Electronically controlled stage lights may use a computer to control the output of a digitally, pixel level controllable, lighting projector. For example, a processor may produce a digital output that controls a digital micromirror based processing device, such as a DLP projector.
An image is used as the control for the projector. Different lighting effects may be carried out on the image which is used to drive the projector to produce the lighting output. Many of the image operations which were previously carried out by physical components, such as lenses, cut gobos, and the like may be effected by a digital electronic technique which simulates the effect of those physical components. Other effects are described in U.S. Pat. Nos. 5,828,485; 6,057,958, and others, and may include image rotation, image movement, or other image manipulation operations.
One such effect is a blur effect which has been traditionally carried out by a Gaussian type lens which blurs the image. The traditional thinking is that a digital version of the Gaussian blur would involve taking the original image pixel by pixel, and calculating a blurred value for each pixel in the blurred image based on the values of the pixels that surround the equivalent pixel in the source image.
Conventional Gaussian blurring would take the area of a blur window used in a calculation specified as a circle containing the source pixel, centered on the destination pixel, as shown in
The present inventor recognized that the calculation load for such a blur would be overwhelming. For example, for large degree of blur, one might desire a circle of 32 pixel radius. This would involve a sequence of 3216 loads, multiplies and additions to calculate the value of each single pixel. Therefore, for a 720×480 pixel video screen (the size of the conventional DLP unit), this would require over 1.1 billion operations just to blur a single frame. This would become even more aggravated in a color, RGB image, which would require each color component to be blurred individually, tripling the above value. This has led those of ordinary skill in the art to conclude that it was impossible to digitally blur such an image.
The present system teaches optimizations and simplifications which may be used to allow blurring the image in a way that avoids the enormous calculation load described above.
According to a first aspect, a rectangular blur window is used to simplify the operation of blurring into two orthogonal dimensions of blur.
Another aspect simplifies the Gaussian into either a simple single-weighted curve, or to a piecewise continuous curve which simplifies the calculations and enables certain ones of the calculations to be stored within accumulators so that only a few new values need to be calculated for each blur neighborhood.
These and other aspects, will now be described in detail with reference to the accompanying drawings, wherein:
An exemplary hardware layout embodying the present system is shown in
The control device 300 produces an output signal 325 which drives a DLP projector 330. The DLP projector 330 includes a DLP assembly 335 driven by a light source 340, and optics 345 which directs the light as shaped, processed and colored by the DLP. While the above shows the operation being carried out by a DLP, it should be understood that the operation can alternatively be carried out by any pixel level controllable light altering device. In addition, while
The processing follows the flow shown in
At any time during the process,
The operation follows the flowchart shown in
Each of the individual pixels within the area 505 is added to form the value SUM at 405. The center value, or the center pixel 505 is calculated as the value BLUR. BLUR is calculated as BLUR equals SUM/K at 410. The value of the pixel BLUR is stored as the new pixel value at 415.
At 420, this system tests to determine if the columns are completed. If not, then the next column part is obtained at 425. This includes loading and adding the next pixel, 600 in
When all of the columns are done, shown as 420, then the next blur row part is obtained at 440, and the process continues to add the once-blurred values for each vertical part and divided by the value K. Again, the mathematics which is used is relatively simple, so the execution can be carried out extremely quickly.
Certain processors have difficulty in executing division, and in those processors, simplifications such as multiply and right shift can be used instead of division.
The above has described the blur window processing the entire image. Alternatively, simple extensions of the basic process can be carried out where the blur process operates only over portions of the image defined by preamble and post-amble code sections.
The process disclosed in
Even more rapid results may be obtained when reading and writing are carried out to cache lines within memory. During the horizontal portion of the operation, it is likely that each new pixel will be in the same cache line of memory, since the image scan lines tend to place horizontally adjacent pixels sequentially in memory. During the vertical or row processing portion, however, each new pixels will likely not be within the cache. This may reduce the performance of the blurring in the vertical direction.
According to another aspect of this system, a divided sum is stored for each whole or part column as a local copy. The blurred and divided sum is then used in place of each individual pixel within that column. This sum accumulates the values for the entire column. Since these sums are read and written many times during the blur process, but are not always in the same place, it becomes much more likely that cache hits will be obtained from these sums.
By improving the cache hits in this way, the technique may be limited by memory bandwidth instead of processing speed.
This system also requires that the sum register hold many pixel values with overflow and therefore requires that the sum register have more significant bits than the pixel itself. Assuming a pixel data and eight bits, a 16-bit sum register will hold 256 values without overflow. When blurring in a single pass, it may be necessary to use 32-bit sum registers.
Although only a few embodiments have been disclosed in detail above, other modifications are possible, and this disclosure is intended to cover all such modifications, and most particularly, any modification which might be predictable to a person having ordinary skill in the art. For example, while the above has described operating on a programmed processor, it is envisioned that this be done on a dedicated hardware card with registers and accumulators carrying out the blur much more quickly than is possible using a processor.
The above has described the noncontinuous blurring kernel as being simply a square function, with all values in the kernel of the blur receiving the same weight (here one). However, it may be possible to approximate the Gaussian curve using a piecewise continuous curve, in which the values towards the edge are weighted by a smaller value, e.g. one half, and values in the center are weighted by a higher value e.g. one. Similar simplifications to those given above are possible. If that piecewise continuous curve has two different weighting functions, then four pixels need to be processed each time the accumulators shift instead of two pixels being processed as in the first embodiment. Any non-continuous curve of this type can be used. Preferably, fewer than 20% of the values within the window are processed during each window shift.
All such modifications are intended to be encompassed within the following claims.
Also, only those claims which use the words “means for” are intended to be interpreted under 35 USC 112, sixth paragraph. Moreover, no limitations from the specification are intended to be read into any claims, unless those limitations are expressly included in the claims.
This application claims priority from Provisional application No. 60/534,607, filed Jan. 5, 2004.
Number | Name | Date | Kind |
---|---|---|---|
5414328 | Hunt et al. | May 1995 | A |
5502627 | Hunt et al. | Mar 1996 | A |
5588021 | Hunt et al. | Dec 1996 | A |
5769531 | Hunt et al. | Jun 1998 | A |
5788365 | Hunt et al. | Aug 1998 | A |
5812596 | Hunt et al. | Sep 1998 | A |
5828485 | Hewlett | Oct 1998 | A |
5862400 | Reed et al. | Jan 1999 | A |
5921659 | Hunt et al. | Jul 1999 | A |
5969485 | Hunt | Oct 1999 | A |
5983280 | Hunt | Nov 1999 | A |
6029122 | Hunt | Feb 2000 | A |
6057958 | Hunt | May 2000 | A |
6175771 | Hunt et al. | Jan 2001 | B1 |
6256136 | Hunt | Jul 2001 | B1 |
6466357 | Hunt | Oct 2002 | B2 |
6538797 | Hunt | Mar 2003 | B1 |
6549326 | Hunt et al. | Apr 2003 | B2 |
6597132 | Hunt et al. | Jul 2003 | B2 |
6801353 | Hunt et al. | Oct 2004 | B2 |
6891656 | Hunt | May 2005 | B2 |
6894443 | Hunt et al. | May 2005 | B2 |
6934071 | Hunt | Aug 2005 | B2 |
7057797 | Hunt | Jun 2006 | B2 |
7161562 | Hunt | Jan 2007 | B1 |
7230752 | Hewlett et al. | Jun 2007 | B2 |
7270444 | Hunt et al. | Sep 2007 | B2 |
20010050800 | Hunt | Dec 2001 | A1 |
20020070689 | Hunt et al. | Jun 2002 | A1 |
20020109905 | Hunt et al. | Aug 2002 | A1 |
20020141037 | Hunt et al. | Oct 2002 | A1 |
20030107795 | Hunt | Jun 2003 | A1 |
20040061926 | Hunt | Apr 2004 | A1 |
20040125602 | Hunt et al. | Jul 2004 | A1 |
20040141721 | Hatalsky | Jul 2004 | A1 |
20040160198 | Hewlett et al. | Aug 2004 | A1 |
20050041229 | Meisburger | Feb 2005 | A1 |
20050057543 | Hunt et al. | Mar 2005 | A1 |
20050083487 | Hunt et al. | Apr 2005 | A1 |
20050086589 | Hunt | Apr 2005 | A1 |
20050094635 | Hunt | May 2005 | A1 |
20050169514 | Prince | Aug 2005 | A1 |
20050190985 | Hunt | Sep 2005 | A1 |
20050200318 | Hunt et al. | Sep 2005 | A1 |
20050200625 | Hunt | Sep 2005 | A1 |
20050206328 | Hunt | Sep 2005 | A1 |
20050207163 | Hunt | Sep 2005 | A1 |
20050213335 | Hunt | Sep 2005 | A1 |
20060158461 | Reese et al. | Jul 2006 | A1 |
20060187532 | Hewlett et al. | Aug 2006 | A1 |
20060227297 | Hunt | Oct 2006 | A1 |
20070165905 | Hunt | Jul 2007 | A1 |
20070168851 | Hunt | Jul 2007 | A1 |
20070168862 | Hunt | Jul 2007 | A1 |
20070211171 | Hunt et al. | Sep 2007 | A1 |
Number | Date | Country | |
---|---|---|---|
20050190985 A1 | Sep 2005 | US |
Number | Date | Country | |
---|---|---|---|
60534607 | Jan 2004 | US |