The present invention is a recycling thermal source which incorporates a restriction of at least one of following properties of actinic radiation: spectrum, polarization, or temporal nature.
Recycling systems have been demonstrated for a variety of optical systems. Localized areas of higher photon flux are generated in these systems. Optical systems enhance brightness and power density using recycling optical cavities. In this case, non-blackbody radiators such as LEDs, phosphors, and fluorescent lamps are used within highly reflective cavities. If these sources exhibit sufficient reflectivity to the photons they emit, it is possible to generate enhanced radiance within the cavity and/or at the output aperture of the cavity relative to the source radiance these sources emit outside the recycling cavity. Enhancements of over 15× have been demonstrated in highly reflective systems such as phosphor based sources. These sources operate outside the basic assumptions and boundary conditions of equilibrium and blackbody radiators used to form conservation of optical extent theory and Kirchhoff's Law.
Numerous articles and papers have been written over the last 150 years pointing out experimental and theoretical sources which do not obey Kirchhoff's Law, especially sources which are non-blackbody radiators (Kirchhoff's Law of Thermal Emission: 150 Years, Pierre-Marie Robitaille, Progress in Physics October 2009, volume 4). Kraabel (On the validity of Kirchhoff's law, B. Kraabel, M. Shiffmann, P. Gravisse, Laboratoire de Physique et du Rayonnement de la Lumière) as well as others have demonstrated numerous situations, in which Kirchhoff's law cannot be used effectively, such as paints with metallic particles, layered optical materials, or semi-infinite bodies with a large thermal gradient at the surface. In general, the basic concept that cavities are always black regardless of the properties of the materials from which they are constructed has been proven invalid and the formation of blackbody cavities which even approach blackbody radiators requires specialized materials and form factors. A wide range of recycling products enhance brightness, radiance, and energy/power density which clearly operate outside present day understanding of Kirchhoff's Law and the conservation of optical extent theory. While, alternate interpretations can be used to try and overcome these deficiencies, the reality is that a great deal of confusion and misuse of these theories has resulted. It is reasonable to state that both these theories are only strictly valid for blackbody radiators at thermal equilibrium. It is also reasonable to state that the improper use of these theories has been used to set limits which can be overcome in the case of sources and optical systems which deviate significantly from blackbody behavior. As such an alternate theory based on Heisenberg's uncertainty principle has been developed.
This new theory requires only that there be a change in the uncertainty of at least one property of a photon or assemblage of photons (momentum, polarization, wavelength, position, etc.) within a given system to allow for localization of energy density within the system. This theory accurately predicts the effects measured in recycling optical cavities presently being created by Goldeneye, Inc. The use of Heisenberg uncertainty principles are already used in commercial ray tracing algorithms to accurately predict wave based effects such as edge diffraction from companies such as Lambda Research (Edge Diffraction in Monte Carlo ray tracing, Feniere, Gregory, Hasler, Optical Design and Analysis Software, Proceedings of SPIE, Volume 3780, Denver, 1999.). In this case Heisenberg's Uncertainty principle is used to modify the direction of each ray based on its position as it passes in proximity to an edge. Heisenberg states that if there is a decrease in the uncertainty in position there will be a corresponding increase in momentum. In the Lambda Research's ray tracing software, the distance of each ray from the edge is used to modify the momentum of the ray by bending the ray towards the edge. The algorithm accurately predicts the diffraction of light at an edge, which is clearly a wave based mechanism. This application proposes that Heisenberg's Uncertainty principles can be used to overcome the deficiencies found in Kirchhoff's Law and the theory of optical extent. Because uncertainty relationships exist between all the properties of actinic radiation, this alternate theory has broad applicability. In addition Heisenberg's Uncertainty Principles represent the ultimate limits for actinic radiation so their use as performance boundaries for optical systems is appropriate.
One type of recycling optical cavity based on this theory is constructed using highly reflective LEDs in which the area of emission is greater than the exit aperture of the cavity. Based on the reflectivity of the LEDs and cavity and the area relationship of the emitter area and the output aperture area, it is easy to calculate the brightness/radiance gain of the cavity relative to a LED external to the cavity. It is also very easy to model this optical system using standard ray tracing techniques. If the optical path length of the rays exiting through the aperture of the cavity is tabulated and a histogram of optical path length is created, it can be shown that the brightness/radiance enhancement of the recycling optical cavity (gain) at the output aperture exactly corresponds to the average increase in optical path length. Optical path length can then be correlated to the temporal distribution of the optical rays passing through the aperture of the cavity. The corresponding Heisenberg relationship is ΔtΔE≧h. In other words, as the uncertainty of when a particular ray exits the aperture of this type of system is increased (e.g. rays spend time bounces around in the cavity), then an equivalent decrease in the uncertainty that energy is present at the aperture is allowed (e.g. more photons per unit area at the exit aperture of the cavity). This increase of energy density within the cavity and at the output aperture translates into higher watts per unit area at the aperture of the cavity than is being emitted by the emitting LEDs if they were just emitting external to cavity. This is a clear violation of the optical extent theory unless an additional term is added which takes into account the temporal effects discussed earlier. Interestingly, a temporal term already exists within the optical extent theory based on the effects of refractive index. The proposed new theory simply expands refractive index term to include other temporal effects created by recycling. In the extreme, if photons are being continuously emitted from a source in a cavity which do not absorb any of the photons emitted, eventually all those photons must exit the cavity or the conservation of energy law is violated. If the cavity output aperture is small relative to the emitting area within the cavity, the density of photons per unit area at the aperture must increase to a level determined solely by the area ratio of the emitting source and aperture.
In the case of recycling optical cavities based on LEDs, the emitting sources are highly reflective to the light they emit, while the aperture represents a perfect absorber. In addition, a wide range of materials including air can be used within the cavity which does not absorb the radiation emitted by the LEDs. The limited wavelength range of operation also further enables the effectiveness of this type of recycle optical cavity.
However, based on the proposed uncertainty theory, even low level thermal sources can also be enhanced. The requirements are the same (e.g. low absorption in the emission range and a recycling means), but the wavelength range is greatly expanded which limits the materials which can be used effectively and imposes the need for a low absorption means within the cavity (e.g. vacuum or equivalent) to reduce absorption losses from the air itself. It is proposed that these losses are the limiting factor to enhancing low level thermal sources and the reason there appears to be a fundamental restriction of creating high quality thermal sources from low quality thermal sources. Based on this new theory, a large area source exhibiting non-blackbody properties can be coupled to a smaller area with much different radiative properties and the smaller area can have a higher temperature than the large area source.
From a practical standpoint, several hurdles exist. The wavelength range of low level thermal radiators extends from microns down into the microwave region. No one material exists which exhibits low absorption over this wide wavelength range. KBr and other binary inorganics are transparent from the visible region down to 10s of microns, while organic polymers like CTFE exhibit low absorption losses from microwave up to 100s of microns. Not only does no single material exhibits low absorption throughout the entire wavelength range of thermal radiation, there also exists a gap of low absorption materials centered within the emission spectra of most thermal sources. In addition, water vapor and even the air can strongly absorb throughout this range of wavelengths. As such there is little wonder that the perception is that thermal sources cannot be enhanced.
Recently however, Sandia Labs has demonstrated that photonic bandgap structures can be constructed which restrict the spectral range of blackbody radiators. In their work, tungsten filaments were constructed to contain photonic bandgaps which could only radiate a specific range of wavelengths. Using these structures, researchers were able to create incandescent light sources which emitted more visible light because longer wavelengths were forbidden to emit by the photonic bandgap structure itself. As stated earlier, the criteria for localization of energy within an optical system based on the new theory is simply that there be two surfaces which exhibit significantly different radiative properties and that they be connects via a low loss optical system. This invention generally discloses methods by which two surfaces which differ substantially in their radiative characteristics can be coupled via a low loss optical means to enhance the energy density of surface relative to the other. More specifically, this invention relates to the use of photonic bandgap radiators in vacuum recycling thermal cavities. In this case, a large photonic bandgap surface would be coupled to a smaller absorptive surface. The radiative nature of the photonic bandgap would be significantly different than the smaller absorptive surface. The ability of the smaller absorptive surface to radiate energy back to photonic bandgap surface will be significantly hindered by the photonic bandgap itself. To reduce absorption losses within the system, a vacuum enclosure is a preferred embodiment of this invention. This eliminates gas and water vapor absorption losses. This disclosure covers apparatus and uses of recycling systems that localize the energy density within thermal systems down to and including ambient environment and below.
This invention relates to the use of thermal recycling systems to enhance thermal sources. These systems do not violate the conservation of energy. They, however, do allow for the localization of regions of higher flux density than the source provides outside the recycling system. This localization can be used to create a temperature gradient within the recycling system. In this manner, a low quality thermal source can be enhanced into a higher quality thermal source. In general terms, thermal recycling systems allow for the conversion of low quality thermal sources into high quality thermal sources. Given that low quality thermal sources are everywhere, the ability to enhance these sources would enable distributed energy sources. The largest and most distributed energy source is the ambient environment. It is the summation of solar, geothermal, wind, fossil fuels, etc. This invention enables access to these low thermal quality sources via thermal recycling.
As the efficiency of lighting and electronic devices increases these thermal recycling systems can replace batteries in fixed and mobile applications. The use of thermoelectric means to directly convert the resulting temperature gradient in a thermal recycling system into electrical energy is a preferred embodiment of this invention. The use of this technique to convert body heat into useful energy for mobile applications is also disclosed. The use of this technique to enhance the efficiency of solar, power plants and other energy source is also disclosed.
While the invention has been described with the inclusion of specific embodiments and examples, it is evident to those skilled in the art that many alternatives, modifications and variations will be evident in light of the foregoing descriptions.
Accordingly, the invention is intended to embrace all such alternatives, modifications and variations that fall within the spirit and scope of the appended claims.
This application is a Continuation of U.S. patent application Ser. No. 12/804,475, filed on Jul. 17, 2010, which is incorporated by reference. This application claims the benefit of U.S. Provisional Patent Application Ser. No. 61/271,503, filed on Jul. 20, 2009, which is herein incorporated by reference
Number | Date | Country | |
---|---|---|---|
Parent | 12804475 | Jul 2010 | US |
Child | 14702719 | US |