Coated confectionary products are known. A popular type of such product is a coated frozen confection, such as frozen confectionary bars with a coating of another type of confection such as chocolate. A frozen confectionary bar typically has an ice confection, such as ice cream, frozen yogurt, sherbet, gelato, and the like, formed into an elongated, semi-rectangular shape and a stick projecting from an end of the ice confection. Such coated products are popular because they are portable and easy to handle, and can be provided in pre-packaged single servings. Further, the coating provides an added flavor and texture dimension to the product and can also help retain any melted portion of the frozen product.
Reduced- or low-fat variations of confections, including frozen confections, are also gaining popularity. While low- or reduced-fat frozen confections, such as reduced-fat ice cream, ice milk, frozen yogurt and the like, are known, it has been difficult to provide low- or reduced-fat coatings, particularly chocolate or chocolate-flavored coatings. Simply reducing the fat content of the coating has proven unsuccessful, especially with chocolate coatings, because a reduction in the fat content of chocolate results in a higher viscosity. A reduced-fat, higher viscosity composition adheres in a greater amount to the substrate when applied with known methods of coating, resulting in a relatively thicker coating. Further, a coating having reduced fat content, e.g. 30 to 40% fat, could heretofore be applied only by dipping because the spraying of a reduced-fat composition would tend to clog the spray nozzles. Dipping, however, generally results in a thicker coating than spraying. Because an increase in the overall thickness and amount of the coating increases the overall fat content, a reduction in fat content is negated and possibly even outweighed by the increase in the thickness and amount of coating.
Accordingly, there is a need for a low-or reduced-fat coating that can be provided in a relatively thin coating.
The invention relates to a method and device for forming a coating of uniform thickness on a substrate of a frozen confection, as well as to the resulting frozen confection products that are prepare by the method and device.
In an embodiment, the frozen confectionary product includes a substrate formed substantially of a frozen confection and having an outside surface and a discontinuous or continuous chocolate coating applied on the outside surface of the substrate. The chocolate coating contains less than about 40% fat by total weight, and the chocolate coating has a thickness of from about 0.3 mm to less than about 1.7 mm and preferably from about 0.5 mm to 1.25 mm. Preferably the chocolate coating contains less than about 35% fat by weight of the coating. In one embodiment, the weight of the chocolate coating is less than or equal to about 30% of the total weight of the frozen confectionary bar.
In a further embodiment, the frozen confectionary product is formed by spraying the chocolate coating onto the outside surface of the substrate while the chocolate coating is in a liquid state. Accordingly, the present invention further includes a device for applying a thin layer of chocolate to a frozen confectionary substrate. The device includes a plurality of nozzles directed toward a target area, and a conveying member configured to move the frozen confectionary substrate into and out of the target area. The device further includes a reservoir configured to retain a supply of chocolate, a supply line arranged between the reservoir and the plurality of nozzles for carrying a volume of the chocolate from the reservoir to the nozzles. The supply line includes a pump therein to cause the chocolate to flow from the reservoir to the nozzles and to be expelled therefrom into the target area. The chocolate has a viscosity of between 250 and 650 cPs. The device also includes a heater configured to provide heat to the chocolate within the reservoir such that the chocolate is at a predetermined initial temperature when leaving the reservoir.
Preferably, the device further includes a heat exchanger configured to heat the chocolate to a predetermined spraying temperature prior to the chocolate being expelled from the nozzle into the target area. Preferably, the initial temperature is between 95° F. and 140° F., and the spraying temperature is between 95° F. and 140° F. In a preferred embodiment, the supply line is configured to operate under a substantially constant pressure. In such an embodiment, the nozzles are preferably equipped with valves to alternately change the valves from an open state to a closed state. When in the open state, the chocolate is projected out of the nozzles, and when in the closed state, the chocolate is prevented from projecting out of the nozzles. Further, it is preferred that the nozzles include a return outlet to allow a portion of the chocolate to return to the reservoir such that the supply line is maintained at a substantially constant pressure. Preferably the pressure is between 500 and 1500 psi. Further preferably, a constant flow-rate of chocolate is maintained within the supply line.
In one embodiment, the device is configured such that the movement of the substances into and out of the target area is carried out in a single direction substantially parallel to a lateral axis of the frozen confectionary substrate, and wherein the conveyor is arranged to move successive frozen confectionary substrates into and out of the target area. Alternatively, the device can be configured such that the movement into and out of the target area is carried out in a single direction substantially parallel to a long axis of the frozen confectionary substrate, and wherein the conveyor is adapted to hold a plurality of substrates and to simultaneously move the plurality of frozen confectionary substrates into and out of the target area.
A method for coating a frozen confectionary substrate with a layer of reduced fat chocolate is also provided. The method includes the steps of spraying a liquid chocolate composition into a target area, wherein the liquid chocolate composition includes less than 40% fat and moving a frozen confectionary substrate having an outside surface into and out of the target area such that substantially all of the outside surface becomes coated with the liquid chocolate composition. Preferably, the method further includes allowing the liquid chocolate composition to cool, thereby forming a solid chocolate coating having a thickness of about 1.7 mm, or less, on the frozen confectionary substrate. Preferably the step of allowing the liquid chocolate composition to cool takes less than about 60 seconds.
In an embodiment, the step of moving the frozen confectionary substrate into and out of the target area is repeated successively with a plurality of frozen confectionary substrates so as to coat each of the plurality of frozen confectionary substrates with the liquid chocolate composition. Alternatively, the step of moving the frozen confectionary substrate into and out of the target area includes moving a plurality of frozen confectionary substrates into and out of the target area simultaneously.
The invention also relates to a frozen confectionery product, comprising a substrate formed substantially of a frozen confection having an outside surface; and a discontinuous or continuous chocolate coating applied on the outside surface of the substrate, wherein the chocolate coating has a thickness of from about 0.3 mm to less than 1.7 mm with a thickness uniformity within about 20%. Preferably, the outside surface includes a face, and wherein a portion of the chocolate coating is applied on the face and has a thickness of from about 0.5 mm to 1.25 mm with a uniformity of within about 10%. Advantageously, the weight of the chocolate coating is at least 10% but less than or equal to about 40% of the weight of the ice cream substrate, and the chocolate coating contains about 40% or less fat by weight of the coating.
The above features and other advantages of the invention will become better understood by reference to the following detailed description of preferred embodiments and the accompanying drawings wherein:
Referring to the figures, where like reference numerals indicate similar elements, a frozen confectionary bar 10 is shown in
Substrate 12 can be in the shape of similar, know frozen confectionary bars and includes a front face 14, a rear face 16, and an outer edge 18. Substrate 12 can be in the shape of a rectangular prism or can be generally rounded or tapered as shown, but can have any other desired and suitable shape, such as substantially spherical or other bite-sized configurations, in other embodiments. Further, substrate 12 preferably has a maximum width 13 of between 1 and 4 inches, a height 15 of between 2 and 5 inches and a thickness 17 of between 0.5 and 1.5 inches. More preferably, substrate 12 has a maximum width 13 of about 2.5 inches, a maximum height of about 5 inches, and a thickness of about one inch. Further, substrate 12 preferably has a volume of between about 3 and 8 in3, and more preferably of about 5 in3. An embodiment of substrate has a surface area of between about 10 in2 and 25 in2 more preferably about 17 in2.
Coating 20 is formed of a reduced-fat chocolate composition having a fat content of at most about 45% by weight of the coating composition. In preferred embodiments, coating 20 has a fat content of between about 30% and 40% fat, preferably about 35% to 38%, and more preferably about 38% fat by total weight of the chocolate composition. The reduced-fat chocolate composition contains cocoa fat, cocoa liquor, which typically has about 55% fat content, and/or cocoa powder. The composition can contain other fats or oils (e.g., vegetable oil, coconut oil) in addition to or as an alternative to cocoa fat or cocoa liquor. Additionally, the composition can include milk, milk powder, whey powder, sugar, vanillin and one or more emulsifiers (e.g., lecithin, PGPR).
An embodiment of coating 20 is made according to a formulation shown in Table 1, wherein each ingredient is used in an amount within the range listed such that the total percentage of all ingredients used equals 100%, with the total percentage of fat being less than about 45% and, more preferably, about 38%. Another embodiment of coating 20 is made according to the formulation shown in Table 2, wherein each ingredient is used in an amount within the range listed such that the total percentage of all ingredients used equals 100%, with the total percentage of fat being less than about 45% and, more preferably, about 35%. Other suitable reduced- or low-fat chocolate compositions can be used to form coating 20 in other embodiments.
The thickness 27 of coating 20 can vary, depending on the location of the coating 12 on bar 10, but the portion of coating 20 on both front face 14 and back face 16 is less than or equal to about 1.7 mm. Further, the portion of coating 20 formed on both the front face 14 and the back face 16 is preferably substantially uniform such that any variations in the thickness thereof are within about 10% of the average thickness of the portion of the coating. In a preferred embodiment the uniformity of the thickness of the coating 20 in the front 14 and back 16 faces is within about 5%. The coating 20 that is located on the edge 18 of substrate 12 or in the corner portions between the edge 18 and the faces 14,16 can be greater than that of coating 20 on either front face 14 or back face 16, but preferably does not exceed about 2.5 mm and is more preferably about 2 mm or less. In an embodiment, coating 20 is substantially uniform such that any variations in the thickness thereof do not exceed about 20% of the average thickness of coating 20. In a preferred embodiment, any variations in the thickness of coating 20 do not exceed about 15% and more preferably about 10% of the average thickness of coating 20. In an embodiment of bar 10, the weight of coating 20 is defined as the pickup weight. An embodiment of bar 10 has a coating 20 with a pickup weight of between about 0.05 and 0.22 g/cm2 of surface area, and more preferably about 0.17 g/cm2 of surface area. In an example, bar 10 with the aforementioned surface area of between 10 and 25 in2 preferably has a roughly corresponding pickup weight of between about 5 and 20 g. Preferably, bar 10 has a coating 20 wherein the pickup weight is between about 10% and 40% of the total weight of bar 10 and more preferably about 15% to 25% of the total weight of bar 10.
In preferred embodiments, coating 20 is formed on substrate 12 of bar 10 by applying melted, liquid chocolate composition through a spraying process. The use of a spraying process can allow a higher viscosity chocolate coating, such as the reduced-fat coating to be applied in a thinner layer than previously-known dipping processes. As stated previously, chocolate compositions increase in viscosity as the fat content is reduced. In turn, increased viscosity increases the pickup weight of chocolate coatings when applied by conventional processes, such as dipping. The viscosity of such composition was measured using standard methods and equipment, such as Brookfield viscometer, at the composition temperature of 40° C. and was determined to be between about 250 and 650 cPs for the corresponding preferred fat range, and about 420.5 cPs for a composition having about 38% fat. A regular chocolate composition having at least about 48% fat by weight of the composition has a viscosity of about 26.6 cPs. As further discussed above, the increase in viscosity leads to an increased pickup weight of a coating applied using conventional methods, such as dipping, the additional amount of the coating adds overall fat to the bar to the extent that the per-weight reduction in fat can be outweighed. By using spraying, the thickness of the coating can remain the same, or can even be decreased, while reducing the fat percentage of the composition, thereby leading to an overall reduction in the fat content of the bar. Table 3, below, shows a comparison of characteristics of exemplary coatings applied to an ice cream substrate, wherein the coatings have the same composition, but are applied using spraying in one example and dipping in the other.
As shown in Table 3, the use of spraying to apply a reduced-fat chocolate coating to an ice cream substrate reduces the pickup weight of the coating, which leads to an overall reduction in the fat content of the bar. Table 2 further shows that the application of the coating using spraying leads to a reduced drip time, and reduced cooling time, which can reduce production time and cost. Additionally, in conventional dipping applications, the frozen confectionary substrate is completely immersed in melted chocolate, which can be heated to a temperature of, for example, about 110° F. Exposure to high temperatures to this extent can cause undesired melting of the frozen confectionary, which can adversely affect the texture of the frozen confectionary when refrozen, leading to an inferior product. The use of spraying for the application of liquid chocolate reduces the exposure to high temperature and reduces unwanted melting of the frozen confectionary.
In a preferred embodiment, bar 10 has a coating 20 applied to a frozen confectionary substrate 12 by spraying using the device of
In general, device 40 should have as many guns as necessary to apply coating 20 substantially evenly to front 14 and back 16 faces of substrate 12 as well as edge 18, which includes top 19, bottom 21, and first and second sides 23,25. In an embodiment, device 40 includes at least three guns. In an example, device 40 can include about 4 to 25 guns. In the preferred embodiment shown in
As shown in
As further shown in
As shown in
An embodiment of a spraying device similar to that shown in
An alternative spraying device 140 is shown in
Conveyor 152 is configured to move substrates 12 along a central plane 157 of target area 150. Guns 142 are preferably spaced apart from the central plane 157 at a distance 164 of about 5 in to 15 in and more preferably between about 7 in and 12 in. Further, guns 142 are spaced apart from one another at a distance 166 that is between about 3 inches and 15 inches and more preferably between about 5 inches and 12 inches. Each gun 142 is preferably a high-pressure gun and includes a nozzle 160 affixed to the output end thereof. Nozzle 160 preferably has an orifice diameter of between about 0.01 inches and 0.05 inches, and more preferably between about 0.02 and 0.04 inches. Nozzle 160 further has a pattern width of between about 10 inches and 40 inches and more preferably between about 15 inches and 30 inches. Each gun is oriented relative to central plane 157 at an angle 159 that is preferably between about 60° and 120° and is more preferably between about 80° and 110°. Further, as shown in
A further embodiment of a device 240 is shown in
Device 240 can also be used to apply a second coating on top of coating 20. Preferably, the second coating forms a design, such as stripes, patterns. characters, figures, or the like on the frozen confection. An embodiment of a secondary coating applied to form a design can be applied by placing a stencil between nozzle 260 and target area 250 in the desired shape. Further, the conveyor 252 can be configured to stop in the target area while the spray from the nozzle is turned on and then off to apply the desired thickness of the coating, which can be less than 1.7 mm and more preferably less than about 0.5 mm. An embodiment of device 240 that is configured to apply, for example, horizontal stripes can be further configured to apply the secondary coating while the conveyor 252 is moving. The secondary coating is preferably of a different color than coating 20, which can be achieved by using dyes in the composition or by using a different chocolate or non-chocolate formulation, such as dark chocolate, white chocolate, frosting or the like.
Alternatively, device 240 can also be used to apply a discontinuous coating directly on the substrate in order to form a design such as stripes, pattern, characters, figures and the like on said substrate. This can be achieved by placing a stencil between nozzle 260 and the target area, in order to block out the spray in a prescribed area thus allowing the pattern design to be formed by the substrate showing through.
A supply system 70 used in device 40 is shown schematically in
Supply chamber 72 is preferably connected via tubing 74 to pump 75. Tubing 74 is preferably between ⅜ inch and ¾ inch in diameter. Tubing 74 is further preferably made from an abrasion-resistant material such as polytetrafluoroethylene (e.g., Teflon® manufactured by DuPont) or a similar material and further preferably includes steel braiding on the outside thereof. Pump 76 is preferably a Tetra Alex™ 20 Pump manufactured by Tetra Pak, Inc., Pully, Switzerland, although other suitable pumps are available. Preferably, pump 76 is configured to maintain the pressure of the reduced-fat chocolate composition within the system 70 at a pressure of between about 500 psi and 1500 psi, and more preferably between about 800 psi and 1200 psi.
Pump 76 is preferably connected via tubing 74 to a manifold 78 that includes an inlet 77 and at least one outlet 79. Preferably manifold 78 has a number of outlets 79 corresponding to the number of guns 42 used in device 40. Accordingly a number of segments of tubing 74 corresponding to the number of guns 42 can be affixed to the manifold outlets 79 and can connect manifold 78 to the guns 42. Preferably, the segments of tubing 74 between manifold 78 and guns 42 pass through a heat exchanger 80 that is configured to maintain the reduced-fat chocolate composition at an appropriate temperature prior to entering guns 42. Preferably, the temperature of the chocolate composition exiting heat exchanger 80 is substantially the same as the temperature of the composition when in the mixing tank, that is, preferably between about 46° C. and 50° C.
After exiting heat exchanger 80 supply system 70 directs the flow of the reduced-fat chocolate composition to guns 42. Guns 42 are preferably high pressure guns that are capable of handling a high-viscosity liquid such as the reduced-fat melted chocolate composition of the present invention. Such high-pressure guns are available, for example, from SSCO Spraying Systems AG, located at Pffiffikon, Switzerland, and Nordson Corporation, located at Westlake, Ohio. Preferably, guns 42 are configured to have an open state and a closed state. Each gun 42 has associated therewith a valve that controls the state of the gun 42. Further, each gun 42 has a fluid inlet 41, a fluid outlet, 43 and a nozzle 60.
The valve associated with each gun is preferably configured such that in the open state, gun 42 is open to the nozzle 60, thereby allowing the reduced-fat chocolate composition to be jetted out of nozzle 60 under pressure from pump 76. In the closed state the valve is such that the reduced-fat chocolate composition cannot flow out of nozzle 60. In both cases at least some of the reduced-fat chocolate composition flows out of fluid outlet 43. When the valve is in the closed state, substantially all of the reduced-fat chocolate composition flows through fluid outlet 43. When the valve is open, any excess reduced-fat chocolate composition that is not jetted from outlet 60 flows through fluid outlet 43. Fluid outlet 43 is preferably connected via tubing 74 to supply chamber 72 such that any of the reduced-fat chocolate composition that is not jetted can return thereto, preferably after passing through heat exchanger 80 and through an input manifold 88. This arrangement allows for the system to operate under substantially constant pressure and to maintain a substantially constant flow rate of the reduced-fat chocolate composition. The state of the valves is preferably computer-controlled. In the embodiment shown in
Although the present spraying device and process are illustrated with reference to a reduced-fat chocolate coating composition, it will be appreciated that the device and process can be used with any suitable high-viscosity coating composition, including non-chocolate coating compositions having a viscosity of between 200 and 1000 cPs, e.g., peanut butter and yogurt compositions. Also, although a frozen confectionary bar is illustrated as an example, it will be appreciated that the high-viscosity coating composition according to the invention can be applied on any desired and suitable confectionary products, including other frozen and non-frozen confections.
While illustrative embodiments of the invention are disclosed herein, it will be appreciated that numerous modifications and other embodiments can be devised by those skilled in the art. For example, the features for the various embodiments can be used in other embodiments. Therefore, it will be understood that the appended claims are intended to cover all such modifications and embodiments that come within the spirit and scope of the present invention.
This application is a divisional of U.S. application Ser. No. 12/272,559 filed Nov. 17, 2008, which claims the benefit of U.S. provisional application No. 60/988,487 filed Nov. 16, 2007.
Number | Date | Country | |
---|---|---|---|
60988487 | Nov 2007 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 12272559 | Nov 2008 | US |
Child | 14051878 | US |