Claims
- 1. Gas-Liquid contact apparatus consisting of a vertically disposed vessel containing at least one horizontal tray, means for introducing liquid to, and removing overflow from, the tray, and at least one vertically arranged housing thereon that is open to gas flow at top and bottom, the housing enclosing a horizontally disposed array of liquid conductors in substantially parallel arrangement at the level of the tray and so spaced apart as to effect constricted venturi passages for the upward flow of the gas therebetween, said conductors having means for delivery therefrom of liquid from the tray into the gas; an disposed upon and supported on and occupying the cross-sectional area of said housing, flow-resistant elements comprises of anisotropic layered material having low flow resistance in the horizontal direction relative to the flow resistance in the vertical direction, said anisotropic layered material having edges open to the volume between the vessel and the housing.
- 2. The apparatus of claim 1 in which the flow-restrictive elements are comprised of knitted mesh layers.
- 3. The apparatus of claim 1 in which the flow-restrictive elements are comprised of layers of woven screen.
- 4. The apparatus of claim 1 in which the vertically disposed vessel contains a number of the said horizontal trays, one above the other, each having a vertical housing enclosing at the level of the tray the said liquid conductors and, supported on each vertical housing, the said flow-restrictive elements, and means for feeding liquid to each tray and removing overflow liquid from each tray.
- 5. A method of mass transfer of substances between a liquid and a gas comprising the steps of: introducing liquid at a pre-determined rate to a tray containing liquid-conducting tubes so spaced apart to induce gas venturi flow, passing a gas upward between the tubes, aspirating liquid from orifices in the tubes by gas venturi aspiration at a rate that is many time greater than the initial rate of introduction of liquid to the tray, effecting thereby a cocurrent spray of liquid in the gas; passing the gas and contained spray through a first flow-restrictive element which partially coalesces and regenerates the spray; passing the gas and regenerated spray into a relatively high-voidage volume between the first flow-restrictive element and a secondary flow-restrictive element, thereby causing the gas and spray to flow laterally through the high voidage volume between the elements; collecting spray and gas discharged from the high voidage volume and separating the spray by impingement on a plane surface and causing the liquid therefrom to recycle into cocurrent spray contact with a further quantity of the gas at a liquid rate that is many times higher than the initial pre-determined rate of liquid introduction to the tray; withdrawing so-treated liquid from ultimate contact with inflowing gas and so-treated gas from contact with inflowing liquid.
FIELD OF THE INVENTION
This invention consists in a Continuation-in-Part of Lerner Application Ser. No. 07,512,214 filed Apr. 20, 1989 now U.S. Pat. No. 5,024,686, and relates to method and apparatus for improved gas-liquid contacting and mass transfer and in particular provides for multiple cocurrent gas-liquid spray contacts under net countercurrent gas/liquid flow conditions, with continuous spray generation, liquid collection and recycle, solely by means of gas flow and without the intervention of external mechanical means. Still more particularly, this invention relates to apparatus comprising layers of foraminous flow-permeable flow-restrictive elements and to method for obtaining liquid spray recirculation rates that are multiples of tray liquid throughput rates, said method and apparatus being capable of operation at high gas velocities with low pressure drop.
US Referenced Citations (1)
Number |
Name |
Date |
Kind |
5024686 |
Lerner |
Jun 1991 |
|
Continuation in Parts (1)
|
Number |
Date |
Country |
Parent |
512214 |
Apr 1990 |
|