is that the herein described sleeves or cuffs can be easily stored and packaged, as well as easily and readily dispensed thereby handling inventory/storage issues.
The herein described sleeve through its choice of material(s) is lighter weight and less stiff than previously known cuffs, including previously known disposable or single patient blood pressure cuffs, and is also more comfortable for the patient as it is worn.
These and other features and advantages will become readily apparent from the following Detailed Description, which should be read in conjunction with the accompanying drawings.
The following description relates to several exemplary embodiments of a disposable, single use or single patient blood pressure cuff or sleeve, as well as packaging for dispensing the sleeves and related methods for dispensing and packaging the disposable sleeves. It will be readily apparent, however, that a number of other variations and modifications embodying the inventive concepts described herein are possible. In addition, certain terms such as, “top”, “bottom”, “upper”, “lower”, “above”, “below”, “over”, “beneath” and the like are used throughout in order to provide a suitable frame of reference with regard to the accompanying drawings. These terms, however, are not intended to be overlimiting, except where so specifically noted.
Referring to
The envelope-like structure of the flexible sleeve member 30, according to this exemplary version, is made up of a single sheet of material that is folded along one edge to define a pair of planar sleeve portions 34, 38, each sleeve portion having a length dimension that is significantly larger than a corresponding width dimension. The envelope-like structure is created by sealing the remaining edges 42,
According to this exemplary version, an inflatable bladder 60, shown in
The bladder 60 according to this embodiment is defined by a fluid-impermeable and flexible material and is further defined by a substantially rectangular configuration. It should be noted, however, that this shape should not be limiting, meaning other suitable geometries can be easily utilized. The bladder 60 can be inflated, as described in greater detail below by pneumatic means, such as a pump or bulb (not shown) attached preferably in releasable fashion to the socket 64.
The slotted portion 52, as noted above, extends through each of the sleeve portions 34, 38 and along the major dimension of the sleeve member 30 opposite that of the bladder 60. The major dimension of the slotted portion 52 is aligned with the port 56 and is configured, as shown in
As shown in
Following use by a patient/caregiver, the cuff 20 can be removed from the patient and discarded. Alternatively, the cuff 20 can be used in connection with a single patient, for example, over the course of a patient visit or a typical hospital stay. As described below, means can be provided for disabling the cuff 20 from being wrapped either once the cuff is removed or after a predetermined number of patient uses.
Referring to
A small circular opening is cut into one of the planar sheets 104 of the formed cuff 100 over which is disposed a port or socket 110, the latter of which includes a circumferential or annular lip 117. According to this embodiment, the socket 110 is made from a flexible material such as polypropylene or polyethylene. The socket 110 according to this embodiment extends above the exterior surface of the planar sheet 104 and includes an opening 111 which extends into the interior of the inflatable portion 114 enabling fluid interconnection. The socket 110 is attached to a support structure 118 that is bonded or is otherwise sealed, according to this embodiment, to the exterior of the planar sheet 104. Alternatively, the support structure can be welded to the interior of the planar sheet with the socket extending directly through the opening. A plurality of angled protrusions 122 extend in spaced linear relation on opposing sides of the socket 110 on the exterior of the support structure 118. The protrusions 122 are also preferably made from a plastic material, such as polypropylene or polyethylene. The inflatable portion 114 of the sleeve member 102 is sealed on all four sides or edges 112, 115 by means of heat sealing, RF or ultrasonic welding or other appropriate techniques that provide a fluid-impermeable seal, wherein the material of at least the inflatable portion of the sleeve is made from a fluid-impermeable material and is flexible to enable expansion for inflation thereof by pneumatic means (not shown).
On the opposite side of the sleeve member 102 from the inflatable portion 114, a slotted portion 126 is provided having a major dimension aligned with the major dimension (length) of the sleeve member. The slotted portion 126 extends through each of the planar sheets 104, 108 defining the sleeve member 102 and is used in conjunction with the socket 114 to control the range of limb sizes to which the cuff 100 can be utilized. A series of small openings 132 are disposed in spaced linear fashion along each lateral side of the slotted portion 126 and substantially along the length thereof, the openings each being sized to retain a raised protrusion 122 and the slotted portion 126 being sized to retain the socket 110.
In use and referring to
Referring to
An opening is formed in one of the planar sheets 154 in one of the sections wherein a port supported upon a smaller sheet section (not shown), preferably made from the same material as the sheets 154 is bonded to the interior of the sheet, and in which the port herein is defined by a socket 158 that extends through the opening wherein a fluid tight seal is created about the periphery of the socket within the opening. The socket 158 includes a relatively flexible circumferential or annular lip and is also preferably formed from the same material (i.e., polypropylene) as those constituting the sleeve sheets 154. A slotted portion 170 is formed in the opposite side of the cuff 150 wherein the major dimension of the slotted portion is aligned with the extending socket 158. According to this embodiment, the slotted portion 170 and opening/socket are provided at substantially the center of the width dimension of the cuff 150, as shown most clearly in
Adjacent the opening and extending socket 158, a hook fastener portion 162 is provided on the exterior of the cuff 150 on one side thereof. In this embodiment, the material of the cuff on the non-woven exterior of the sheets 154 is defined by a micro-structure that creates adhesion with the hook fastener portion 162 when the cuff 150 is wrapped, as shown, for example, according to
When wrapped, the slotted portion 170 is sized to accommodate the socket 158 and the slotted portion is further sized to be wrapped only within a predetermined range of limb (arm) circumferences. The slotted portion 170 in combination with the extending socket 158 serves numerous functions. First, and as noted the slotted portion 170 will only accommodate a predetermined range of arm circumferences, in which the slotted portion can be formed to accommodate a class of patient (e.g., a child, an adult, a large adult, etc). In addition, the slotted portion 170 serves as a guide to wrapping the cuff 150 about the limb 180,
In this version, the durability of the material is affected with each attachment and subsequent removal of the cuff 150 from the hook fastener portion 162. This degradation of material influences the ability of the material to further adhere in those areas, thereby rendering the cuff 150 incapable of attachment after a finite number of uses. Depending on the material, this finite number of uses could be made to be one or several.
Referring to
By making the entire cuff as described herein from the same material, in this case polypropylene, the cuff can easily be recycled following use. It has been determined that the cuff is a #5 recyclable product when the entire cuff, including the port, are manufactured from the same material. In the case the cuff is made entirely from polyethylene it is a #2 or #4 recyclable product. Moreover and even in the instance in which the cuff is not made entirely from a homogenous material, the herein described sleeve when incinerated does not release toxic and ozone depleting gases as in the case of those sleeves containing polyvinylchloride (PVC). For those cuffs to which are treated with additives including those previously noted above, the cuffs are rendered biodegradable after a predetermined time period. In effect, the herein described cuffs are designed to be ecologically and environmentally friendly, whether through recallability or biodegradability.
Referring to
A plurality of cuffs, such as described above, can be otherwise stored for dispensing. For example, the herein described ecologically friendly cuffs can be disposed individually in a roll form such as described in U.S. Pat. No. 5,819,739, the entire contents of which are herein incorporated by reference. Still other dispensing techniques can easily be imagined.
It will be readily apparent that other modifications and variations can be made in accordance with the inventive aspects that are described herein and that the embodiments described are not intended to be exhaustive. For example, an ecologically friendly cuff can also be made using a combination of polyethylene and polypropylene including a polyethylene interior and the non-woven polypropylene exterior previously described with regard to cuff 150. Other suitable versions within the teachings provided herein should easily be contemplated as now further defined according to the following claims.