The present invention relates to a connector device, and more particularly to an improved wire to board connector of reduced height and improved reliability.
In communications equipment for transferring large volumes of information, such as portable telephones, personal computers and the like, coaxial cables are used for transferring high-frequency signals. A cable-attached plug connector is formed by arranging a large number of such coaxial cables in parallel into a flat shape and attaching a plug connector to an end of the coaxial cables. These cables are terminated, by way of the plug connector, to electronic components mounted on a substrate, such as a circuit board, for processing signals transiting the cables.
There has been a trend toward the miniaturization of communications equipment such as portable telephones, personal computers, and the like. In order to realize miniaturization, there has been an increasingly stringent demand for reduced height, size, and weight of a connector as a component of those equipment. This reduced size may lead to a deterioration in workability. To avoid this, a technique for improving the workability is required.
As opposed to the horizontal type connector device as described above, as shown in
In the known horizontal-type connector device, the receptacle connector 302 is connected to the plug connector 300, which is flat on the substrate P, while being in close proximity to the substrate P. Accordingly, the horizontal type connector device can be reduced in height as compared with the vertical type connector device in which the plug connector is placed on the receptacle connector. However, the fingers of the operator may touch the substrate P while inserting the plug connector into the receptacle connector, thus hindering the operation or damaging the wiring.
In contrast, in the case of the vertical type connector device, the plug connector 400 is connected from above the receptacle connector 402, so the substrate P does not interfere with the connection and hence good workability is ensured. However, the plug connector 400 is stacked on top of the receptacle connector 402, with the result that the height dimension of the connector device upon connecting the two connectors becomes large, which poses a problem in terms of height reduction.
In view of this, there has been proposed a vertical type connector which not only excels in workability but also enables height reduction. Such a structure is shown in
Further, in the receptacle connector 502, there is formed a release hole 510 in the form of a cutout that communicates with the fitting recess 503 so as not to prevent the coaxial cables C from projecting outwards upon connecting the plug connector 500 and the receptacle connector 502 with each other (see
In order to ensure reliable connection between the receptacle-side terminals 505 and the plug-side terminals 506, the receptacle-side terminal 505 is shaped so as to generate a contact pressure between the receptacle-side terminal 505 and the plug-side terminal 506 upon abutting against the plug-side terminal 506. The contact pressure also acts as a force for retaining the connection between the plug connector 500 and the receptacle connector 502 (hereinafter refereed to as the connector connection retaining force).
The connector connection retaining force acts to press the plug connector 500 towards the cable insertion portion 502b of the receptacle connector 502 upon fitting the plug connector 500 into the fitting recess 503 of the receptacle connector 502. In this regard, the receptacle connector 502 has, at the cable insertion portion 502b, the release hole 510 open at the rear as described above. Since the release hole 510 communicates with the fitting recess 503 of the receptacle connector 502, the receptacle connector 502 has the fitting recess 503 that is open at the top and at the rear, so the mechanical strength of the receptacle connector 502 is accordingly weak.
Upon connecting the plug connector 500 and the receptacle connector 502 together, stress concentration resulting from the contact pressure will occur, in particular, at a location of the cable insertion portion 502b where the release hole 510 in the form of a cutout is formed and in the vicinity of the location, causing distortion. As a result, there is a fear of the receptacle connector 502 undergoing damaging deformation.
Further, when the coaxial cables C are pried upwards so a force for releasing the connection between the plug connector 500 and the receptacle connector 502 acts on the plug connector 500 and the receptacle connector 502 that have been connected together, the plug connector 500 is detached from the receptacle connector 502, which may hinder the electrical connection of the connector device.
The present invention is directed to a reduced height wire to board connector of the plug style which avoids the shortcomings of the prior art described above.
It is accordingly, a general object of the present invention to provide a novel structure for a plug connector and a receptacle connector, which reduces deformation of the receptacle connector due to forces exerted during mating and unmating of the plug and receptacle connector.
Another object of the present invention is to provide an improved wire to board connector assembly using a plug connector and a receptacle connector, wherein the receptacle connector includes a receptacle that opens to the top and the plug connector is inserted into the receptacle vertically, without enlarging the height of the connector assembly.
Yet another object of the present invention is to provide a plug connector for use in wire to board connection applications, the plug connector including an insulative housing with a wire-receiving open area into which the ends of a set of wires are positioned, the housing including a first wire clamp formed of insulative material which exerts a termination pressure onto the free ends of the wires to terminate the wires to individual insulation displacement terminals, a second wire clamp formed of conductive material, the second wire clamp engaging the wires and contacting conductive shields thereof so as to common the internal grounds of the wires together, and the plug connector further including an outer, conductive shell that holds the first and second wire clamps in place with the housing and which contacts the second wire clamp and conductive faces of a mating receptacle connector, the outer shell having openings through which conductive portions of terminals of the plug connector extend for mating with an opposing mating connector.
Still another object of the present invention is to provide a receptacle connector for use in wire to board applications, the receptacle connector including an insulative housing with a flat base for attaching to a substrate such as a printed circuit board, the housing including a plurality of terminals the terminals having tail portions for attachment to the circuit board and contact portions that extend along a face of a receptacle defined within the housing, thereby defining a plurality of contact faces for mating with an opposing connector inserted therein, the housing further including a shell that partially covers portions of the housing, the receptacle shell including contact portions for mating with ground contact points on an opposing mating connector.
The present invention accomplishes this and other objects due to its structure. The present invention relates to a connector device including: a connector having a housing provided with a cable and a terminal connected to one end of the cable; and a mating connector to which the connector is connected, the connector device being characterized in that the mating connector includes a mating housing; a mating terminal provided in the mating housing and brought into contact with the terminal of the connector when the mating connector is connected with the receptacle connector, the mating terminal being fixed onto a substrate. A cable insertion portion is formed in the mating connector housing in opposition to a location where the mating terminal is disposed, the cable insertion portion being a portion through which the cable is inserted; and means for fixing the cable insertion portion to a substrate.
The portion of the mating housing where the cable insertion portion is formed exhibits poor strength as compared with other portions thereof where no such insertion portion is formed. For this reason, upon connecting the connector to the mating connector, stress concentration resulting from a contact pressure due to the connection occurs at the location of the mating connector corresponding to the above portion. In this regard, however, the cable insertion portion is fixed to the substrate by the fixing means, thereby achieving enhanced strength.
Further, the fixing means may be characterized by including a support portion that is abutted against or embedded in the cable insertion portion to support the cable insertion portion, and a firmly fixing portion formed integrally with the support portion and soldered onto the substrate. The cable insertion portion is supported by the support portion and thus enhanced in its strength. In addition, the cable insertion portion thus enhanced in strength is soldered onto the substrate by means of the firmly fixing portion, whereby the cable insertion portion is further enhanced in its strength.
At least one of the connector and the mating connector may have a latching portion that is latched onto the other connector upon connecting the two connectors. The connector and the mating connector are locked to each other by the latching portion, thereby making it possible to prevent detachment of the two connectors from each other.
Further, it is preferable that the latching portion be elastic in strength for latching onto the connector or the mating connector, and an opening into which the elastic member is fitted is formed in either the mating connector or the connector. The latching of the elastic member onto the connector or the mating connector makes the connection between the connector and the mating connector secure. Further, the force with which the elastic member is latched onto the connector or the mating connector increases due to the elasticity of the elastic member. Further, with the opening being thus formed, the elastic member is fitted into the opening, whereby the degree of latching is enhanced to achieve secure locking.
Further, it is preferable that the fixing means be formed of a metal member for causing noise flowing in the cable upon connecting the connector to the mating connector to flow to the ground. The mating housing may also include a metal plate for causing electrical noise flowing in the cable to flow directly to a ground, rather than a signal connection with the fixing means being formed on the metal plate. In addition, it is also conceivable to form the latching portion in a part of the metal plate.
According to the present invention, the cable insertion portion corresponds to a location of the mating connector where, upon connecting the connector to the mating connector, stress concentration occurs due to the connection, and is fixed onto the substrate by the fixing means, whereby the strength of the cable insertion portion can be enhanced. As a result, even when stress develops in the mating connector due to contact pressure between the terminals when the connector and mating connector are mated together, it is possible to effectively prevent the cable insertion portion and, by extension, the housing from undergoing deformation.
Further, the connector and the mating connector are locked to each other by the latching portion to thereby prevent detachment of the two connectors from each other. Accordingly, even when, after connecting the connector and the mating connector with each other, a force for releasing this connection acts on the two connectors, it is possible to prevent detachment of the connector and the mating connector from each other.
Further, by forming the fixing means as a metal plate so as to allow the noise flowing in the cable to flow to the ground, the applicability of the fixing means can be increased.
These and other objects, features and advantages of the present invention will be clearly understood through a consideration of the following detailed description.
In the course of this detailed description, the reference will be frequently made to the attached drawings in which:
As can be seen from, for example,
As shown best in
As shown in
The plug housing 107 includes a recess 116 that is open at the top and at the rear (see
The second cable holder 110, which is shaped like a hollow bar with an inverted U-shaped cross section and is formed from a conductive material, preferably metal, is located rear of the first cable holder 108. Further, when the second holder 110 is attached onto the recess 116, due to the pressing force acting at this time, the outer conductor C8 and the outer insulator C10, which is located immediately rear of the outer conductor C8, at the distal end portion Ca of each coaxial cable C, are sandwiched from above and below between the second cable holder 110 and the plug housing 107. (
Further, the plug housing 107 has a conductive insert 119 (
As shown in
As shown in
An engagement window, or slot h2, is formed in each of the side walls 112L, 112R (
A folded portion 112e that has an L-shaped configuration is formed in each of the left and right end portions along the rear edge of the upper wall 112U (
It should be noted that in attaching each coaxial cable C to the plug connector 100, the outer sheath at the distal end portion Ca of the coaxial cable C is stripped off in advance to leave the signal line C6 and the outer conductor C8 exposed. (
Next, the receptacle connector 202 of the present invention will be described with reference to
The recess, or receptacle 203, is formed in the housing and is surrounded by a walls, including front edge wall 204F and rear edge wall 204R which are respectively located in the front and rear. A left edge wall 205L and a right edge wall 205R which connect to the front and rear edge walls 204F and 204R define the other two sides of the recess, while a bottom plate, or floor 206, complete the recess 203. A release hole 232 is formed at the central portion of the rear long edge wall 204R and communicates with the recess 203 and is preferably formed as a rectangular cutout. Therefore, the fitting recess 203 is open at the top of the receptacle housing and along the rear edge thereof. (
The release hole 232 is provided so as to permit the cables C to project out of the connector assembly when the plug connector 100 is mated with the receptacle connector 202. The length dimension of the release hole 232 is formed to be slightly larger than the width of all of the cables C of the cable-attached plug connector I. The portion of the rear long edge wall 204R where the release hole 232 is formed is herein referred to as a cable insertion portion. The planar configuration of the fitting recess 203 is also determined by the configuration of the metal plate 209 described below in detail. It should be noted that a stippling is present in the drawings as applied to the metal plate 209 for purposes of clearly indicating the metal plate 209.
As shown in
The front remaining portion 211F has rectangular cutouts 212L, 212R formed near the opposite ends thereof, and the portion of the front remaining portion 211F between the cutouts 212L, 212R constitutes a central portion 212M. Further, inwardly dangling edge members 215 are respectively formed at opposing positions of substantially central portions of the left remaining portion 211L and right remaining portion 211R. The left and right edge members 215 are the portions that come into contact with the left and right side walls 112L, 112R of the upper shell 112 of the plug connector 100 when the receptacle connector 202 and the plug connector 100 are connected together. (
In the rear edge surface 213R of the metal plate 209, a rectangular cutout 217 is formed by punching so that the central portion of the rear edge surface 213R is upwardly open. An inwardly bent member 219 that is folded inwards is formed at either end portion of the rear edge surface 213R. The size and configuration of the cutout 217 are determined in conformity with those of the release hole 232 in the rear long edge wall 204R of the receptacle housing 207. The rear edge surface 213R serves to reinforce the rear long edge wall 204R to enhance the strength of the same.
As can be seen from
Further, at the lower edge of the rear edge surface 213R of the metal plate 209, a pair of outwardly bent members 222 that are folded outwards are integrally formed with the lower edge corresponding to the opposite end portions of the cutout 217. As seen in the state as shown in
The receptacle housing 207, in which the metal plate 209 having the configuration as described above is to be disposed, is formed through integral molding involving sealing the metal plate 209 with synthetic resin and other insulating material such that the rear edge surface 213R of the metal plate 209 is opposed to the inner surface of the rear long edge wall 204R of the receptacle housing 207, the front edge surface 213F of the metal plate 209 is opposed to the front long edge wall 204F of the receptacle housing 207, and that the opposite ends of the metal plate 209 are respectively opposed to the left short edge wall 205L and right short edge wall 205R of the receptacle housing 207.
It should be noted that the metal plate 209 need not be held in the receptacle connector by insert or over molding, but it may be attached to the receptacle housing 207 by press-fitting or adhesion. Preferably, the receptacle housing 207 and the metal plate 209 abut each other. The rear edge surface 213R abuts the outer surface of the rear long edge wall 204R of the receptacle housing 207 or it may be embedded in the rear long edge wall 204R. Further, in the rear long edge wall 204R of the receptacle housing 207 in which the metal plate 209 is disposed, an opening 223 is formed in the portion of the rear long edge wall 204R corresponding to the inwardly bent member 219 (
Further, in the front edge wall 204F of the receptacle housing 207, the portion thereof corresponding to the central portion 212M of the metal plate 209 is formed so as to allow the receptacle-side terminals 221, which have a horizontally flipped S-shaped configuration in side view, to be arranged in parallel along the long edge of the receptacle housing 207 (
The number of the receptacle-side terminals 221 to be arranged in the receptacle-side terminal placing portion 204Fm is the same as the number of the plug connector terminals 121. Further, the length of the release hole 232 formed in the rear long edge wall 204R of the receptacle housing 207 is set substantially in conformity with the length dimension (taken in the right-to-left direction) of the receptacle-side terminal placing portion 204Fm in which the plurality of receptacle-side terminals 221 are arranged in parallel.
Upon connecting the plug connector 100 and the receptacle connector 202 together, the receptacle-side terminals 221 and the plug-side terminals 121 are brought into pressure contact with each other, so the receptacle-side terminals 221 are compressed in the longitudinal direction by the pressurizing force from the plug-side terminals 121 (see
Prior to the connection of the plug connector 100 and the receptacle connector 202 with each other, the receptacle connector 202 is first attached onto the substrate P. In effecting this attachment, the receptacle-side terminals 221 are soldered to appropriate pads or contacts on the substrate P and the pair of outwardly bent members 222 are soldered onto the substrate P and firmly fixed in place. Accordingly, electrical noise propagating through the outer conductor C8 of each coaxial cable C when connecting the plug connector 100 and the receptacle connector 202 together, as well as the electrical noise generated from components connected to the substrate P are removed along a ground path from the outer conductor C8—the second cable holder 110—the pair of bent members 112a of the upper shell 112—the upper wall 112U—the left and right side walls 112L, 112R—the left and right edge members 215 of the metal plate 209—the left remaining portion 211L (or the right remaining portion 211R) of the metal plate 209—the rear edge surface 213R—the outwardly bent member 222—and then to the substrate P.
As shown in
An additional path for removing the electrical noise flowing in the outer conductor C8 of each coaxial cable C is the route of a ground line from the outer conductor C8—the good conductor 119—the pair of outwardly bent members 222—the substrate P. The influence of noise on the signal can be made smaller as the distance between the outer conductor C8 of each coaxial cable C and the outwardly bent members 222 becomes shorter. As a result, the influence of noise on the signal can be suppressed. In this regard, the last route is shorter than the two former routes. As described above, the upper shell 112, the metal plate 209, and the good conductor 119 serve to cause the noise flowing in each coaxial cable C to flow to the ground.
Further, upon fitting the plug connector 100 into the fitting recess 203 of the receptacle connector 202, the S-shaped receptacle-side terminals 221 undergo elastic deformation (
The contact pressure causes the plug connector 100 as a whole to move towards the rear long edge wall 204R. The resulting pressurizing force acting at this time causes warpage of the rear long edge wall 204R. Further, since the release hole 232 is formed in the rear long edge wall 204R, stress concentration occurs in the rear long edge wall 204R.
In this regard, however, the rear edge surface 213R of the metal plate 209, which serves to reinforce the rear long edge wall 204R to enhance the strength of the same, functions as the support portion for the rear long edge wall 204R of the receptacle housing 207. Accordingly, the strength of the rear long edge wall 204R can be enhanced even though the release hole 232 is formed in the rear long edge wall 204R. The pair of outwardly bent members 222 constituting a part of the rear edge surface 213R are firmly fixed onto the substrate P by soldering. Accordingly, even when stress concentration occurs in the rear long edge wall 204R of the receptacle housing 207 due to the contact pressure that acts between the plug-side terminals 121 and the receptacle-side terminals 221 upon connecting the plug connector 100 and the receptacle connector 202 together, the rear long edge wall 204R can be fixed to the substrate P through the pair of outwardly bent members 222, whereby the strength of the rear long edge wall 204R can be enhanced irrespective of the presence/absence of the release hole 232.
As a result, it is possible to effectively prevent the rear long edge wall 204R and, by extension, the receptacle housing 207 from deforming. In this sense, the rear edge surface 213R including the outwardly bent members 222 can be referred to as fixing means for fixing the rear long edge wall 204R to the substrate P. The pair of outwardly bent members 222 constitute a part of the metal plate 209, and the metal plate 209 is disposed in the receptacle housing 207. Accordingly, there is no need to separately prepare the pair of outwardly bent members 222 to enhance the strength of the rear long edge wall 204R, thereby achieving improved workability and reduced number of components.
Further, upon connecting the plug connector 100 to the receptacle connector 202, the inwardly bent member 219 is latched onto the opening 114 formed in the folded portion 112e of the upper shell 112, thereby making the locking between the plug connector 100 and the receptacle connector 202 secure. (
In addition, it is needless to mention that the present invention is not limited to the above illustrated examples but may be subject to various modifications without departing from the gist of the present invention. For example, while in the above-described embodiment the inwardly bent member 219 is provided to the receptacle connector 202 and the opening 114 onto which the inwardly bent member 219 latches is provided in the plug connector 100, the locations for disposing the inwardly bent member 219 and the opening 114 may be interchanged so that the inwardly bent member 219 is provided to the plug connector 100 and the opening 114 is provided in the receptacle connector 202.
Further, while in this embodiment each outwardly bent member 222 is formed as a part of the metal plate 209, it is also possible to provide the outwardly bent member 222 as a metal member separate from the metal plate 209 and to use the outwardly bent member 222 as fixing means which allows the electrical noise flowing in each cable C to flow to the ground and which can be used alone for mounting the rear long edge wall 204R to the substrate P.
In addition, the rear edge surface 213R having the outwardly bent members 222 may be provided not as a part of the metal plate 209 but as a separate metal member. A ground terminal that electrically connects to the substrate P may be provided to a part of the metal plate 209 that is electrically connected to the upper shell 112 to thereby remove the noise flowing in each cable C through the ground terminal.
The present invention is applicable not only to a vertical type connector but also to a horizontal type connector device. In the case of such a horizontal type connector device as well, upon connecting the connector to the mating connector, stress concentration may occur at some location of the mating connector due to a contact pressure between the plug-side terminals and the receptacle-side terminals, which is generated due to the above connection. Therefore, by firmly fixing the above-mentioned location onto the substrate by the fixing means, the location where stress concentration occurs can be fixed onto the substrate, thereby achieving enhanced strength at that location. Therefore, it is possible to prevent deformation from occurring at the location where stress concentration occurs and in the vicinity thereof.
Number | Date | Country | Kind |
---|---|---|---|
2005-169942 | Jun 2005 | JP | national |
Filing Document | Filing Date | Country | Kind | 371c Date |
---|---|---|---|---|
PCT/IB2006/004111 | 6/9/2006 | WO | 00 | 2/25/2011 |