1. Field of the Invention
The invention is directed to, among other things, a patterning method, and more particularly, to a patterning method using redox-activated surfaces, and also to related methods of making and using, articles, and kits.
2. Brief Description of Related Technology
The localized deposition of biological molecules is increasingly employed in materials application, diagnostic screening, and genetic assays. Conventional, commercially available methods for generating DNA microarrays are limited to features size of about 1 μm for the direct synthesis of oligonucleotides of up to about 60 basepairs (bp) on a surface, or about 50 μm for oligonucleotides or proteins spotted on surfaces. Consequently, new lithographic methods capable of patterning biological molecules with sub-micrometer resolution are necessary.
Contact printing, dip-pen nanolithography (DPN), and polymer-pen lithography (PPL) have emerged as powerful tools for patterning surfaces on the submicrometer length scale because they can be used to transfer molecules directly to a surface rather than use energy to activate a surface in an indirect manner. The direct transfer of molecules has several advantages over photolithography and indirect scanning probe methods, including, for example, potentially reduced costs and time, and the ability to pattern organic and biological molecules. However, each of the printing methods is limited by the need to optimize deposition conditions for each new ink.
Microcontact printing is a form of soft lithography that uses an elastomeric stamp, typically poly(dimethylsiloxane) (PDMS), to directly transport materials to a surface of interest. The stamp can be used to pattern proteins, DNA, cells, alkanethiols, silanes, colloids, and salts on a variety of flat and curved surfaces. However, microcontact printing is problematic in that it is limited to printing only the pattern predetermined by the stamp. Additionally, the mechanical properties of the elastomer limit design flexibility, and the fabrication of features smaller than 150 nm is challenging.
DPN, the highest resolution technique of the aforementioned methods, involves the direct transfer of an ink from, for example, a coated atomic force microscopy (AFM) tip to a substrate. In at least some embodiments, the method utilizes a water meniscus that can form between the tip and substrate as a conduit to facilitate material (ink) transport. DPN can be performed using, for example, as many as 55,000 pens in a 1 cm2 cantilever array. DPN has been used to form patterns of, for example, alkanethiols, oligonucleotides, proteins, and viruses.
PPL combines advantages of DPN and microcontact printing to form patterns spanning the sub-100 nm to many micron length scale using, for example, a computer controlled cantilever free array of elastomeric tips. PPL can utilize, for example, as many as 11×106 pens in a three inch wafer to pattern over square centimeter areas with sub-100 nm resolution. DPN and PPL, however, can be limited in some embodiments by the difficulty in transporting high molecular weight species or molecules with poor aqueous solubility through the meniscus to the surface, and the need to individually optimize the transport rates and tip inking methods for each molecule.
An alternative patterning strategy includes the development of an electrochemically addressable surface that can be switched from inactive to active states, whereby patterning is achieved by selective reaction when only one of the two oxidation states exists. Yousaf et al. have developed ways of using electroactive and photoprotected quinones with alkanethiols adsorbed on gold to create surfaces that can be switched between inactive and active states using Diels-Alder or nitroxamine addition reactions with cyclopentadiene or nitroxamine-containing reagents. This technique, however, is limited, by lengthy synthesis of the photolabile protected quinine, the requirement of a photomask, which increases complexity and limits resolution, and the reliance on a Diels-Alder or nitroxamine reaction for surface immobilization, which necessitates labeling the target.
In accordance with an embodiment of the disclosure, a method of forming a target pattern includes patterning a redox agent on a template layer formed on a substrate, the template layer having a first oxidation state, wherein upon contact with the redox agent, the contacted portion of the template layer changes to a second oxidation state different than the first oxidation state, and a template pattern is formed from the portion of the template layer having either the first oxidation state or the second oxidation state, and exposing the substrate having the template pattern to a target material, wherein the target material selectively binds to the template pattern to form a target pattern.
In accordance with another embodiment of the disclosure, a method of forming a metal structure includes patterning a redox agent on a template layer formed on a substrate, the template layer having a first oxidation state, the redox agent adapted to change the oxidation state of a portion of the template layer in contact with the redox agent to a second oxidation state different from the first oxidation state, wherein a template pattern is formed from the portion of the template layer having either the first or second oxidation state; and exposing the template pattern to a metal containing compound or metal ion, the metal containing compound or metal ion being reduced by the template pattern to form a metal structure disposed on the template pattern.
In accordance with yet another embodiment of the disclosure, a method of forming a metal structure includes patterning a metal containing compound or metal ion on a template layer having a first oxidation state, the template layer adapted to reduce the metal containing compound or metal ion when in contact with the metal containing compound or metal ion, thereby forming a metal structure on the template layer.
In accordance with still another embodiment of the disclosure, a template pattern assembly includes a substrate having a template layer, a redox agent disposed on the template layer and adapted, upon contact with the template layer, to transform the contacted portion of the template layer to a second oxidation state, wherein the portion of the template layer having either the first or the second oxidation state defines a template pattern, and a target pattern formed by a target material bound to the template pattern.
In accordance with another embodiment of the disclosure, a kit for forming a template pattern includes a substrate comprising a template layer having a first oxidation state, a redox agent, a tip for patterning the redox agent on the template layer, wherein upon contact with the redox agent, the contacted portion of the template layer changes from the first oxidation state to the second oxidation state, different than the first oxidation state to form a template pattern, the template pattern being formed from the portion of the template layer having either the first oxidation state or the second oxidation state, and instructions for forming the target pattern.
In accordance with one embodiment of the disclosure, a high resolution patterning method includes creating redox switchable surfaces that can be patterned with reagents using patterning methods. Referring to
In accordance with an embodiment of the disclosure, a target pattern assembly can be formed by the patterning method of the disclosure. The target pattern assembly can include a substrate having a template layer and a redox agent pattern disposed on the template layer. The redox agent can be adapted to interact with the portion of the template layer that it contacts to transform the portion from a first oxidation state to second oxidation state. A positive-type template pattern can be formed when the template pattern is defined by the portion of the template layer having the second oxidation state. A negative-type template pattern can be formed when the template pattern is defined by the portion of the template layer having the first oxidation state. The target pattern assembly can further include a target material that selectively binds to the template pattern to form the target pattern.
The substrate can include insulating substrates, semiconducting substrates, and metal substrates. For example, the substrate can be a gold substrate, a Si/SiO2 and glass having bio-relevant structures, including, unmodified proteins and amine-modified oligonucleotides. Other suitable substrate materials such as, indium tin oxide (ITO), titanium dioxide (TiO2), aluminum oxide (Al2O3), iron oxide (Fe2O3), silicon (Si), gallium arsenide (GaAs), indium arsenide (InAs), silver, copper, poly(dimethylsiloxane (PDMS), poly(lysine), and combinations thereof can also be used. The substrate can be a multi-layered substrate. The template layer can be disposed directly on the substrate surface.
Prior to forming the template layer on the substrate surface, the substrate surface can be activated, for example, in a Piranha solution (3:1 concentrated H2504 mixed with 30% H2O2 (aq)) at 60° C. for about 45 minutes. The Piranha solution can be washed off with water, and then the substrate can be dried, for example under a stream of N2 gas. The substrate surface can further be modified to aid in bonding the template layer to the substrate. For example, amine groups can be added to the surface (
The template layer is formed or disposed on the substrate. As used herein “disposed on” refers to both direct and indirect contact of the template layer and the substrate. For example, the template layer can be indirect contact with one or more intermediary layers on the substrate, or the template layer can be in direct contact with the substrate. For example, the template layer can be formed for example of a quinone layer, such as hydroquinone or benzoquinone. Other suitable template layer materials include, for example, anthraquinone, napthylquinone, chloroquinone, cyanoquinone. For example, an amine modified substrate can be heated in a template material solution. The template material solution can be a quinone solution, such as, a 5 mM ethanolic solution of freshly sublimed 1,4-benzoquinone. The substrate can remain immersed in the template material solution for about 8 hours and can be heated to a temperature in a range of about 40° C. to about 50° C. Alternatively, the template layer can be formed, for example, using a vapor-phase process such as sublimation. Referring to
Referring to
Referring to
The redox agent can be patterned on the template layer using a variety of lithography or patterning methods including direct write patterning methods and method including use of tips, inks, and patterning compounds. Examples of patent literature for small scale patterning include: U.S. Pat. Nos. 6,827,979; 6,867,443; 6,635,311; US patent publications 2003/0068446; 2002/0122873; 2005/0009206; and WO 2009/132321. For example, the redox agent can be patterned using dip pen nanolithography (
In one embodiment, the patterning is carried out without use of a mask or photomask.
When the redox agent is patterned using polymer pen lithography, the polymer pen tips can be modified with a silane oligo ethylene glycol prior to being loaded with the redox agent to enhance the adhesion of the redox agent to the tip. The silane oligo ethylene glycol modified polymer pen tips are especially suitable for use with water-soluble ionic inks. The polymer pen tips can be modified with the oligo(ethylene glycol) silane by first exposing the polymer pen tips, formed for example of PDMS, to oxygen plasma to create SiOH surface groups on the tips. The polymer pen tips can remain exposed to the oxygen plasma for about 30 seconds. The SiOH modified polymer pen tips can then be exposed to the oligo(ethylene glycol) silane, which can results in a reaction between the SiOH and the silane to bond the oligo(ethylene glycol)silane to the tips. The oligo(ethylene glycol) silane can include from about 3 to about 10 ethylene glycol units. For example, the oligo(ethylene glycol) can include 3, 4, 5, 6, 7, 8, 9, or 10 ethylene glycol units.
Preferably, the redox agent is patterned at about 40% to about 60% relative humidity. For example, the redox agent can be pattered at a minimum relative humidity of about 40%, 41%, 42%, 43%, 44%, 45%, 46%, 47%, 48%, 49%, 50%, 51%, 52%, 53%, 54%, 55%, 56%, 57%, 58%, 59%, or 60%. For example, the redox agent can be patterned at a maximum relative humidity of about 40%, 41%, 42%, 43%, 44%, 45%, 46%, 47%, 48%, 49%, 50%, 51%, 52%, 53%, 54%, 55%, 56%, 57%, 58%, 59%, or 60%. At a humidity less than about 40%, the transport of the CAN may be undetectable by AFM and little to no subsequent reaction with the template layer may be observed. At a humidity greater than about 60% the enhanced meniscus formation may make it difficult to remove the tip from the surface.
The redox agent can be any compound which, upon contact with the template layer, undergoes a redox process with the contacted portion of the template layer to change the oxidation state of the contacted portion of the template layer, while leaving unchanged the oxidation state of the non-contacted portion. The redox agent can be an oxidant, such as CAN, or a reductant, such as sodium ascorbate or PAA. For positive printing, the redox reaction between the redox agent and the template layer, preferably, oxidizes the contacted portion of the template layer, thereby increasing the oxidation state of the contacted portion. For negative printing, the redox reaction between the redox agent and the template, preferably, reduces the contacted portion of the template layer, thereby decreasing the oxidation state of the contacted portion.
The redox agent can be used in an ink formulation, and the ink formulation can comprise at least one solvent, at least one redox agent, and optional other formulation aids.
Optionally, the redox agent can be removed from the template pattern prior to exposing the template pattern to the target material. The redox agent can be removed, for example, by washing with deionized water.
The template pattern can be then exposed to the target material. For example, the substrate including the template pattern can be immersed in a solution containing the target material. For example, the substrate can be immersed in a 10 μM solution, of an oligonucleotide sequence, modified at the 5′ end with a nucleophile, such as an amine (see
The target material includes a functional group that selectively interacts with the template pattern, for example, by binding to the template pattern. By virtue of this selective interaction, for example through Michaels additions or Diels-Alder cycloaddition, the target material will form in the same pattern as the template pattern, thereby forming a target pattern. Target materials can include oligonucleotides, DNA, proteins, and mixtures thereof. For example, amine modified oligonucleotides and DNA, or cyclopentadiene modified oligonucleotides and DNA can be used as target materials. For example, the functional group of the target material can be for example, amine or cyclopentadiene groups. For example, the compound of formula (I) can be used to modified, for example, oligonucleotides and DNA,
wherein R1 is selected from the group consisting of C1-C20 alkylene, substituted C1-C20 alkylene, alkylene glycol, oligoethylene glycol, substituted oligoethylene glycol, C2 -C20 alkenylene, substituted C2 -C20 alkenylene, fluorocarbon, and substituted fluorocarbon, and R2 and R3 are independently selected from the group consisting of hydrogen and C1-C10 alkyl. R2 and R3 can be the same or different compounds. In a specific embodiment, the compound of formula (I) is
The term “alkyl” refers to straight chained and branched hydrocarbon groups containing the indicated number of carbon atoms, typically methyl, ethyl, and straight chain and branched propyl and butyl groups. Unless otherwise indicated, the hydrocarbon group can contain up to 20 carbon atoms. The term “alkyl” includes “bridged alkyl,” i.e., a C6-C16 bicyclic or polycyclic hydrocarbon group, for example, norbornyl, adamantyl, bicyclo[2.2.2]octyl, bicyclo[2.2.1]heptyl, bicyclo[3.2.1]octyl, or decahydronaphthyl. Alkyl groups optionally can be substituted, for example, with hydroxy (OH), halo, amino, and sulfonyl.
The term “alkene” refers to straight chained and branched hydrocarbon groups containing the indicated number of carbon atoms having at least one carbon-carbon double bond. Unless otherwise indicated, the hydrocarbon group can contain up to 20 carbon atoms. Alkene groups can optionally be substituted, for example, with hydroxy (OH), halo, amino, and sulfonyl.
Alkylene and alkenylene refer to alkyl and alkenyl groups, respectively having further defined substituents. For example, in the compound of formula (I), above, R1 has a cyclopentadiene substituent and phosphoramidite substituent. Thus, when R1 comprises straight chained and/or branched hydrocarbon groups, R1 is referred to as having an alkylene moiety.
The term “oligoethylene glycol” refers to a moiety having 5 to 100 repeating ethylene glycol units, e.g., (CH2CH2)n—OH, where n is 5 to 100. In some embodiments, n is 10 to 75, 10 to 50, 10 to 45, 10 to 35, 10 to 25, or 10 to 20. The oligoethylene glycol can optionally be substituted, for example, with hydroxy (OH), halo, amino, and sulfonyl. For instance, one or more ethylene glycol units can be CH(R)CH2, where R is a hydroxy (OH), halo, amino, or sulfonyl.
The term “fluorocarbon” refers to an alkyl group having fluoro substituents. The fluorocarbon can have about 5 to about 100 carbons. In some embodiments, the fluorocarbon has 10 to 75, 10 to 50, 10 to 45, 10 to 35, 10 to 25, or 10 to 20 carbons. In some cases, the fluorocarbon has all fluoro substituents and no hydrogens. In other cases, the fluorocarbon, has at least 5, at least 10, at least 15, or at least 20 fluoro substituents. In one embodiment, perfluoro groups are used.
The term “alkylene glycol” refers to glycol moieties having 2 to 20 carbons, such as, for example, ethylene glycol or propylene glycol.
The amine or cyclopentadiene modification can selectively interact with the template pattern to immobilize the modified material (such as an oligonucleotide or DNA) on the surface of the template pattern to form the target pattern. The cyclopentadiene phosphoramidite functionality can be preferable to an acrylic diene for cycloaddition because the preorganized ring serves to increase the rate of reaction. Advantageously, the cyclopentadiene phosphoramidite can be economically synthesized as described in detail below.
The compound of formula (I) can be synthesized by mixing a cyanoethyl-dialkylamino-chlorophosphoramidite (formula (III)with a cyclopentadiene containing alcohol (formula (II)) and a base in a aprotic solvent, as depicted in the following scheme.
A non-limiting example of the compound of formula (III) is cyanoethyl N,N′-diisopropylchlorophosphoramidite. The compound of formula (II) can be
The base can be, for example, an organic base. Organic bases include, but are not limited to, amines, monosubstituted amines, disubstituted amines, and trisubstituted amines. Examples of substitutions of the amines include alkyl groups, such as methyl, ethyl, propyl, isopropyl, and butyl. The alkyl groups of the amine can be the same or different, for instances where the amine is a di- or tri-substituted amine. Specific examples of amine bases include triethylamine and diisopropylethylamine.
Aprotic solvents used in the disclosed methods include tetrahydrofuran, dimethylaminde, dimethylsulfoxide, methylene chloride. In one specific embodiment, the solvent is methylene chloride (CH2Cl2).
For example, cyclopentadiene phosphoramidite can be synthesized by mixing 2-cyanoethyl N,N′-diisopropylchlorophosphoramidite (for example, about 200 mg, 0.84 mmol) to a solution of Cp-OH (for example, about 0.5 g, 2.1 mmol) and diisopropyl ethylamine (for example, about 0.55 g, 4.2 mmol) in CH2Cl2 (for example, about 5 mL) under inert nitrogen atmosphere. The solution can be stirred for about 30 minutes. The solution can be diluted with CH2Cl2. For example, about 5 ml of CH2Cl2 can be used. The solution can then be washed. The washing solution can be 2.5% NaHCO3 (aq) (5 mL) and a saturated brine solution (5 mL). The organic layer can the be dried, for example, over magnesium sulfate, which can be subsequently removed by filtration. The solvent can be removed in vacuo, and the remnant can be purified, for example, by column chromatography to obtain the cyclopentadiene phosphoramidite. The cyclopentadiene phosphoramidite can then be conjugated onto the oligonucleotide as is known in the art. The cyclopentadiene phosphoramidite can be used in applications other than redox-activated patterning, such as, for example, in ring opening metathesis polymer applications and in the formation of oligos.
The target material can also include, for example, metals, such as silver, gold, palladium, and platinum. Other suitable target materials include, for example, polymers, dendrimers, carbohydrates, antibodies, nucleic acids, nanoparticles, and quantum dots. The target material can also optionally include a fluorescent label, such as, for example, a Cy3 fluorophore or an AF549 label. Without intending to be bound by theory, it is believed that when benzoquinone or other similar material forms the template pattern and the target material includes a nucleophilic functional group, a Michael-type addition occurs between the nucleophile and the benzoquinone, binding the target material to the benzoquinone template pattern. The remaining portion of the template layer, for example, formed of hydroquinone unmodified by the redox agent, is not susceptible to nucleophilic attack in Michael-type additions and, therefore, does not react with the target material. When the target material is a protein, it is believed that a Michael-type addition occurs between the lysine residues that occur frequently on the exterior of proteins. The target material can also include a diene moiety, such as cyclopentadienes and acrylic dienes. Preferably, the diene moiety is cyclopentadiene phosphoroamidite. When the target material includes a diene moiety, it is believed that a Diels-Alder cycloaddition reaction selectively occurs between the diene and the benzoquinone or other similar template pattern material.
The methods of the disclosure allow for preservation of advantageous features of the patterning method used to pattern the redox agent, while providing a method that allows for patterning without the need for re-optimization of the method for each new target material to be patterned. For example, DPN advantageously allows for the ability to form patterns on a large range of length scales with precise control over size by varying dwell time. In the methods of the disclosure, this control over size can be used to control the size of the target pattern. The redox agent can be patterned to different sizes by controlling and carrying the dwell time of the AFM tip when patterning the redox agent. Dwell times in a range of about 0.01 seconds to about 10 seconds can be used. Preferably, the minimum dwell time is about 0.01, 0.05, 0.1, 0.5, 1, 2, 3, 4, 5, 6, 7, 8, 9, or 10. Preferably, the maximum dwell time is about 0.01, 0.05, 0.1, 0.5, 1, 2, 3, 4, 5, 6, 7, 8, 9, or 10. As shown in
Referring to
Referring to
The metal can be for example, gold, silver, platinum, palladium, zinc, iron, cobalt, copper, aluminum, titanium, and mixtures thereof. Any other suitable metal can be used. The metal species can be included in a metal containing compound, such as for example, AgCl, AgNO3, AgBF4, Ag(acac), and AgPF6. Any other suitable metal species can be used.
In accordance with another embodiment of the disclosure, a kit can be provided including, for example, a kit for patterning a target pattern can be provided. The kit can include one or more kit components, including, for example, at least one substrate having a template layer, at least one redox agent, at least one tip, or an array of tips for patterning the redox agent on the template layer, and/or instructions for using the kit including software and hardware. As described above, the redox agent can be adapted to transform the portion of the template layer contacted with the redox agent from a first oxidation state to a second oxidation state, different than the first oxidation state. A template pattern can be formed either from the portion of the template layer having the first oxidation state or the portion of the template layer having the second oxidation state. The kit can further include a target material that can be adapted to selectively bind to the template pattern to form the target pattern. The kits can be used in conjunction with lithography and patterning instrumentation including software and hardware.
Additional aspects and details of the invention will be apparent from the following examples, which are intended to be illustrative rather than limiting.
An animated surface was formed by immersing an oxidized silicon wafer having a 525 nm SiO2 layer in a 1% (v/v) solution of aminopropyl trimethoxysilane (APTMS) in dry toluene for about 5 hours in an oxygen free environment. The resulting surface, upon exposure to an ethanolic solution of freshly sublimed 1,4 benzoquinone, form a benzoquinone-terminated surface through Michael Addition. The surface was then reduced to form hydroquinone-terminated surface.
The redox agent, CAN, was patterned by dip pen nanolithography using an NSCRIPTOR DPN system (NanoInk Inc., IL) with F type 26 pen tips arrays (NanoInk). Cantilever arrays were prepared for dip-pen nanolithography with CAN, an oxidant. Parafilm was used to sandwich the chip holding the array of 26 cantilevers so that the aqueous CAN solution (40 mM) deposited as a 5 μL drop by micropipette would remain localized on the cantilevers. Referring to
The coated tips were used to form patterns on the HQ-terminated surface. Deposition of the CAN redox agent on the hydroquinone-terminated surface activated the surface through local oxidation to benzoquinone. Deposition was performed at a relative humidity of about 40% to about 60%. The hydrophilic nature of the substrate facilitated the formation of a meniscus on the tip, and as a result, facilitated the transport of the CAN redox agent to the surface. The substrate having the CAN pattern was then washed with deionized water to remove the CAN redox agent. The substrate having the benzoquinone patterns resulting from the CAN deposition was then immersed for about two hours in a 10 μM solution of the target patterning compound, in this case, an oligonucleotide sequence, modified at the 5′ end with an amine and at the 3′ end with a Cy3 fluorophore. Referring to
The method of example 1 was repeated except, the substrate having the benzoquinone pattern was immersed in a 50 μg/mL solution of AF549 labeled protein cholera toxin β. The protein was bound only to the benzoquinone patterns, forming a protein pattern. The AF549 label allowed for imaging of the protein pattern using epifluorescence microscopy. Without intending to be bound by theory, it is believed that Michael addition occurs between the benzoquinone moieties on the surface and the lysine residues that occur frequently on the exterior of proteins, resulting in the immobilization of the proteins on the surface without prior labeling. Referring to
Referring to
Referring to
The methods of Examples 3 and 4 were repeated except that the DNA was modified with cyclopentadiene phosphoroamidite and a Cy3 fluorophore.
Referring to
The cyclopentadiene phosphoramidite was conjugated to the 5′ end of an oligonucleotide sequence immobilized on a solid support using standard phosphoramidite conditions. The modified oligonucleotide was then purified by reverse phase HPLC. Referring to
Referring to
Examples 3 and 4 were repeated except that the redox agent was patterned using microfluidic patterning. Microfluidic patterning was performed by applying a patterned stamp to the substrate and applying a drop of the redox agent adjacent to the stamp. Capillary forces draw the redox agent into the channels of the patterned stamp allowing the redox agent to flow through the channels and react with the template layer on the substrate transforming the contacted portion of the template layer to a second oxidation state. As shown in
The foregoing describes and exemplifies the invention but is not intended to limit the invention defined by the claims that follow. All of the methods disclosed and claimed herein can be made and executed without undue experimentation in light of the present disclosure. While the materials and methods of this invention have been described in terms of specific embodiments, it will be apparent to those of skill in the art that variations may be applied to the materials and/or methods and in the steps or in the sequence of steps of the methods described herein, without departing from the concept, spirit, and scope of the invention. More specifically, it will be apparent that certain agents which are both chemically and physiologically related may be substituted for the agents described herein while the same or similar results would be achieved. All such similar substitutes and modifications apparent to those of ordinary skill in the art are deemed to be within the spirit, scope, and concept of the invention as defined in the appended claims.
Priority to U.S. Patent Provisional Application No. 61/116,485, filed Nov. 20, 2008, and U.S. Patent Provisional Application No. 61/167,852, filed Apr. 8, 2009, the complete disclosures of which are incorporated here in their entirety, is claimed.
This invention was made with government support under grant FA9550-08-1-0124 awarded by the Air Force Office of Scientific Research and under grant CHE-0723542 awarded by the National Science Foundation. The government has certain rights in the invention.
Number | Date | Country | |
---|---|---|---|
61116485 | Nov 2008 | US | |
61167852 | Apr 2009 | US |