The invention relates generally to the field of geophysical prospecting and, more particularly to processing of seismic data. Specifically, the invention is a method for redatuming the data to an arbitrary location in the subsurface in a way that is consistent with the internal scattering in the subsurface.
An internal multiple is an event in recorded seismic data that has been reflected off at least two subsurface reflectors. Because most imaging algorithms have issues with multiple reflections, also called multiple scattering or internal scattering, internal multiples are traditionally considered noise that needs to be removed from the data (see e.g. Jakubowicz, 1998 or Verschuur and Berkhout, 1996). An internal multiple is to be distinguished from a surface-related multiple, which is a seismic event that includes at least one reflection from the air interface in addition to at least two reflections from subsurface reflectors. However, the multiple reflections do contain some information about the subsurface, and recently there has been a movement to capture that with a method called full-wavefield inversion (“FWI”), in which the entire wavefield of seismic data, including the multiple reflections and the direct transmissions from source to receiver, may be inverted to infer a physical properties model, such as a velocity model of the subsurface.
Redatuming of seismic data is a process in which, based on the measured data, one calculates the data that would have been measured if the sources and/or the receivers had been placed in a different location. An insightful example of redatuming is the correction applied to data measured in an environment where the surface is corrugated. Imaging algorithms usually do not deal very well with data that comes from sources and receivers at different altitude, and therefore, a new datum is chosen, usually below the elevation of any of the actual sources and receivers. The new datum will be populated with virtual sources and virtual receivers. The data that these virtual receivers would measure is calculated from the actual measured data. This could be done in a way that corrects the travel time of the seismic wave between the virtual source on the new datum and the actual source plus the travel time between the virtual receiver on the new datum and the actual receiver. By doing so, one tries to remove the influence of the subsurface above the new datum. Of course events that reflect once in the subsurface above the new datum will appear at non-causal times after the corrections, and one can therefore identify them as not coming from the subsurface below the new datum and discard them. However some internal multiples will reflect in the subsurface above the reflector many times, and they will not appear at non causal times after the correction. They may erroneously be seen as events coming from reflections from below the new datum. This error can lead to an incorrect interpretation of the subsurface and lead to drilling dry wells or missing a lucrative oil and gas reservoir. This is an example of a technical problem that the present invention can address.
In seismic surveying, illuminate is a term of art meaning how well an object in the subsurface can be detected by seismic waves. It might be physically impossible to send a seismic wave that is going to reflect at all parts of the object, simply because we are usually able to put sources only at the surface. For the same reason, it might be physically impossible to receive all reflected seismic waves from all parts of the object. The more parts of the object that can be detected, the higher the illumination of an object.
Previous attempts to remove internal multiples from seismic data include the following.
U.S. Pat. No. 7,987,054, “Efficient multiple prediction in two and three dimensions,” to Baumstein; US Patent Application Publication No. 2012/0041682, “Attenuating internal multiples from seismic data,” by Ramirez-Perez et al.; and US Patent Application Publication No. 2011/0199858, “Estimating internal multiples in seismic data,” by Otnes et al., are all recursive internal multiple prediction methods. As such, their method must be applied several times, each time addressing a small group of reflectors in order to remove all the internal multiples at a desired depth. The present inventive method needs to be used only once to remove all internal multiples at a desired depth.
US Patent Application Publication No. 2010/0135114, “Wavefield extrapolation modeling for internal multiple prediction,” by Teague et al. is a wavefield extrapolation method and, as such, is a model-driven and not a data-driven method. As such, it needs to model data based on a spatial model of the subsurface that includes at least the location of the strongest reflectors. The present inventive method does not need a spatial model of the subsurface.
The present inventive method, uses the information contained in the internal multiple data to remove them better than previous methods, or to better illuminate local parts of the subsurface. From surface seismic data and a few travel times, the method can remove from the seismic data all internal multiple reflections that are generated by a chosen part of the subsurface. It can use the information in the internal multiples to illuminate a chosen part of the subsurface from all sides, as if there were sources and receivers buried around that chosen part. Thus, the present inventive method has come to be referred to as “the box,” with the term literally meaning the chosen part of the subsurface.
Because of the property of the box method to illuminate local parts of the subsurface, it is very advantageous for both seismic imaging and seismic velocity model building, including a velocity model inferred from inversion of the full seismic wavefield (“FWI”), where it can lead to a significant saving of (computational) costs and a better accuracy.
The present inventive method may be described as a redatuming method that is consistent with internal scattering in the subsurface. In one embodiment, the present invention is a computer-implemented method for removing internal multiple reflections from seismic data, or performing local inversion or local imaging of seismic data. With reference to the flowchart of
The present invention and its advantages will be better understood by referring to the following detailed description and the attached drawings in which:
The invention will be described in connection with example embodiments. However, to the extent that the following detailed description is specific to a particular embodiment or a particular use of the invention, this is intended to be illustrative only, and is not to be construed as limiting the scope of the invention. On the contrary, it is intended to cover all alternatives, modifications and equivalents that may be included within the scope of the invention, as defined by the appended claims. Persons who work in the technical field will understand that all realistic applications of the present inventive method will be performed using a computer programmed to perform some or all steps of the method.
In order to illustrate the present invention, the theory will be described for 2D and 1.5D data, and a test example will be given applying the invention to synthetic 1.5D data. (1.5 dimensions means that the data are obtained from a 2 dimensional subsurface that changes only in the vertical direction, and is continuous in the horizontal direction).
However, it should be clear to anyone skilled in the technical field that it can be easily applied to data with different geometries (e.g. 3D). The theory described is given for the acoustic case (assumes that shear waves can be neglected and only pressure waves exist), but it is obvious to someone skilled in the art to also do it for the elastic case (both shear waves and pressure waves are taken into account).
The theory presented here for the box method assumes that: 1) the surface-related multiples have been removed from the data, 2) that the wavelet is divided out from the data, meaning that the data is transformed into am impulse response, and 3) the receiver ghost (the upgoing wavefield detected by the receivers is detected again as the ‘ghost’ when it reflects downward at the surface) has been removed from the data. Assumptions 1 and 2 can be achieved using, for example, the EPSI method disclosed in van Groenestijn and Verschuur, 2009. Assumption 3 can be achieved by traditional receiver deghosting algorithms.
Consider the 2D geometry as drawn in
By making use of the detail hiding operator notation (see Berkhout, 1982), the wavefield can be split into three building blocks. The detail hiding operator notation makes use of frequency matrices. These matrices are obtained by ordering the data in a cube e.g. x0(t,ζr, ζs) where x0 is the outgoing impulse response wavefield that will be described below, t is the time, ζr is the receiver position, ζs the source position, and transforming this cube to the frequency domain. A frequency slice of this cube is the outgoing impulse response matrix, X0. Note that in this matrix one column represents a monochromatic (i.e. only one frequency) shot gather and one row a monochromatic receiver gather. Also note that the detail hiding operator notation, (Berkhout, 1982), as used in the EPSI reference or in the disclosure of the SRME (surface related multiple elimination) method (Verschuur et al, 1992), always assumes that the sources and receivers are on the same depth, but the detail hiding operator notation in the present box method will allow for the receivers and sources to be on different depths.
The three building blocks referred to above are explained next.
The outgoing impulse response X0 is the wavefield that starts in the box and moves out of the box. In
The incoming impulse response Y is the wavefield that starts outside the box and moves into the box. In
The Green's function G is the wavefield that starts in the box and ends at the edge of the box. The Green's function wavefields never leave the box. In
The three building blocks can now be combined into the forward model of the box:
X
0
=G+GYG. (1)
The first G on the right hand side of equation 1 explains the part of the outgoing impulse response's wavefield that has never left the box. GYG explains how the wavefield first leaves the box (G), finally re-enters the box (YG), and is detected again when leaving the box (GYG).
In most cases only a small part of the forward model are actual measurements: the elements of matrix X0 that represent the sources and receivers at the surface. Also matrix G has elements that represent sources and receivers at the surface, and the measured data might be used as a first estimate for these elements. To solve for the unknowns in the forward model, time reversal and travel times are used.
Because of the property of G that its wavefield ends at the box and never gets back in, and the medium inside the box is assumed to be lossless, time reversal (see Fink, 2006; or Wapenaar et al, 2011) can be applied without any approximation or side effects:
G*G=I,
where each element in G* equals the complex conjugate of the corresponding element in matrix G. Note that G* is the time reversed version of G. I is the identity matrix, and can be thought of as the source that is reconstructed after the recorded wavefield G has been time reversed back into its origin.
Equations 1 and 2 are valid for every size box. The use of travel times will define the size of the box. It is assumed that the first arrival times of every wavefield between each source-receiver combination on the box can be obtained either from an initial velocity model or from common focal point (CFP) gathers (see e.g. Thorbecke 1997). These first arrival times can be used to come up with a rough estimate of the amplitude of the first arrival, and then they will be inserted into the first estimate of G.
Because of the invariance of a horizontally-layered medium in the horizontal direction, the left and right side of the box are not necessary, and the method needs to consider only the top and bottom sides (see
The matrices in the forward model now each have four sub-matrices, e.g.:
where G(zi,zj) relate to the wavefields that have sources at the surface (zj=z0) or at the bottom of the box (zj=z1), and receivers at the surface (zi=z0) or at the bottom of the box (zi=z1).
To test this application of the present inventive method, a dataset without surface multiples was created from a synthetic subsurface model with 8 reflectors. A shot gather of this dataset can be seen in
The bottom of the box has been set between the 5th and 6th reflector (see
As stated before, matrix I can be seen as the reconstructed source. Therefore only the fk values of the source that have not been filtered away in the data can be reconstructed.
To obtain the full G, the following objective function may be iteratively minimized:
J
i=ΣωΣj,k|G*iGi−I|2, (4)
where i denotes the iteration number, Σj,k indicates a summation over all the squared elements of the matrix (i.e. a summation over all sources and receivers in the wavenumber domain), and Σω indicates a summation over all the frequencies.
The update step, ΔG, is a steepest decent step in this example, obtained by taking the derivative of Jwith respect to the elements of G:
ΔG=−GT(G*G−I)GT, (5)
where GT indicates the transpose of G. The term (G*G−I) represents the unexplained data or the residual, which is minimized during the iteration process.
The update, ΔG, is brought to the space time domain where parts that do not need to be updated are set to zero. After that the update is transformed back to the fk-domain and, is added to the Green's function:
Gi+i=GiαΔG, (6)
where α is a positive frequency-independent factor that scales the update step in such a way that the objective function value decreases. One possible way to find a value for α is calculating the terms:
V=G*
i
G
i
−I, (7a)
and
ΔV=ΔG*Gi+ΔGG*i. (7b)
Bringing ΔV and V to the space-time domain, denoted by Δv and v, and the scaling factor can now be found by:
α=−(Σt,j,kΔvt,j,kvt,j,k)|(Σt,j,kΔvt,j,kΔvt,j,k), (8)
where Σt j,k indicates a summation over all the elements after multiplication.
The results of the estimation are shown in
The information of interest in the data is part of the wavefield Y(zi,zi). In order to get to it, equation 1 can be written:
X
0(z0,z0)=G(z0,z0)+G(z0,z1)Y(z1,z1)G(z1,z0), (9)
All the internal multiples related to the subsurface inside the box can be removed with the obtained Green's functions in three steps.
The first step is the removal of G(z0,z0) from X0(z0,z0) by a simple subtraction. This removes events from the surface data that have never been below the bottom of the box.
G(z0,z1)Y(z1,z1)G(z1,z0)=X0(z0,z0)−G(z0,z0). (10)
The second step is to remove G(z0,z1) and G(z1,z0):
Y(z1,z1)=G(z0,z1)−1(X0(z0,z0)−G(z0,z0))G(z1,z0)−1. (11)
To plot the result of this in a way that one can easily relate to, G1(z0,z1) and G1(z1,z0) are introduced, which are equal to G(z0,z1) and G(z1,z0), but without internal multiples.
G
1(z0,z1)Y(z1,z1)G1(z1,z0)=F(z0,z1)(X0(z0,z0)−G(z0,z0)F(z1,z0), (12)
where F(zi,zj)=Gi(zi,zj) G(zi,zj)−1. Note that the multidimensional filter, G(zizj)−1, is collapsing the internal multiples that are created during the transmission between the top and the bottom of the box onto the original signal, thereby increasing the signal strength.
The third step is to remove the “bottom of the box related multiples” from Y(z1,z1) to obtain the “bottom of the box related primaries”, Y1(z1,z1). In a “bottom of the box related primary” wavefield, no multiples are present related to reflectors above the bottom of the box; it can however contain multiples related to reflectors below the bottom of the box. The forward model for these “bottom of the box related multiples and primaries” is:
Y(z1,z1)=Y1(z1,z1)+Y1(z1,z0)G(z1,z1)Y(z1,z0). (13)
G(z1,z1) will turn every incoming wavefield into an outgoing wavefield via a U-turn (see the raypath between receivers 3 and 4 in
Learned Lessons from Field Data Tests
The 1.5D method to remove internal multiples was applied to a field dataset. The test clearly demonstrated that internal scattering inside the box can be removed from the reflections in the data coming from below the box, even though they overlap severely, without an adaptive subtraction, avoiding the risk of attenuating primary signal.
If one has the Green's functions in the second box (
Benefits for doing RTM Inside the Box
Clearly, the removal of internal multiples will be beneficial to all currently available imaging algorithms. But more spectacular is the fact that with a perfect velocity model and receivers all around the area of interest (e.g. a reservoir in the second box), RTM will give the perfect result. The Green's functions, G, simply are the receivers (and sources) all around the area of interest.
The foregoing application is directed to particular embodiments of the present invention for the purpose of illustrating it. It will be apparent, however, to one skilled in the art, that many modifications and variations to the embodiments described herein are possible. All such modifications and variations are intended to be within the scope of the present invention, as defined in the appended claims.
Berkhout, A. J., Seismic migration, imaging of acoustic energy by wave field extrapolation, a: theoretical aspects, Elsevier (1982).
Fink, M., Time-reversal acoustics in complex environments, Geophysics, 71, SI151-S1164 (2006).
Jakubowicz, H., Wave equation prediction and removal of interbed multiples, 68th Annual International Meeting, Soc. Expl. Geophys., Expanded Abstracts, 1527-1530 (1998.)
Thorbecke, J., Common Focus Point Technology, PhD thesis, Delft University of Technology, (1997).
van Groenestijn, G. J. A., and Verschuur, D. J., Estimating primaries by sparse inversion and application to near-offset data reconstruction:, Geophysics, 74, no. 3, A23-A28 (2009).
Verschuur, D. J., Berkhout, A. J., and Wapenaar, C. P. A., Adaptive surface-related multiple elimination, Geophysics, 57, no. 9,1166-1177 (1992).
Verschuur, D. J., and Berkhout, A. J., Removal of interbed multiples, 58th Annual International Meeting, Eur. Ass. of Geosc. and Eng., Expanded Abstracts, (1996).
Kees Wapenaar, Filippo Broggini, and Roel Snieder, A proposal for model—independent 3D wave field reconstruction from reflection data, SEG Expanded Abstracts 30 (2011).
This application claims the benefit of U.S. Provisional Patent Application 61/646,031, filed May 11, 2012, entitled REDATUMING SEISMIC DATA WITH CORRECT INTERNAL MULTIPLES, the entirety of which is incorporated by reference herein.
Number | Date | Country | |
---|---|---|---|
61646031 | May 2012 | US |