Reduced layer keyboard stack-up

Information

  • Patent Grant
  • 9934915
  • Patent Number
    9,934,915
  • Date Filed
    Wednesday, June 10, 2015
    9 years ago
  • Date Issued
    Tuesday, April 3, 2018
    6 years ago
Abstract
Disclosed herein is a stack-up for an input device. The stack-up may include a flexible substrate having a switch and a light source. The switch has at least two contacts that are bridged in response to actuation of a dome that is positioned above the switch. The flexible substrate includes a signal trace for detecting the actuation of the dome and a power trace for providing power to the light source.
Description
FIELD

The described embodiments relate generally to an assembly for an input device. More particularly, the present embodiments relate to a keyboard stack-up for a keyboard assembly.


BACKGROUND

Electronic devices typically include one or more input devices such as keyboards, touchpads, mice, or touchscreens to enable a user to interact with the device. These input devices can be integrated into an electronic device or can stand alone as discrete devices that transmit signals to the electronic device via a wired or wireless connection.


A conventional keyboard typically includes a dome switch, two layers (typically plastic) separated by a spacer and a contact switch coupled to a printed circuit board. Upon actuation of the dome, the first layer deflects and comes into contact with the second layer. As the layers contact one another, the switch closes and ultimately provides a detectable input. However, as more layers are included in the keyboard assembly, the overall thickness of the keyboard assembly increases. When a keyboard or other input device is integrated with an electronic device, particularly small or thin form factor electronic devices, the increased thickness of the keyboard assembly or input device may be undesirable.


SUMMARY

Generally, embodiments disclosed herein are directed to an input assembly. The input assembly includes a top case defining a keyhole. The keyhole has a support structure that extends from a base of the opening to form a ledge or platform. The input assembly also includes a stack-up positioned on the support structure. The stack-up includes a substrate, an in-plane switch coupled to the substrate, and a dome positioned above the in-plane switch. The dome is adapted to cause the in-plane switch to conduct a signal in response to actuation of the dome.


Also disclosed is a stack-up for an input device. The stack-up includes a substrate. In some embodiments, the substrate may be flexible. A switch having at least two contacts is coupled to the substrate. An optional light source may also be coupled to the substrate. The stack-up also includes a dome positioned above the switch. Actuation of the dome causes a conductive material positioned above the switch to bridge the at least two contacts of the switch. The substrate contains a signal trace for detecting the actuation of the dome. When the light source is present, the substrate also includes a power trace for providing power to the light source.


In yet another embodiment, a stack-up for an input device may include a flexible substrate having a signal trace formed thereon. The stack-up also includes a switch having at least two contacts and a dome positioned above the switch. A conductive material may be integrated with a bottom surface of the dome. The conductive material of the dome bridges the at least two contacts of the switch in response to actuation of the dome.





BRIEF DESCRIPTION OF THE DRAWINGS

The disclosure will be readily understood by the following detailed description in conjunction with the accompanying drawings, wherein like reference numerals designate like structural elements, and in which:



FIG. 1 illustrates an example electronic device that may use the keyboard assembly and keyboard stack-up described herein according to one or more embodiments of the present disclosure;



FIG. 2 illustrates an example keyboard assembly according to one or more embodiments of the present disclosure;



FIG. 3A illustrates an example reduced layer keyboard stack-up including a keycap and a hinge mechanism according to one or more embodiments of the present disclosure;



FIG. 3B illustrate a top-down view of an example in-plane switch according to one or more embodiments of the present disclosure;



FIG. 4 illustrates an example reduced layer keyboard stack-up including a keycap and a hinge mechanism according to one or more alternate embodiments of the present disclosure; and



FIG. 5 illustrates a cross-section view of an example keyboard assembly according to one or more embodiments of the present disclosure.





DETAILED DESCRIPTION

Reference will now be made in detail to representative embodiments illustrated in the accompanying drawings. It should be understood that the following descriptions are not intended to limit the embodiments to one preferred embodiment. To the contrary, it is intended to cover alternatives, modifications, and equivalents as can be included within the spirit and scope of the described embodiments as defined by the appended claims.


The following disclosure relates generally to various layers of components that form a keyboard assembly or an input assembly for an input device. The layers of the components are referred to herein as a “stack-up.” More specifically, the disclosure is directed to a reduced layer keyboard stack-up for a keyboard assembly or other input assembly of an electronic device. The stack-up may be reduced in size and some components or layers of the stack-up may be removed to reduce the overall size, dimension and/or thickness of the keyboard or input device.


Conventional keyboard stack-ups often include at least three discrete layers with each layer having a different thickness. More specifically, conventional keyboard stack-ups include a switch mounted on a polyethylene terephthalate (PET) membrane, a backlight layer that includes one or more light sources and one or more light guides, and a structural layer typically made of a stainless steel sheet metal. As the PET membrane deflects, electrical traces associated with the switch contact each other for an electrical make.


In contrast, the keyboard stack-up of the present disclosure uses a flexible substrate (such as a flex circuit) as the bottom layer for the switch. As such, one or more light sources may be coupled to the flexible substrate such that they are on the same layer as the switch. More specifically, the keyboard stack-up of the present disclosure utilizes an in-plane switch that enables the keyboard stack-up to have fewer layers, thereby reducing the overall thickness of the keyboard stack-up and any associated keyboard. Because the keyboard stack-up utilizes a flexible substrate, the keyboard stack-up, or an associated keyboard, may be manipulated, bent, or otherwise deflected, at least at particular points or portions. The reduced profile and the ability of the keyboard stack-up to be manipulated in such a manner may enable a keyboard assembly, and more particularly a top case of a keyboard assembly, to have additional support structures and/or increased thickness without increasing or unduly increasing the overall thickness of the keyboard and/or the electronic device. As such, the keyboard assembly may be used with electronic devices having a small form factor and/or a thin profile.


The reduced layer keyboard stack-up includes a flexible substrate, a dome, an in-plane switch and an optional light source. The in-plane switch and the light source are coupled to the flexible substrate. In some embodiments, the flexible substrate may also be laminated or coupled to a printed circuit board or other stiffener.


The in-plane switch includes two or more contacts that are bridged in response to contact from a conductive material. More specifically, as the dome is actuated, collapses or is otherwise compressed, a conductive material, either on a deflection layer of the stack-up or on the dome is brought into contact with the two or more contacts of the in-plane switch to conduct a signal. The signal may be transmitted along a signal trace that is embedded in or otherwise provided on the flexible substrate. In addition, a power trace may also be provided in or on the flexible substrate to provide power to the light source.


These and other embodiments are discussed below with reference to FIGS. 1-5. However, those skilled in the art will readily appreciate that the detailed description given herein with respect to these Figures is for explanatory purposes only and should not be construed as limiting.



FIG. 1 illustrates an example electronic device 100 that may use the keyboard assembly and keyboard stack-up described above and herein. In a non-limiting example, the electronic device 100 may be a laptop computer having an integrated keyboard 110. The keyboard 110 may include various keys 120. The keys 120 may each be associated with a respective keyboard stack-up such as described herein. Further, each key 120 may be supported by a support structure of a top case such as described below.


While a laptop computer is specifically shown and described, the electronic device 100 may be configured as any electronic device that may utilize the keyboard assembly and/or the keyboard stack-up described herein. For example, the electronic device 100 may be a desktop computer, a tablet computing device, a smartphone, a gaming device, a display, a digital music player, a wearable computing device or display, a health monitoring device, and so on. In addition, while a keyboard is specifically mentioned, the embodiments described herein may be used in a variety of input devices such as, buttons, switches and so on.



FIG. 2 illustrates an exploded view of an example keyboard assembly 200 according to one or more embodiments of the present disclosure. The keyboard assembly 200 may be used with an electronic device, such as, for example, a laptop computer shown in FIG. 1 or other such electronic device.


The keyboard assembly 200 includes a top case 210. The top case 210 may take the form of an exterior protective casing or shell for the electronic device. The top case 210 may also protect the various internal components of the electronic device including a keyboard stack-up array 250.


Top case 210 may be formed as a single, integral component. The top case 210 may be coupled to a bottom case which is not shown for clarity. The top case 210 may have a group of distinct components that may be configured to be coupled to one another. In non-limiting examples, top case 210 may be made from metal, a ceramic, a rigid plastic or another polymer, a fiber-matrix composite, and so on.


The top case 210 may define or otherwise include one or more openings or keyholes 220. The keyholes 220 may be configured to receive keycaps 240 that are associated with each key of a keyboard. The keycaps 240 may partially protrude or otherwise extend from the top case 210 through the keyholes 220. In addition, each keycap 240 may be at least partially surrounded by a portion of the top case 210. Stated another way, the keyholes 220 that are formed in the top case 210 cause ribs 230 to be formed in the top case 210. The ribs 230 are positioned between the keycaps 240 to divide and separate each key of the keyboard. The ribs 230 may provide structural support for the top case 210.


The keyboard assembly 200 also includes a keyboard stack-up array 250. The keyboard stack-up array 250 includes multiple keyboard stack-ups 260 (shown in detail in B-B) secured within or otherwise coupled to a frame 270. In some implementations, the frame 270, or portions of the frame 270 may be flexible or bendable. For example, different portions of the frame 270 may be coupled to individual keyboard stack-ups 260. As such, the frame 270 may enable each individual keyboard stack-up 260 to move independently of one another. Thus, each keyboard stack-up 260 may be inserted into respective keyholes 220 and supported by a support structure of the top case 210.


Each keyboard stack-up 260 in the keyboard stack-up array 250 may be similar to the keyboard stack-up described below. That is, each keyboard stack-up 260 may include a substrate, an in-plane switch (not shown) a dome 280 positioned over the in-plane switch, a light source 290, a signal trace and a power trace.


The frame 270 may have similar pattern or structure as the ribs 230 of the top case 210. Accordingly, the frame 270 may provide added structural support for the top case 210. The frame 270 may have various signal traces and/or power traces formed thereon for each light source 290 and in-plane switch coupled to respective keyboard stack-ups 260.


In alternative embodiments, the keyboard assembly 200 may be used to create a flexible keyboard. In such embodiments, the top case 210 may be omitted or may be formed from a flexible material. The flexible material, and more specifically the flexible keyboard, may have a maximum bend radius such that components (e.g., traces, switches and so on) of the keyboard assembly are not damaged. In other implementations, each component of the keyboard stack-up 260 may be placed or otherwise coupled to a flex.



FIG. 3A illustrates an example reduced layer keyboard stack-up 300 including a keycap 310 and a hinge mechanism 320 according to one or more embodiments of the present disclosure. The keycap 310 may be coupled to the hinge mechanism 320 using one or more retaining features 325. The hinge mechanism 320 enables the keycap 310 to move from an uncompressed state to a compressed state and vice versa. Example hinge mechanisms 320 include, but are not limited to, a butterfly hinge mechanism, a scissor hinge mechanism, a telescoping hinge mechanism, a sliding hinge mechanism and so on. The hinge mechanism 320 may also be coupled to a substrate 330 of the keyboard stack-up 300.


The substrate 330 of the keyboard stack-up 300 may be flexible. In other implementations, the substrate 330 may be a printed circuit board. The various layers (including additional plastic or deflection layers not shown in the figures) of the keyboard stack-up 300 may be laminated or otherwise coupled to a printed circuit board or a flex. Further, some of the connections or traces may be provided on or otherwise formed on the printed circuit board and/or the flex and provided to the components of the keyboard stack-up 300.


Multiple keyboard stack-ups 300 may be coupled together to form a keyboard stack-up array, such as, for example, keyboard stack-up array 250 (FIG. 2). Accordingly, each key of a keyboard may have a discrete keyboard stack-up 300. As such, each key of a keyboard may have its own keycap 310, hinge mechanism 320, light source 340 and so on. Accordingly, each key of the keyboard may be illuminated by its own light source 340 and the illumination of each key may be separately tuned or otherwise adjusted.


Each keyboard stack-up 300 in the array may be inserted into or otherwise coupled to a top case of a keyboard assembly such as described herein. More specifically, a top case of the keyboard assembly may include a ledge or other support structure that is adapted to receive and support an individual keyboard stack-up 300 or multiple keyboard stack-ups 300.


The keyboard stack-up 300 may also include a stiffener. The stiffener may provide additional structural support for the keyboard stack-up 300. The stiffener may be aluminum, stainless steel, plastic or other such material. Stiffeners of varying thicknesses may be used depending on the stiffness of the substrate 330 and/or the desired stiffness of the keyboard stack-up 300. In other implementations, the stiffener may be omitted.


In embodiments where the substrate 330 is a printed circuit board, a stiffener may not be required. Optionally, where the substrate 330 is a flexible substrate (such as a flex circuit), a stiffener may be coupled to the flexible substrate to provide additional structural support for the keyboard stack-up 300 and/or a top case of the electronic device in which the keyboard stack-up 300 is placed. In some embodiments, the flexible substrate or other such flexible material may be coupled to a printed circuit board.


The keyboard stack-up 300 may also include a light source 340. The light source 340 may be coupled to an optional light guide to illuminate the keycap 310. The keycap 310 may also include a glyph on an exposed surface. The glyph may be transparent or substantially transparent to enable light from the light source 340 to pass through the glyph and illuminate the keycap 310. In some implementations, the keycap 310 may be substantially opaque while the glyph is transparent or substantially transparent. In some implementations, the perimeter of the keycap 310 may also be illuminated. The light source 340 is coupled to the substrate 330 and receives power from a power trace that is printed, formed or otherwise disposed in or on the substrate 330. In some embodiments, the light source 340 is a light-emitting diode although other light sources may be used.


The keyboard stack-up 300 also includes an in-plane switch 350. Although an in-plane switch 350 is specifically mentioned, various switches may be used. The in-plane switch 350 may be coupled to the substrate 330. In some implementations, the base of the in-plane switch 350 may be the substrate 330. For example, and as previously explained, the substrate 330 may be a flexible substrate or a flex and the flexible substrate or the flex is the base of the in-plane switch 350.


The contacts (e.g., outer contact 353 and inner contact 355) of the in-plane switch 350 may be planar or substantially planar with respect to a surface of the substrate 330. In other implementations, the contacts of the in-plane switch 350 may protrude or extend from the substrate 330. In yet other implementations, the contacts may be recessed with respect to the substrate 330.


The in-plane switch 350 may include two (or more) contacts. Specifically, the in-plane switch 350 may have an outer contact 353 and an inner contact 355. As shown in FIG. 3B, which is a top-down view of the in-plane switch 350, the outer contact 353 and the inner contact 355 may be concentric. That is, the inner contact 355 may be surrounded by the outer contact 353.


In some implementations a trace may connect the inner contact 355 with the outer contact 353. Thus, contact by a conductive material on either the inner contact 355 or the outer contact 353 may cause the in-plane switch 350 to conduct a signal. In other implementations, each of the inner contact 355 and outer contact 353 may have separate traces. In such an implementation, a signal is conducted when a conductive material contacts both the inner contact 355 and the outer contact 353. Because the traces are in-plane with the contacts or may otherwise be formed in or on the substrate 330, the outer contact 353 may have a gap that allows the trace of the inner contact 355 to connect with the inner contact 355 but not the outer contact 353.


Referring back to FIG. 3A, when a conductive material 360, such as, for example a silver pad, contacts the inner contact 355 and/or the outer contact 353 (depending on the implementations described above) of the in-plane switch 350 though actuation of the keycap 310 and/or collapse of the dome 380, the conductive material 360 bridges the contacts to create an electrical connection. The electrical connection generates a signal indicative of the received input. In other implementations, the conductive material 360 may short a connection or otherwise draw power down between the inner contact 355 and the outer contact 353 thereby generating a signal indicative of received input.


Although a silver pad is specifically mentioned in the example above, other conductive materials may be used. In addition, once the signal is generated, it may be transmitted on a signal trace formed on, integrated with or otherwise printed on the substrate 330.


The keyboard stack-up 300 also includes a dome 380 coupled to a deflection layer 370 and positioned over the in-plane switch 350. The dome 380 and the deflection layer 370 may also be placed over the light source 340. As such, one or both of the dome 380 and the deflection layer 370 may be transparent or at least partially transparent and may act as a light guide such that light may pass though and illuminate the keycap 310.


The deflection layer 370 may include a conductive material positioned in and/or on a bottom surface. The deflection layer 370 may be thermoplastic polymer such as, for example, polyethylene terephthalate. Although a specific example has been given, the deflection layer 370 may be made from various materials.


In some embodiments, the dome 380 is a rubber dome. In other embodiments, the dome may be a plastic dome, a metal dome or may be made from various other materials. The dome 380 is configured to collapse, be deformed or otherwise compress in response to actuation of the dome 380 and/or the keycap 310. While a dome 380 is specifically shown and described, the dome 380 may be optional or may be replaced by a spring, a plunger on a keycap 310 and other such mechanisms that may be used to deflect or actuate the deflection layer 370 or bridge the contacts of the in-plane switch 350.


As the dome 380 is compressed, a nub 385 or other portion of the dome 380 causes the deflection layer 370, and more specifically, the conductive material 360 on the bottom surface of the deflection layer 370, to deflect toward the contacts of the in-plane switch 350. Once the conductive material 360 comes into contact with the contacts of the in-plane switch 350, a signal indicative of which key or button of the electronic device has been actuated is generated and transmitted along the signal trace of the substrate 330 to an associated electronic device or a dedicated processing element in the keyboard. When the dome 380 returns to its nominal state, the deflection layer 370 also returns to its nominal state and the conductive material 360 is removed from the contacts of the in-plane switch 350.


The keyboard stack-up 300 may also have one or more spacers 390 positioned between the substrate 330 and the deflection layer 370. The spacers 390 may be used to provide separation between the conductive material 360 and the contacts of the in-plane switch 350. In addition, the spacers 390 may assist the deflection layer 370 in returning to its nominal state.



FIG. 4 illustrates an example reduced layer keyboard stack-up 400 according to one or more alternate embodiments of the present disclosure. The reduced layer keyboard stack-up 400 is generally the same as the reduced layer keyboard stack-up 300 shown and described with respect to FIG. 3A but without the deflection layer 370.


As such, the reduced layer keyboard stack-up 400 includes a keycap 410, a hinge mechanism 420, a substrate 430, an optional light source 440, and an in-plane switch 450. The light source 440 is configured to illuminate the keycap 410 while the in-plane switch 450 is configured to detect actuation of keycap 410 and/or dome 470 of the keyboard stack-up 400. The contacts of the in-plane switch 450 may be concentric. For example, the in-plane switch 450 may have an outer contact 453 and an inner contact 455. The substrate 430 may also include a power trace for providing power to the light source 440 and may include a signal trace for transmitting a signal generated by the in-plane switch 450.


The substrate 430 of the keyboard stack-up 400 may be flexible. In other implementations, the substrate 430 is a printed circuit board. One or more stiffening layers (not shown) may also be applied to various parts of the keyboard stack-up 400 such as described above. The keyboard stack-up 400 also includes a dome 470. The dome 470 may be similar to the dome 380 described above. The dome 470 may be directly coupled, laminated or adhered to the flex or substrate 430.


The keyboard stack-up 400 does not include a deflection layer as the keyboard stack-up 300 of FIG. 3A. However, in lieu of a deflection layer, the dome 470 may include a conductive material 460 disposed on a nub 475 or other surface of the dome 470. In some implementations, the conductive material 460 may be co-molded or otherwise integrated with the dome 470. In other implementations, the conductive material 460 is surface mounted to the dome 470. In yet other implementations, the conductive material 460 may be painted, etched or printed on the nub 475 or other surface of the dome 470. As with the conductive material disclosed above, the conductive material 460 in the present embodiment may be configured to bridge a connection between the contacts of the in-plane switch 450 when the keycap 410 and/or the dome 470 is actuated or collapsed.



FIG. 5 illustrates a cross-section view of an example keyboard assembly 500 according to one or more embodiments of the present disclosure. The cross-section view shown in FIG. 5 may be taken along A-A of FIG. 2 when the keyboard assembly 200 is assembled.


The keyboard assembly 500 may include a top case 510. The top case 510 may have a first thickness and may further include a keyhole 520 and a support structure 530. The support structure 530 may have a thickness that is less than the thickness of the top case 510.


In some embodiments, the support structure 530 may extend from the top case 510 and may also provide structural support for the top case 510. More specifically, the support structure 530 may extend from the top case 510 and may also extend at least partially into the keyhole 520 to form a ledge. The support structure 530 also defines an opening 540 on a bottom surface of the top case 510. The support structure 530 also supports the substrate 550 (or flex) and the dome of the keyboard stack-up 560.


The opening 540 receives a keyboard stack-up 560 which may be placed on or coupled to the ledge of the support structure 530 such that the support structure is underneath substrate of the keyboard stack-up 560. For example, a respective keyboard stack-up 560 of a keyboard stack-up array (such as the keyboard stack-up array 250 shown in FIG. 2) may be inserted or otherwise threaded through the opening 540 on a bottom of the top case 510. Once inserted, a keycap 570 may be coupled to the keyboard stack-up 560 via the keyhole 520 disposed on a top surface of the top case 510. As such, the support structure 530 provides structural support for the keyboard stack-up 560 and also provides structural support for the keyboard assembly 500.


For example, the support structure 530 may prevent undesired deflection of the keyboard stack-up 560 during use and/or during manufacture and may also prevent a keycap 570 from plunging under the top case 510 or under the ribs (e.g., ribs 230 of FIG. 2) of the top case 510.


As with the other keyboard stack-ups described herein, the keyboard stack-up 560 operates as previously described.


The keyboard stack-up 560, and more specifically the components of the keyboard stack-up 560 may be sealed (e.g., liquid sealed) to the substrate 550 of the keyboard stack-up 560. In some embodiments, the keyboard stack-up 560 may also include one or more air pockets or vents on a bottom surface that permit the structure to cool and to evacuate air under the dome when the dome collapses.


Although discussed herein as a keyboard assembly, it is understood that the disclosed embodiments can be used as an input assembly for any depressible input mechanism such as, for example, a button, and may be used in a variety of input devices and/or electronic devices. That is, the keyboard stack-up, and the components of the keyboard stack-up disclosed herein may be utilized or implemented in a variety of input devices for an electronic device including, but not limited to buttons, switches, toggles, wheels, touch screens and so on.


The foregoing description, for purposes of explanation, used specific nomenclature to provide a thorough understanding of the described embodiments. However, it will be apparent to one skilled in the art that the specific details are not required in order to practice the described embodiments. Thus, the foregoing descriptions of the specific embodiments described herein are presented for purposes of illustration and description. They are not targeted to be exhaustive or to limit the embodiments to the precise forms disclosed. It will be apparent to one of ordinary skill in the art that many modifications and variations are possible in view of the above teachings.

Claims
  • 1. A keyboard assembly comprising: a top case defining a keyhole within which a ledge extends partially across the keyhole and defines an opening;a stack-up positioned on a top surface of the ledge and comprising: a keycap;a dome positioned below the keycap; anda switch positioned below the dome; anda flexible substrate operably coupled to the switch and extending through the opening.
  • 2. The keyboard assembly of claim 1, further comprising a signal trace formed on the flexible substrate for detecting actuation of the switch.
  • 3. The keyboard assembly of claim 1, wherein the ledge has a secondary thickness less than a primary thickness of the top case.
  • 4. The keyboard assembly of claim 1, further comprising a deflection layer positioned between the dome and the switch.
  • 5. The keyboard assembly of claim 1, wherein the top case is at least partially flexible.
  • 6. The keyboard assembly of claim 1, further comprising a light source coupled to the flexible substrate.
  • 7. The keyboard assembly of claim 6, further comprising a power trace formed on the flexible substrate for providing power to the light source.
  • 8. The keyboard assembly of claim 6, wherein the light source is a light-emitting diode.
  • 9. An input assembly comprising: a top case defining a keyhole within which a ledge extends partially across the keyhole and defines an opening;a keycap positioned at least partially in the keyhole;a hinge mechanism positioned below and coupled to the keycap;a switch positioned between the keycap and above the ledge;a substrate extending from within the keyhole through the opening.
  • 10. The input assembly of claim 9, wherein the hinge mechanism is coupled to the substrate on a first side.
  • 11. The input assembly of claim 10, wherein the substrate is coupled to the ledge on a second side opposite to the first side.
  • 12. The input assembly of claim 9, wherein the switch includes a signal trace and a power trace, wherein a signal is sent along the signal trace in response to the movement of the keycap.
  • 13. The input assembly of claim 12, further comprising: a light source coupled to the substrate and the power trace.
  • 14. An electronic device comprising: a casing defining a keyhole;a support structure extending partially across the keyhole and defining an opening within the keyhole;an input stackup disposed in the keyhole and comprising: a keycap;a switch positioned below the keycap; anda flexible substrate operably coupled to the switch and extending through the opening.
  • 15. The electronic device of claim 14, further comprising a deflection layer positioned between the keycap and the switch.
  • 16. The electronic device of claim 14, wherein switch comprises concentric contacts.
  • 17. The electronic device of claim 14, wherein the casing has a first thickness and the support structure has a second thickness that is less than the thickness of the casing.
  • 18. The electronic device of claim 14, further comprising an actuation mechanism configured to bridge contacts of the switch, the actuation mechanism disposed between the keycap and the switch.
  • 19. The electronic device of claim 18, wherein: the actuation mechanism comprises conductive material disposed on a surface of the actuation mechanism; andthe conductive material is configured to bridge the contacts of the switch.
US Referenced Citations (310)
Number Name Date Kind
3657492 Arndt et al. Apr 1972 A
3917917 Murata Nov 1975 A
3978297 Lynn et al. Aug 1976 A
4095066 Harris Jun 1978 A
4319099 Asher Mar 1982 A
4349712 Michalski Sep 1982 A
4484042 Matsui Nov 1984 A
4596905 Fowler Jun 1986 A
4598181 Selby Jul 1986 A
4670084 Durand et al. Jun 1987 A
4755645 Naoki et al. Jul 1988 A
4937408 Hattori et al. Jun 1990 A
4987275 Miller et al. Jan 1991 A
5021638 Nopper et al. Jun 1991 A
5092459 Uljanic et al. Mar 1992 A
5136131 Komaki Aug 1992 A
5278372 Takagi et al. Jan 1994 A
5280146 Inagaki et al. Jan 1994 A
5340955 Calvillo et al. Aug 1994 A
5382762 Mochizuki Jan 1995 A
5408060 Muurinen Apr 1995 A
5421659 Liang Jun 1995 A
5422447 Spence Jun 1995 A
5457297 Chen Oct 1995 A
5477430 LaRose et al. Dec 1995 A
5481074 English Jan 1996 A
5504283 Kako et al. Apr 1996 A
5512719 Okada et al. Apr 1996 A
5625532 Sellers Apr 1997 A
5804780 Bartha Sep 1998 A
5828015 Coulon Oct 1998 A
5847337 Chen Dec 1998 A
5874700 Hochgesang Feb 1999 A
5875013 Takahara Feb 1999 A
5876106 Kordecki et al. Mar 1999 A
5878872 Tsai Mar 1999 A
5881866 Miyajima et al. Mar 1999 A
5898147 Domzaiski et al. Apr 1999 A
5924555 Sadamori et al. Jul 1999 A
5935691 Tsai Aug 1999 A
5960942 Thornton Oct 1999 A
5986227 Hon Nov 1999 A
6020565 Pan Feb 2000 A
6068416 Kumamoto May 2000 A
6215420 Harrison et al. Apr 2001 B1
6257782 Maruyama et al. Jul 2001 B1
6259046 Iwama et al. Jul 2001 B1
6377685 Krishnan Apr 2002 B1
6388219 Hsu et al. May 2002 B2
6423918 King et al. Jul 2002 B1
6482032 Szu et al. Nov 2002 B1
6530283 Okada et al. Mar 2003 B2
6538801 Jacobson et al. Mar 2003 B2
6542355 Huang Apr 2003 B1
6552287 Janniere Apr 2003 B2
6556112 Van Zeeland et al. Apr 2003 B1
6559399 Hsu et al. May 2003 B2
6560612 Yamada et al. May 2003 B1
6572289 Lo et al. Jun 2003 B2
6573463 Ono Jun 2003 B2
6585435 Fang Jul 2003 B2
6624369 Ito et al. Sep 2003 B2
6706986 Hsu Mar 2004 B2
6738050 Comiskey May 2004 B2
6750414 Sullivan Jun 2004 B2
6759614 Yoneyama Jul 2004 B2
6762381 Kunthady et al. Jul 2004 B2
6765503 Chan et al. Jul 2004 B1
6788450 Kawai et al. Sep 2004 B2
6797906 Ohashi Sep 2004 B2
6850227 Takahashi et al. Feb 2005 B2
6860660 Hochgesang et al. Mar 2005 B2
6911608 Levy Jun 2005 B2
6926418 Osterg.ang.rd et al. Aug 2005 B2
6940030 Takeda et al. Sep 2005 B2
6977352 Oosawa Dec 2005 B2
6979792 Lai Dec 2005 B1
6987466 Welch et al. Jan 2006 B1
6987503 Inoue Jan 2006 B2
7012206 Oikawa Mar 2006 B2
7030330 Suda Apr 2006 B2
7038832 Kanbe May 2006 B2
7129930 Cathey et al. Oct 2006 B1
7134205 Bruennel Nov 2006 B2
7146701 Mahoney et al. Dec 2006 B2
7151236 Ducruet et al. Dec 2006 B2
7151237 Mahoney et al. Dec 2006 B2
7154059 Chou Dec 2006 B2
7166813 Soma Jan 2007 B2
7172303 Shipman et al. Feb 2007 B2
7189932 Kim Mar 2007 B2
7256766 Albert et al. Aug 2007 B2
7283119 Kishi Oct 2007 B2
7301113 Nishimura Nov 2007 B2
7312790 Sato et al. Dec 2007 B2
7378607 Koyano et al. May 2008 B2
7385806 Liao Jun 2008 B2
7391555 Albert et al. Jun 2008 B2
7414213 Hwang Aug 2008 B2
7429707 Yanai et al. Sep 2008 B2
7432460 Clegg Oct 2008 B2
7510342 Lane et al. Mar 2009 B2
7531764 Lev et al. May 2009 B1
7541554 Hou Jun 2009 B2
7589292 Jung et al. Sep 2009 B2
7639187 Caballero et al. Dec 2009 B2
7639571 Ishii et al. Dec 2009 B2
7679010 Wingett Mar 2010 B2
7724415 Yamaguchi May 2010 B2
7781690 Ishii Aug 2010 B2
7813774 Perez-Noguera Oct 2010 B2
7842895 Lee Nov 2010 B2
7847204 Tsai Dec 2010 B2
7851819 Shi Dec 2010 B2
7866866 Wahlstrom Jan 2011 B2
7893376 Chen Feb 2011 B2
7923653 Ohsumi Apr 2011 B2
7947915 Lee et al. May 2011 B2
7999748 Ligtenberg et al. Aug 2011 B2
8063325 Sung et al. Nov 2011 B2
8077096 Chiang et al. Dec 2011 B2
8080744 Yeh et al. Dec 2011 B2
8098228 Shimodaira et al. Jan 2012 B2
8109650 Chang et al. Feb 2012 B2
8119945 Lin Feb 2012 B2
8124903 Tatehata et al. Feb 2012 B2
8134094 Tsao et al. Mar 2012 B2
8143982 Lauder et al. Mar 2012 B1
8156172 Muehl et al. Apr 2012 B2
8178808 Strittmatter et al. May 2012 B2
8184021 Chou May 2012 B2
8212160 Tsao Jul 2012 B2
8212162 Zhou Jul 2012 B2
8218301 Lee Jul 2012 B2
8232958 Tolbert Jul 2012 B2
8246228 Ko et al. Aug 2012 B2
8253048 Ozias et al. Aug 2012 B2
8253052 Chen Sep 2012 B2
8263887 Chen et al. Sep 2012 B2
8289280 Travis Oct 2012 B2
8299382 Takemae et al. Oct 2012 B2
8317384 Chung et al. Nov 2012 B2
8319298 Hsu Nov 2012 B2
8325141 Marsden Dec 2012 B2
8330725 Mahowald et al. Dec 2012 B2
8354629 Lin Jan 2013 B2
8378857 Pance Feb 2013 B2
8383972 Liu Feb 2013 B2
8384566 Bocirnea Feb 2013 B2
8404990 Lutgring et al. Mar 2013 B2
8451146 Mahowald et al. Mar 2013 B2
8431849 Chen Apr 2013 B2
8436265 Koike et al. May 2013 B2
8462514 Myers et al. Jun 2013 B2
8500348 Dumont et al. Aug 2013 B2
8502094 Chen Aug 2013 B2
8542194 Akens et al. Sep 2013 B2
8548528 Kim et al. Oct 2013 B2
8569639 Strittmatter Oct 2013 B2
8575632 Kuramoto et al. Nov 2013 B2
8581127 Jhuang et al. Nov 2013 B2
8592699 Kessler et al. Nov 2013 B2
8592702 Tsai Nov 2013 B2
8592703 Johnson et al. Nov 2013 B2
8604370 Chao Dec 2013 B2
8629362 Knighton et al. Jan 2014 B1
8642904 Chiba et al. Feb 2014 B2
8651720 Sherman et al. Feb 2014 B2
8659882 Liang et al. Feb 2014 B2
8731618 Jarvis et al. May 2014 B2
8748767 Ozias et al. Jun 2014 B2
8759705 Funakoshi et al. Jun 2014 B2
8760405 Nam Jun 2014 B2
8786548 Oh Jul 2014 B2
8791378 Lan Jul 2014 B2
8835784 Hirota Sep 2014 B2
8847090 Ozaki Sep 2014 B2
8847711 Yang et al. Sep 2014 B2
8853580 Chen Oct 2014 B2
8854312 Meierling Oct 2014 B2
8870477 Merminod et al. Oct 2014 B2
8884174 Chou et al. Nov 2014 B2
8921473 Hyman Dec 2014 B1
8922476 Stewart et al. Dec 2014 B2
8943427 Heo et al. Jan 2015 B2
8976117 Krahenbuhl et al. Mar 2015 B2
8994641 Stewart et al. Mar 2015 B2
9007297 Stewart et al. Apr 2015 B2
9012795 Niu et al. Apr 2015 B2
9029723 Pegg May 2015 B2
9063627 Yairi et al. Jun 2015 B2
9064642 Welch et al. Jun 2015 B2
9086733 Pance Jul 2015 B2
9087663 Los Jul 2015 B2
9093229 Leong et al. Jul 2015 B2
9213416 Chen Dec 2015 B2
9234486 Das et al. Jan 2016 B2
9235236 Nam Jan 2016 B2
9274654 Slobodin et al. Mar 2016 B2
9275810 Pance et al. Mar 2016 B2
9300033 Han et al. Mar 2016 B2
9305496 Kimura Apr 2016 B2
9443672 Martisauskas Sep 2016 B2
9448628 Tan et al. Sep 2016 B2
9471185 Guard Oct 2016 B2
9477382 Hicks et al. Oct 2016 B2
9612674 Degner et al. Apr 2017 B2
9761389 Leong et al. Sep 2017 B2
20020079211 Katayama et al. Jun 2002 A1
20020093436 Lien Jul 2002 A1
20020113770 Jacobson et al. Aug 2002 A1
20020149835 Kanbe Oct 2002 A1
20030169232 Ito Sep 2003 A1
20040004559 Rast Jan 2004 A1
20040225965 Garside et al. Nov 2004 A1
20040257247 Lin et al. Dec 2004 A1
20050035950 Daniels Feb 2005 A1
20050253801 Kobayashi Nov 2005 A1
20060011458 Purcocks Jan 2006 A1
20060020469 Rast Jan 2006 A1
20060120790 Chang Jun 2006 A1
20060181511 Woolley Aug 2006 A1
20060243987 Lai Nov 2006 A1
20070200823 Bytheway et al. Aug 2007 A1
20070285393 Ishakov Dec 2007 A1
20080131184 Brown et al. Jun 2008 A1
20080136782 Mundt et al. Jun 2008 A1
20080251370 Aoki Oct 2008 A1
20090046053 Shigehiro et al. Feb 2009 A1
20090103964 Takagi et al. Apr 2009 A1
20090128496 Huang May 2009 A1
20090262085 Wassingbo et al. Oct 2009 A1
20090267892 Faubert Oct 2009 A1
20100045705 Vertegaal et al. Feb 2010 A1
20100066568 Lee Mar 2010 A1
20100109921 Annerfors May 2010 A1
20100156796 Kim et al. Jun 2010 A1
20100253630 Homma et al. Oct 2010 A1
20110032127 Roush Feb 2011 A1
20110056817 Wu Mar 2011 A1
20110056836 Tatebe et al. Mar 2011 A1
20110205179 Braun Aug 2011 A1
20110261031 Muto Oct 2011 A1
20110267272 Meyer et al. Nov 2011 A1
20110284355 Yang Nov 2011 A1
20110303521 Niu et al. Dec 2011 A1
20120012446 Hwa Jan 2012 A1
20120032972 Hwang Feb 2012 A1
20120090973 Liu Apr 2012 A1
20120098751 Liu Apr 2012 A1
20120286701 Yang et al. Nov 2012 A1
20120298496 Zhang Nov 2012 A1
20120313856 Hsieh Dec 2012 A1
20130043115 Yang et al. Feb 2013 A1
20130093500 Bruwer Apr 2013 A1
20130093733 Yoshida Apr 2013 A1
20130100030 Los et al. Apr 2013 A1
20130120265 Horii et al. May 2013 A1
20130161170 Fan et al. Jun 2013 A1
20130215079 Johnson et al. Aug 2013 A1
20130242601 Kloeppel et al. Sep 2013 A1
20130270090 Lee Oct 2013 A1
20130329396 Smith Dec 2013 A1
20140015777 Park et al. Jan 2014 A1
20140027259 Kawana et al. Jan 2014 A1
20140071654 Chien Mar 2014 A1
20140082490 Jung et al. Mar 2014 A1
20140090967 Inagaki Apr 2014 A1
20140098042 Kuo et al. Apr 2014 A1
20140116865 Leong et al. May 2014 A1
20140118264 Leong et al. May 2014 A1
20140151211 Zhang Jun 2014 A1
20140184496 Gribetz et al. Jul 2014 A1
20140191973 Zellers et al. Jul 2014 A1
20140218851 Klein et al. Aug 2014 A1
20140252881 Dinh et al. Sep 2014 A1
20140291133 Fu et al. Oct 2014 A1
20140320436 Modarres et al. Oct 2014 A1
20140346025 Hendren et al. Nov 2014 A1
20140375141 Nakajima Dec 2014 A1
20150016038 Niu et al. Jan 2015 A1
20150083561 Han et al. Mar 2015 A1
20150090570 Kwan et al. Apr 2015 A1
20150090571 Leong et al. Apr 2015 A1
20150227207 Winter et al. Aug 2015 A1
20150243457 Niu et al. Aug 2015 A1
20150270073 Yarak, III et al. Sep 2015 A1
20150277559 Vescovi et al. Oct 2015 A1
20150287553 Welch et al. Oct 2015 A1
20150309538 Zhang Oct 2015 A1
20150332874 Brock et al. Nov 2015 A1
20150348726 Hendren Dec 2015 A1
20150378391 Huitema et al. Dec 2015 A1
20160049266 Stringer et al. Feb 2016 A1
20160093452 Zercoe et al. Mar 2016 A1
20160172129 Zercoe et al. Jun 2016 A1
20160189890 Leong et al. Jun 2016 A1
20160189891 Zercoe et al. Jun 2016 A1
20160259375 Andre et al. Sep 2016 A1
20160329166 Hou et al. Nov 2016 A1
20160336124 Leong et al. Nov 2016 A1
20160336127 Leong et al. Nov 2016 A1
20160336128 Leong et al. Nov 2016 A1
20160343523 Hendren et al. Nov 2016 A1
20160351360 Knopf et al. Dec 2016 A1
20160378234 Ligtenberg et al. Dec 2016 A1
20160379775 Leong et al. Dec 2016 A1
20170004939 Kwan et al. Jan 2017 A1
20170011869 Knopf et al. Jan 2017 A1
20170090106 Cao et al. Mar 2017 A1
Foreign Referenced Citations (184)
Number Date Country
2155620 Feb 1994 CN
2394309 Aug 2000 CN
1533128 Sep 2004 CN
1542497 Nov 2004 CN
2672832 Jan 2005 CN
1624842 Jun 2005 CN
1812030 Aug 2006 CN
1838036 Sep 2006 CN
1855332 Nov 2006 CN
101051569 Oct 2007 CN
200961844 Oct 2007 CN
200986871 Dec 2007 CN
101146137 Mar 2008 CN
201054315 Apr 2008 CN
201084602 Jul 2008 CN
201123174 Sep 2008 CN
201149829 Nov 2008 CN
101315841 Dec 2008 CN
201210457 Mar 2009 CN
101438228 May 2009 CN
101465226 Jun 2009 CN
101494130 Jul 2009 CN
101502082 Aug 2009 CN
201298481 Aug 2009 CN
101546667 Sep 2009 CN
101572195 Nov 2009 CN
101800281 Aug 2010 CN
101807482 Aug 2010 CN
101868773 Oct 2010 CN
201655616 Nov 2010 CN
102110542 Jun 2011 CN
102119430 Jul 2011 CN
201904256 Jul 2011 CN
102163084 Aug 2011 CN
201927524 Aug 2011 CN
201945951 Aug 2011 CN
201945952 Aug 2011 CN
201956238 Aug 2011 CN
102197452 Sep 2011 CN
202008941 Oct 2011 CN
202040690 Nov 2011 CN
102280292 Dec 2011 CN
102338348 Feb 2012 CN
102375550 Mar 2012 CN
202205161 Apr 2012 CN
102496509 Jun 2012 CN
10269527 Aug 2012 CN
102622089 Aug 2012 CN
102629526 Aug 2012 CN
202372927 Aug 2012 CN
102679239 Sep 2012 CN
102683072 Sep 2012 CN
202434387 Sep 2012 CN
202523007 Nov 2012 CN
102832068 Dec 2012 CN
102955573 Mar 2013 CN
102956386 Mar 2013 CN
102969183 Mar 2013 CN
103000417 Mar 2013 CN
103165327 Jun 2013 CN
103180979 Jun 2013 CN
203012648 Jun 2013 CN
203135988 Aug 2013 CN
103377841 Oct 2013 CN
103489986 Jan 2014 CN
203414880 Jan 2014 CN
103681056 Mar 2014 CN
103699181 Apr 2014 CN
203520312 Apr 2014 CN
203588895 May 2014 CN
103839715 Jun 2014 CN
103839720 Jun 2014 CN
103839722 Jun 2014 CN
103903891 Jul 2014 CN
103956290 Jul 2014 CN
203733685 Jul 2014 CN
104021968 Sep 2014 CN
204102769 Jan 2015 CN
204117915 Jan 2015 CN
104517769 Apr 2015 CN
204632641 Sep 2015 CN
105097341 Nov 2015 CN
2530176 Jan 1977 DE
3002772 Jul 1981 DE
29704100 Apr 1997 DE
202008001970 Aug 2008 DE
0441993 Aug 1991 EP
1835272 Sep 2007 EP
1928008 Jun 2008 EP
2022606 Jun 2010 EP
2426688 Mar 2012 EP
2439760 Apr 2012 EP
2463798 Jun 2012 EP
2664979 Nov 2013 EP
2147420 Mar 1973 FR
2911000 Jul 2008 FR
2950193 Mar 2011 FR
1361459 Jul 1974 GB
S50115562 Sep 1975 JP
S60055477 Mar 1985 JP
S61172422 Oct 1986 JP
S62072429 Apr 1987 JP
S63182024 Nov 1988 JP
H0422024 Apr 1992 JP
H0520963 Jan 1993 JP
H0524512 Aug 1993 JP
H05342944 Dec 1993 JP
H09204148 Aug 1997 JP
H10312726 Nov 1998 JP
H11194882 Jul 1999 JP
2000010709 Jan 2000 JP
2000057871 Feb 2000 JP
2000339097 Dec 2000 JP
2001100889 Apr 2001 JP
2003114751 Sep 2001 JP
2002260478 Sep 2002 JP
2002298689 Oct 2002 JP
2003522998 Jul 2003 JP
2005108041 Apr 2005 JP
2006164929 Jun 2006 JP
2006185906 Jul 2006 JP
2006521664 Sep 2006 JP
2006269439 Oct 2006 JP
2006277013 Oct 2006 JP
2006344609 Dec 2006 JP
2007115633 May 2007 JP
2007514247 May 2007 JP
2007156983 Jun 2007 JP
2008021428 Jan 2008 JP
2008041431 Feb 2008 JP
2008100129 May 2008 JP
2008191850 Aug 2008 JP
2008533559 Aug 2008 JP
2008293922 Dec 2008 JP
2009099503 May 2009 JP
2009181894 Aug 2009 JP
2010061956 Mar 2010 JP
2010244088 Oct 2010 JP
2010244302 Oct 2010 JP
2011018484 Jan 2011 JP
2011065126 Mar 2011 JP
2011150804 Aug 2011 JP
2011165630 Aug 2011 JP
2011524066 Aug 2011 JP
2011187297 Sep 2011 JP
2012022473 Feb 2012 JP
2012043705 Mar 2012 JP
2012063630 Mar 2012 JP
2012098873 May 2012 JP
2012134064 Jul 2012 JP
2012186067 Sep 2012 JP
2012230256 Nov 2012 JP
2014017179 Jan 2014 JP
2014026807 Feb 2014 JP
2014216190 Nov 2014 JP
2014220039 Nov 2014 JP
2016053778 Apr 2016 JP
1019990007394 Jan 1999 KR
1020020001668 Jan 2002 KR
100454203 Oct 2004 KR
1020060083032 Jul 2006 KR
1020080064116 Jul 2008 KR
1020080066164 Jul 2008 KR
2020110006385 Jun 2011 KR
1020120062797 Jun 2012 KR
1020130040131 Apr 2013 KR
20150024201 Mar 2015 KR
200703396 Jan 2007 TW
M334397 Jun 2008 TW
201108284 Mar 2011 TW
201108286 Mar 2011 TW
M407429 Jul 2011 TW
201246251 Nov 2012 TW
201403646 Jan 2014 TW
WO9744946 Nov 1997 WO
WO2005057320 Jun 2005 WO
WO2006022313 Mar 2006 WO
WO2007049253 May 2007 WO
WO2008045833 Apr 2008 WO
WO2009005026 Jan 2009 WO
WO2012011282 Jan 2012 WO
WO2012027978 Mar 2012 WO
WO2013096478 Jun 2013 WO
WO2014175446 Oct 2014 WO
Non-Patent Literature Citations (14)
Entry
U.S. Appl. No. 15/014,596, filed Feb. 3, 2016, pending.
U.S. Appl. No. 15/154,682, filed May 13, 2016, pending.
U.S. Appl. No. 15/154,706, filed May 13, 2016, pending.
U.S. Appl. No. 15/154,723, filed May 13, 2016, pending.
U.S. Appl. No. 15/154,768, filed May 13, 2016, pending.
U.S. Appl. No. 15/230,740, filed Aug. 8, 2016, pending.
U.S. Appl. No. 15/230,724, filed Aug. 8, 2016, pending.
U.S. Appl. No. 15/261,954, filed Sep. 11, 2016, pending.
U.S. Appl. No. 15/261,972, filed Sep. 11, 2016, pending.
U.S. Appl. No. 15/262,249, filed Sep. 12, 2016, pending.
U.S. Appl. No. 15/264,827, filed Sep. 14, 2016, pending.
U.S. Appl. No. 15/268,518, filed Sep. 16, 2016, pending.
U.S. Appl. No. 15/269,790, filed Sep. 19, 2016, pending.
Elekson, “Reliable and Tested Wearable Electronics Embedment Solutions,” http://www.wearable.technology/our-technologies, 3 pages, at least as early as Jan. 6, 2016.
Related Publications (1)
Number Date Country
20160365204 A1 Dec 2016 US