The present invention was first described in and claims the benefit of Disclosure Document No. 609,991 filed on Dec. 7, 2006.
The present invention relates, in general, to marine heat exchangers and, more particularly, this invention relates to an apparatus for equipping a conventional marine cooking stove with a heat exchanger that is energized independently from the recreational marine watercraft engine or AC shore power to heat potable water for onboard purposes or separately for cooking needs.
As is generally well known, recreational boating has earned a well-deserved spot on the list of favorite pastimes of countless people. The ability to go anywhere, virtually anytime, with all of the comforts of home makes it truly enjoyable. Whether one travels in a smaller boat or in a larger multi-level yacht, one is ensured of seeing all that the sea and surrounding land has to offer with a minimum impact on cost and a maximum impact on fun. However, one disadvantage associated with many recreational marine watercrafts is the inability to heat water when not docked or when the engine is turned off. Most watercrafts use AC shore power to electrically heat water for cooking, bathing, and cleaning. When away from dock, such watercrafts must rely on a generator which is not always feasible due to its weight and size considerations. Accordingly, there exists a need for a means by which watercrafts can be provided with the ability to heat water at any time without the reliance on AC electrical power or engine operation.
Several attempts have been made in the past to provide a liquid heating and circulation system. U.S. Pat. No. 4,249,491, issued in the name of Stein, discloses a multiple liquid heating and circulating system, Unfortunately, the Stein invention is particularly useful for maintaining equipment, especially engines, when they are non-operational
U.S. Pat. No. 6,6332,580, issued in the name of Enander et al., teaches a compact vehicle heating system and method, wherein the system selectively shut down heating systems with respect to the demand for domestic hot water. Unfortunately, the Enander et al. device is not particularly suited for use onboard a watercraft and therefore differs in scope.
U.S. Pat. No. 6,612,504, issued in the name of Sendzik, describes a heating system for heating fresh water on marine vessels, wherein the vessel's water supply is connected to a hot water tank in fluid communication with a heat exchanger. The vessel's engine coolant line passes through the heat exchanger, wherein heat is exchanged with the coolant line, which in turn heats the water within the heat exchanger, with a flow regulator for the water line. Unfortunately, the Sendzik device does not provide for a heat exchanger that operates in conjunction with the convected heat emanating from an onboard cooking apparatus, such as a stove top.
None of the prior art particularly describes a system for heating and circulating water aboard a recreational watercraft.
According to one aspect, the present invention provides an apparatus for heating water aboard a recreational marine watercraft independently from a source of AC power or independently from operation of the watercraft's engine. The apparatus includes a heat exchanger which is operably connected to each of a source of heat and a source of water. The heat exchanger is capable of transferring heat generated by the source of heat to the water circulating through the heat exchanger. A water supply conduit is provided for delivering water from the source of water to the heat exchanger. There is also provided a water return conduit for returning heated water from the heat exchanger to the source of water. A pump is electrically coupled to a source of DC power. The pump is operable for selectively circulating the water from and to the source of water through the heat exchanger. A valve is operably mounted within the water return conduit for preventing a reversed flow of the water therein.
According to another aspect, the instant invention provides an apparatus for heating potable water. The apparatus includes a heat exchanger which is operably connected to each of a source of heat and a source of water. The heat exchanger is capable of transferring heat generated by such source of heat to the water circulating therethrough. The heat exchanger has an enclosure formed by a top panel, a bottom panel and a peripheral side panel. A heating tube unit is mounted within the enclosure and has a pair of ends extending through a portion of one of the peripheral side panel and the top panel. An aperture is formed in one of the bottom panel and the top panel of the enclosure for directly exposing the heating tube unit to the heat generated by the heat source. A water supply conduit is provided for delivering water from the source of water to the heat exchanger. There is also provided a water return conduit for returning heated water from the heat exchanger to the source of water. A pump is operably mounted within the water supply conduit. The pump is electrically coupled to a source of DC power. The pump is operable for selectively circulating the water from and to the source of water through the heat exchanger. A valve is operably mounted within the water return conduit for preventing a reversed flow of the water therein.
According to yet another aspect of the present invention there is provided a method of heating potable water aboard a recreational marine watercraft independently from a source of AC power or operation of the watercraft's engine. The method includes the step of positioning a heat exchanger in abutting engagement with a top portion of a burner mounted atop a stove of the watercraft for generating heat sufficient to heat the potable water. Positioning a pump and a check valve in a predetermined location within the watercraft. Connecting the pump in fluid communication with an outlet of a tank containing potable water and an inlet of the heat exchanger. Connecting the valve in fluid communication with an inlet of the tank and an outlet of the heat exchanger. Connecting the pump to a source of DC power. Energizing the pump to circulate the potable water from and to the tank through the heat exchanger when the potable water is at a first pre-selected temperature. Finally, de-energizing the pump when the potable water is heated to a second pre-selected temperature.
It is, therefore, one of the primary objects of the present invention to provide a heat exchanger apparatus that is energized separately from a recreational marine watercraft engine or AC shore power to heat potable water for onboard purposes.
Another object of the present invention is to provide a heat exchanger apparatus for watercraft that contains a heat exchanging unit capable of being placed atop of a burner of an existing cooking stove.
Yet another object of the present invention is to provide a heat exchanger apparatus for watercraft that includes a circulating pump and a thermostat switch for automatically energizing and de-energizing the pump.
A further object of the present invention is to provide a heat exchanger apparatus for watercraft that enables heating a cooking vessel placed atop the heat exchanger.
Yet a further object of the present invention is to provide a heat exchanger apparatus for watercraft which is simple to install and connect.
An additional object of the present invention is to provide a heat exchanger apparatus for watercraft which is simple to disconnect and remove.
In addition to the several objects and advantages of the present invention which have been described with some degree of specificity above, various other objects and advantages of the invention will become more readily apparent to those persons who are skilled in the relevant art, particularly, when such description is taken in conjunction with the attached drawing Figures and with the appended claims.
The advantages and features of the present invention will become better understood with reference to the following more detailed description and claims taken in conjunction with the accompanying drawings, in which like elements are identified with like symbols, and in which:
a is an enlarged view of the heat exchanger portion of the recycle heat exchanger apparatus of
b is a bottom view of the heat exchanger portion of the recycle heat exchanger apparatus of
The best mode for carrying out the invention is presented in terms of its preferred embodiment, herein depicted within
The terms “a” and “an” herein do not denote a limitation of quantity, but rather denote the presence of at least one of the referenced items.
The present invention teaches an apparatus and method for a recycle heat exchanger for watercraft (herein described as the “apparatus”), generally designated 10, which provides a means for heating potable water aboard a recreational marine watercraft independently from a source of AC power or independently from operation of a watercraft's engine. The apparatus 10 comprises a metal heat exchanger 20 operably connected to at least one heat source. It is presently preferred for such heat source include at least one burner 71 of a conventional galley stove 70, whereby the bottom surface of the heat exchanger 20 abuttingly engages a top surface of the burner 71. Potable water is circulated between the heat exchanger 20 and a hot water holding tank 60 using a circulating pump 30. The hot water holding tank 60 may be an existing tank for holding potable water of the watercraft (not shown) or may be provided with the apparatus 10 in addition to the existing potable water holding tank. This provides a watercraft operator/user the ability to maintain a source of hot water while away from shore power or while the watercraft's engine is turned off.
Referring now to
The heat exchanger 20 further includes a thermostat wire 22 which is routed from a thermostat switch 25 to the pump 30, thereby starting/stopping the pump 30 relative to the temperature of the potable water within the heat exchanger 20. After circulation and heating of the potable water by the heat exchanger 20, the heated potable water exits the heat exchanger 20 via the outlet tube 27 which penetrates the peripheral side panel 28 in a similar manner as the inlet tube 26. The potable water then flows through the return line 55, through a check valve 40, and returns to the hot water holding tank 60. The check valve 40 provides a flow direction control means to prevent reverse flow in the return line 55, thus preventing cross-contamination of the potable water system.
Referring now to
Referring now to
While the pump 30 can be operated manually to selectively circulate potable water through the heat exchanger 20, the thermostat switch 25, which is preferably disposed internal within the enclosure of the heat exchanger 20 (see
Referring now to
The presently preferred embodiment of the invention can be installed onto an existing recreational marine watercraft (not shown) by a qualified marine plumber as indicated in
The method of installing and utilizing the apparatus 10 may be achieved by performing the following steps: positioning the heat exchanger assembly 20 complete with pre-installed thermostat switch 25, inlet 26 and outlet 27 tubes and quick couplers 41, 42 on top of the burner 71 of the watercraft stove 70; installing and mounting the pump 30, check valve 40, preferably within a closet or other discreet location aboard a watercraft being in proximity to an existing stove 70; routing and connecting the supply and return lines 50, 55 to an existing potable water holding tank 60 using common marine plumbing practices; routing and connecting the remaining supply and return lines 50, 55 to the quick couplers 41, 42; plugging the 12-volt plug 31 into an available 12-volt receptacle; turning on the burner 71; initiating the pump 30 automatically via the thermostat switch 25 and thermostat wire 22 as the potable water within the heat exchanger 20 reaches a preset temperature; continuing to operate the apparatus 10 in an automatic state as needed; utilizing heat from the burner 71 by placing a cooking vessel upon the top panel 24 of the apparatus 10; disabling the apparatus 10 by unplugging the 12-volt plug 31; removing the heat exchanger portion 20 by disconnecting the quick couplers 41, 42; removing and storing the heat exchanger 20; utilizing the burner 71 as intended by placing a cooking vessel thereupon the stove 70; and, benefiting from the ability to maintain a source of potable hot water upon one's watercraft (not shown) while away from AC shore power or while the watercraft engine (not shown) is turned off.
Thus, the present invention has been described in such full, clear, concise and exact terms as to enable any person skilled in the art to which it pertains to make and use the same. It will be understood that variations, modifications, equivalents and substitutions for components of the specifically described embodiments of the invention may be made by those skilled in the art without departing from the spirit and scope of the invention as set forth in the appended claims.
The foregoing descriptions of specific embodiments of the present invention have been presented for purposes of illustration and description. They are not intended to be exhaustive or to limit the invention and method of use to the precise forms disclosed. Obviously many modifications and variations are possible in light of the above teaching. The embodiment was chosen and described in order to best explain the principles of the invention and its practical application, and to thereby enable others skilled in the art to best utilize the invention and various embodiments with various modifications as are suited to the particular use contemplated. It is understood that various omissions or substitutions of equivalents are contemplated as circumstance may suggest or render expedient, but is intended to cover the application or implementation without departing from the spirit or scope of the claims of the present invention.
Number | Name | Date | Kind |
---|---|---|---|
1010005 | Williams | Nov 1911 | A |
1371876 | Dowd | Mar 1921 | A |
1568853 | Lane | Jan 1926 | A |
3192916 | Vitkay | Jul 1965 | A |
3246644 | Peterson | Apr 1966 | A |
3291112 | Springer | Dec 1966 | A |
4249491 | Stein | Feb 1981 | A |
4250864 | Bergman | Feb 1981 | A |
4462542 | Person | Jul 1984 | A |
5417201 | Thomas et al. | May 1995 | A |
5460161 | Englehart et al. | Oct 1995 | A |
5687707 | Prasser | Nov 1997 | A |
6167845 | Decker, Sr. | Jan 2001 | B1 |
6283067 | Akkala | Sep 2001 | B1 |
6302094 | Wehrly et al. | Oct 2001 | B1 |
6332580 | Enender et al. | Dec 2001 | B1 |
6354511 | Hardee | Mar 2002 | B1 |
6543526 | Jacobs | Apr 2003 | B2 |
6612504 | Sendzik | Sep 2003 | B2 |
6883467 | Holden | Apr 2005 | B2 |
7036746 | Murgu et al. | May 2006 | B2 |
20020189798 | Jacobs | Dec 2002 | A1 |
20090178662 | Deng | Jul 2009 | A1 |