Reduced noise touch screen apparatus and method

Information

  • Patent Grant
  • 5796389
  • Patent Number
    5,796,389
  • Date Filed
    Tuesday, May 2, 1995
    29 years ago
  • Date Issued
    Tuesday, August 18, 1998
    25 years ago
Abstract
A touch screen having a high or fine resolution at relatively low cost is provided. In one embodiment, electrodes are placed directly on the surface of a CRT screen without the need for an electrode positioned on the rear surface. The touch screen may include a conductive coating and a protective coating which are preferably provided in a single vacuum chamber step. A high gain system including a high-frequency sampling bandpass filter provide discrimination of the desired signal over noise. A screen calibration technique is used to achieve linearization in order to convert the electric signals obtained from the screen into data indicative of the position of a touch on the screen.
Description

The present invention is directed to a touch screen user input device for a computer and, in particular, to a touch screen having reduced noise while providing high resolution.
BACKGROUND OF THE INVENTION
Touch screens for computer input permit a user to write or draw information on a computer screen or select among various regions of a computer generated display, typically by the user's finger or by a free or tethered stylus. The cost of touch screen displays is partly dependent on the resolution which is desired. When the application requires only gross resolution (such as determination, within about two inches or more, of the position of the finger or stylus on the screen) only moderate expense is typically involved. However, when fine resolution is required (i.e., resolution less than about one inch, preferably less than about 1/2 inch, more preferably less than about 1/4 inch and most preferably less than about 1/8 inch), the expense of touch screens provided according to previous approaches has been relatively high. One reason for the expense is that additional hardware or methods were needed to distinguish the small signals representing fine-resolution positions or movements from noise (i.e., signals which are not indicative of the position of the finger or stylus). Many previous devices have also been relatively expensive to linearize (i.e., to derive an indication of the location of the finger or stylus based on the output signal from the device). Typically, the position is a non-linear function of the output signal. It is believed that the linearization process, in some previous devices, involves manually modifying the size or shape of screen electrodes. Since this must be individually done for each screen overlay which is produced, the expense can be high.
Another contributor to the high expense of high-resolution touch screens is the need, in se processes, to provide electrodes or other deposited layers on both the front and rear surfaces, and/or to provide two or more separate vacuum processing steps. Further, when the final product is made by positioning or bonding a separate overlay to a computer screen (typically a cathode ray, tube or CRT) this additional step adds further expense to the final product.
Accordingly, it would be useful to provide a touch screen which provides fine resolution while reducing or eliminating noise at a reduced or low cost.
SUMMARY OF THE INVENTION
The present invention provides a low-noise, high-resolution touch screen. According to one embodiment, in order to provide reduction or elimination of noise, which is particularly troublesome for fine resolution devices, a relatively high sampling rate is provided along with a filter which distinguishes signal from the (typically low-frequency) noise. Furthermore, one embodiment of the invention can distinguish the desired signal from spurious signals, such as a grounding or static discharge, by using automatic gain control.
Linearization of the signal includes a measurement of signals from touches at various known screen locations and a conversion from the output signal to the derived finger or stylus location using the measured data, thus eliminating the need for manual or individual changing or "tuning" of electrodes or other features of the screen.
According to one embodiment of the invention, electrodes are placed directly on a CRT or other computer screen. By "directly" is meant that the electrodes are in contact with the CRT, rather than on an overlay which is later bonded to the screen. One embodiment permits the electrodes to be positioned so as to eliminate rear-surface electrodes or layers and so to eliminate one or more vacuum processing steps, preferably requiring only a single vacuum processing step to make a computer screen into a touch screen.
Touch screens according to the present invention can be used for a number of purposes. One purpose involves use for an electronic gaming machine such as an electronic slot machine, an electronic keno machine, and the like. Other uses include uses for ordinary computing, such as computing on a personal computer, laptop computer, palmtop computer, notepad computer, personal communication device, telephone, interactive television and the like, running software such as word processing, spreadsheet, communications, database, programming, networking, and other well-known software. The invention can be used in connection with custom-written software, or in connection with computer operating systems designed for pen computing, such as Penpoint.TM. of GO Corporation, Windows for Pen Computing.TM. of Microsoft Corporation, or with operating systems or other software intended for use with a pointing device such as a mouse, trackball, joystick and the like.





BRIEF DESCRIPTION OF THE DRAWINGS
FIG. 1 is a schematic front view of a touch screen according to an embodiment of the present invention;
FIG. 2 is a flow chart of a previous touch screen production method;
FIG. 3 is a flow chart of a method for providing a touch screen according to an embodiment of the present invention;
FIG. 4 is a schematic diagram of a touch screen signal processing circuit, according to an embodiment of the present invention;
FIG. 5 is a schematic diagram of an analog signal processing device according to an embodiment of the present invention;
FIG. 6 is a block diagram of a touch screen and associated processing system according to an embodiment of the present invention; and
FIG. 7 is a flow chart of a calibration and linearization procedure according to an embodiment of the present invention.





DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENT
As shown in FIG. 1, one embodiment of the present invention provides for a computer display device such as a CRT configured so that electrodes 102a-102d overlie perimetrial regions of the screen. A number of configurations for the electrodes 102a, 102b, 102c, 102d are possible. In the embodiment depicted in FIG. 1, the electrodes 102a, 102b, 102c, 102d are in the form of conductive bus bars positioned along the major portion of each of the four edges of the screen 104, preferably without extending into the corner regions of the screen. Conductive wires 106a, 106b, 106c, 106d are in electrical contact with each of the electrodes 102a, 102b, 102c, 102d to provide a communication channel with circuitry described below.
Aspects of the present invention are best understood in the context of previous methods for providing a touch screen. FIG. 2 shows a method used in connection with making a touch screen according to previous devices. As shown in FIG. 2, previous devices provided touch screens by placing certain elements on a glass overlay which was later bonded to the front surface of a computer screen such as a CRT, e.g., using a transparent adhesive. In previous processes, the glass overlay first had a conductive coating applied to its back surface 212 (i.e., the surface which was to contact or to be bonded to the surface of the CRT). This coating was typically provided through an evaporation process, usually in a vacuum oven. Next, a similar conductive coating was placed on the front of the glass overlay also through an evaporation process 214. After these steps, a further layer was placed on the back surface of the glass overlay. In some cases, a protective layer was provided on the back surface. In most cases, it was necessary to place an electrode on the back surface, often through a silk screening procedure. It is believed that the back electrode was provided in previous devices as part of a noise reduction technique, i.e., a technique for distinguishing the desired position signal from unwanted signals or noise. Next, electrodes were placed on the front surface of the glass, typically through a silk screening process 218. At this point, previous techniques are believed to have included a step of modifying or changing the shape of the electrodes in order to help linearize the device 220. It is believed that this was done on an individual basis in order to "tune" each individual screen so that it provides a known or linear electric field for the overlay. It is believed that this tuning involved measuring electrical characteristics of the screen and scraping or abrading away portions of the electrodes or other parts of the device in order to modify the measured characteristics to fit within predetermined parameters.
Finally, after the "hand tuning" 220, a protective coating such as SiO.sub.2 was placed over at least the front surface of the screen in a process conducted in a vacuum oven 222. As can be seen, the process of FIG. 2 includes a number of steps which are relatively expensive including evaporation processes which may require processing in a vacuum oven 212, 214, the placing of at least one deposited layer, such as an electrode on the back surface 216 and hand or individual tuning of the electrodes 220.
FIG. 3 depicts a process according to the present invention for providing a touch screen device. In the embodiment of FIG. 3, electrodes are placed directly on the front glass surface of a computer screen such as a CRT. Although the process of FIG. 3 could also be used for producing a glass or other transparent overlay for a CRT, by placing the electrodes directly on the CRT, it is no longer necessary to include a step of bonding or positioning an overlay over a CRT. Typically, when an overlay is provided, bonding is used rather than merely positioning over a CRT, since bonding helps provide the necessary strength and robustness and also provides desirable optical qualities. However, by placing electrodes directly on the CRT, as shown in FIG. 3, the cost of the bonding (positioning) step is eliminated.
According to the process of FIG. 3, electrodes (such as the electrodes depicted in FIG. 1) are silk screened directly onto the front of the computer screen such as a CRT 312. After the step of silk screening, a conductive coating is applied over the electrodes and the front surface of the screen. Furthermore, a protective coating such as SiO.sub.2 is coated on the front of the screen. Preferably, both the conductive coating and the protective coating are applied in a single vacuum step 314, i.e., without the need to remove the CRT from the vacuum oven between the conductive and protective coatings.
A number of materials can be used in connection with the process depicted in FIG. 3. The electrodes can be made of a number of conductive materials including silver and low temperature melting glass and silver epoxies. The conductive coating is preferably done using materials that can be provided in a substantially transparent form such as indium tin oxide or tin antimony oxide. In one embodiment, indium tin oxide is used since it can be applied in a single-step process.
Before describing the details of an embodiment of the present invention, a circuit for dealing with noise, generally as depicted in FIG. 4 will be discussed. Although the circuit of FIG. 4 can be used in connection with a number of touch screen devices, it is particularly useful for the touch screen produced according to the method of FIG. 3, since this method does not involve an electrode on the rear surface of the screen which was a feature believed to have been used by previous devices in connection with noise reduction.
When the touch screen is provided with an electric potential at the electrodes 102a, 102b, 102c, 102d, under normal (non-touch) circumstances, the potential that the electrodes will remain constant in time. When a human touches a portion of the screen, such as with a finger, a small amount of current, such as about 5-10 .mu. amp per volt of driving potential will flow through the human's body to ground. The apparatus of FIG. 4 is intended to provide a signal from which the value of the current from one of the electrodes through the human body to ground, can be measured in a relatively noise-free manner. The general method used for distinguishing the desired signal from noise involves a relatively high frequency sampling which permits filtering out a lower frequency modulation or "envelope" associated with noise. In order to deduce the amount of current flowing from a given electrode (and thus to permit calculation of distance from the electrode, as described below) it is useful to make some assumption about the electrical characteristics of the human body through which the current flows. For this purpose, the human body is assumed to have electrical characteristics corresponding to a body model 412 having, in series, a first capacitor, resistor and second capacitor. These items are not circuitry items but rather are a model of certain characteristics of the human body. In actual practice, the item 412 will be the path through the human body from the point where the body touches the touch screen to ground 416. One of the lines 106a from the electrode 102a of the touch screen is connected to the positive input of an amplifier such as OP amp 418. Preferably, the OP amp has a relatively high gain, such as a gain of about 2,000 and, in one embodiment, has 127 db common mode rejection. A resistor such as a 100 kilohm resistor 420 connects the output node 422 to the negative input terminal 424. An RC filter 426 is provided at the output of the OP amp 418 in order to reduce dV/dt. This eliminates ringing of the filter and is useful in reducing emissions, e.g., in order to comply with regulations such as Federal Communication Commission (FCC) standards.
In one embodiment, the signal provided to the electrode 102a (via resistors 430, 432) as well as provided to the negative input of the OP amp 418 (via resistors 434, 436) has a generally sinusoidal form provided at a frequency such as 10 kilohertz 438. Similar circuitry is used to provide signals to (and samples signals at) the other electrodes 102b, 102c, 102d, although the phase of the four signals are preferably offset 90.degree..
Noise rejection is provided by a bandpass filter 440 which samples the amplified electrode signal at a relatively high frequency such as about 100 kilohertz, preferably about 200 kilohertz and more preferably about 250 kilohertz or higher. In one embodiment, the bandpass filter 440 is a fourth order Butterworth filter with a gain of about 20 and a Q factor of about 40. A Butterworth filter provides the advantageous feature of a relatively quick roll-off from the peak and because it performs a high performance-to-cost ratio. However, in some situations the Butterworth filter can be unstable and may, e.g., create ringing. Accordingly, the present invention can also be used with other types of filters. For example, a Bessel filter can be used which tends to be more stable than a Butterworth filter under transient conditions but does not have as rapid a roll-off. Another type of filter that can be used is an elliptical filter.
In the depicted embodiment, both the filter 440 and the oscillator 438 are controlled by a clock signal such as a 20 Mhz signal 442. In one embodiment, the filter provides a sampling rate (defining the time frame over which filtering is applied) of at least three times the clock signal rate 442, in one embodiment, a sampling rate of at least 40 kilohertz. Other devices for high sampling rate and filtering can be used such as a fast-acting rectifier or integrator.
The magnitude of the drive signal 438 is set in connection with a gain controller 446. One of the functions of the gain controller 446 is to accommodate a situation in which there is a rapid change in the environment such as may result from the user touching a grounded metal object, thus changing the effective electrical characteristics of the user's body 412. The gain controller 446 receives an indication of the magnitude of the signal received from the touch screen, preferably from information provided by the CPU 450, described below. If any of the four signals becomes greater than a predetermined amount, such as greater than 4.5 volts, the system gain is reduced, lowering the drive signal, i.e., the signal 452 output by the oscillator 438. In the embodiment of FIG. 5, the drive signal 452 is attenuated by attenuation signals 516 controlling multiplexer 518.
FIGS. 5 and 6 depict one manner of implementing the general configuration of FIG. 4 in a system having four electrodes on a touch screen, as depicted in FIG. 1. FIG. 5 shows the analog section 512 of circuitry in which each of the drives 106a, 106b, 106c, 106d is connected to the positive input of an OP amp 418a, 418b, 418c, 418d. The output of the OP amp, optionally through an RC filter, is connected to a bandpass filter 440a, 440b, 440c, 440d. Under control of control signals mux 0, mux 1 512, a multiplexer 514 selects the outputs from the filters 440a, 440b, 440c, 440d for providing them, one at a time, to an analog to digital converter 612 (FIG. 6). As noted above, the filters 440a, 440b, 440c, 440d are capable of very rapid sampling and, preferably, all four channels are sampled and provided to the A/D converter 612 in less than 800 microseconds, preferably less than 400 microseconds and more preferably, less than 300 microseconds. In one embodiment, the system provides a digital sample of the filtered analog signal at a rate of about 1,000 samples per second (for each of the four electrodes) preferably about 2,500 samples per second, more preferably about 3,000 samples per second or more. Such rapid sampling is used to reduce or eliminate the effects of noise and variation between samples. The analog to digital converter is, according to one embodiment, a 12-bit tracking analog to digital converter.
As depicted in FIG. 6, the central processing unit (CPU) is controlled by a crystal oscillator 442 which also, by means of dividers 614a, 614b, 614c, 614d, provides clock signals 441 and 552 at 200 Khz and 10 Khz, respectively. A power supply 616 provides power to the CPU, preferably via power management circuit 614, preferably configured to reset the CPU 450 if V.sub.cc falls below 4.75 volts. Coupled to the CPU is a communication circuit 620 which can, for example, include optical couplers for converting TTL level to a 20 .mu.A drive. An EPROM memory 622 is used for storing utility programs and boot strap programs e.g., for downloading program memories. The flash memory 624 is used for storing the main program and is preferably non-volatile memory so that the contents remain intact when the power is off. The flash memory can be reloaded or altered via the communications device. In this way the program in the flash memory can be downloaded from a remote location. The communication front end contains optical couplers for serial data in, serial data out, and a global input for remote master reset. A CMOS memory 626 is used for scratch pad and computation purposes.
A number of CPUs 450 can be used in this regard, although preferably a CPU of the type used in a personal computer environment is preferred.
In operation, the user touches a portion of the screen, the current flowing from each of the four conductors 102a, 102b, 102c, 102d through the body is a function of the distance from the touch to each of the conductors, respectively. Preferably, the screen has a substantially equi-potential surface. Thus, if the user were to touch the screen precisely at the center, equi-distant from the four electrodes 102a, 102b, 102c, 102d, the total current flow through the user's body would be approximately 8/4 micro amps or 2 micro amps. For touches which are not at the center, i.e., are closer to some electrodes than to others, the current from the closer electrodes will be greater than that from the farther electrodes. By knowing the relationship between the amount of current and the position on the screen, the amount of current flowing through each of the electrodes through the user can be used to deduce the position of the touch, as described more fully below. Returning to the example of a touch in the center of the screen, as depicted in FIG. 4, the touch current is measured through an 11.3 ohm resistor so that, converted to voltage, the current becomes 22.6 microvolts per volt of drive voltage. The amplifier 418 multiplies the voltage by 2,000 and the bandpass filter 440 adds a gain of 20. As depicted in FIG. 5, the signal selected by multiplexer 514 is provided to buffer amp BA 516 which, in the depicted embodiment, has a gain of 2. Thus, altogether, the system has a gain of 80,000. The signal is provided to the analog to digital converter. The command to convert the analog signal into digital form is synchronized to the output drive oscillator. Synchronization is configured such that when the digital data is obtained, it represents the peak voltage of the touch signal for that channel. Several samples (e.g., four samples per channel) are taken to do an average and to remove any DC value that the sine wave may be riding on.
The digitized voltages for the four electrodes 102a, 102b, 102c, 102d represent the voltages at the left, top, right, and bottom electrodes, respectively and are symbolized by V.sub.L, V.sub.T, V.sub.R and V.sub.B. The digitally represented values of these four voltages are combined to give two voltage values Y.sub.v and X.sub.v, representing values in a vertical direction (Y.sub.v) and in a horizontal direction (X.sub.v) as follows: ##EQU1##
Y.sub.v and X.sub.v are related to the vertical and horizontal position of the touch location on the screen, but the relationship, in general, is not linear. In order to obtain the actual position based on the values of Y.sub.v and X.sub.v a conversion or a linearization procedure is used.
In general, the linearization procedure is a procedure for converting from one co-ordinate system into another co-ordinate system. However, the conversion is general, non-linear and may be different for each particular touch screen, as well as possibly changing in time due to aging, changes in their environment, etc. According, to the present invention, a number of measurements are taken of the values of Y.sub.v and X.sub.v at various known locations on the screen. These measurements are then used to determine the parameters of a conversion method for converting the values of Y.sub.v and X.sub.v into values indicating the location of the touch on the screen. In general, although it is desired to provide a method for converting from the Y.sub.v, X.sub.v coordinate system into a screen location coordinate location system, the method begins by performing a conversion in the opposite direction, i.e., by defining certain locations in the screen location coordinate system and measuring the values of Y.sub.v and X.sub.v, that result from touches at those predefined locations. These values are then used to calculate the parameters which can be used for converting the coordinate systems in the opposite direction, i.e., from the Y.sub.v, X.sub.v coordinate system into the screen location coordinate location.
A number of methods can be used for converting between the coordinate systems. In general, conversion systems which are highly accurate require high level of computing resources and/or time. It has been found, however, that the conversion method described below has only moderate computing requirements, but results in a relatively high accuracy or fine-resolution system in which the touch location computed by the system is within a predetermined distance of the actual touch location. In one embodiment, the computed location is within about 1/8 in. of the actual location.
According to one embodiment, a pseudo-linear conversion method is used, employing the following conversion equations:
X.sub.s =a.sub.0 +a.sub.1 X.sub.v +a.sub.2 Y.sub.v +a.sub.3 X.sub.v Y.sub.v(3)
Y.sub.s =b.sub.0 +b.sub.1 Y.sub.v +b.sub.2 X.sub.v +b.sub.3 X.sub.v Y.sub.v(4)
Where
X.sub.s is the calculated horizontal distance from the left edge of the screen.
Y.sub.s is the calculated vertical distance from the top edge of the screen.
Other conversion methods can be used including higher-order conversion. However, the method of equations 3 and 4 has been found to provide acceptably high resolution, at least for portions of the screen that do not include the corners of the screen.
In the method depicted in FIG. 7, after the device is powered up 912, the system determines whether this is the first power up performed on this system 914 (e.g., by checking a flag). If so, the system performs a calibration procedure 916, described below. Otherwise, a number of housekeeping functions are performed 918 such as clearing registers, checking memories, enabling interrupts and setting up communications. The system then determines whether there is a valid calibration already stored in the system 920. If not, the system then initiates the calibration procedure 916. Otherwise, the system proceeds to set the signal gain to a high level 922, e.g., using the gain controller 446. In the next step, the system performs a check to determine whether the screen is being touched. In the embodiment depicted in FIG. 7, this is determined by checking to see whether any of the four channels 106a, 106b, 106c, 106d indicates a voltage which is more than twice the ambient voltage, i.e., the voltage which is on the four electrodes 102a, 102b, 102c, 102d in the absence of a touch. If not, the system continues to check for a touch 924 until a touch is detected. In one embodiment, determination of the occurrence of a touch is made by detecting a peak of a sampled signal from the filter being above a threshold level. In the case where the sampled signal is represented by the following equation:
S=A(.omega.t+.phi.)+T sin (.omega.t+.phi.)) (5)
wherein=
S represents the sampled signal;
A is the amplitude of the sampled signal;
.omega. is the phase angle;
.phi. is the phase of the sampled signal;
T is the amplitude of the current flowing through the touch apparatus
the peak (P) of the sampled equation is a function of an equation having the form:
P=(A.sup.2 +B.sup.2).sup.1/2 (6)
After detecting a touch, the system then checks to make sure that none of the channels 106a, 106b, 106c, 106d indicates a voltage which is greater than a predetermined amount, such as 4.5 volts 926. As discussed above, this check is made in order to detect sudden changes in the environment such as a user touching a grounded metal object or the like. If such a large voltage is detected, the driving voltage is reduced 928 such as by using the gain controller 446 and the system returns to a state of checking to see if there is a touch on the screen.
If the voltage is within the predetermined parameters, the system takes a predetermined number of samples, e.g., four samples on each of the four channels 930 using the high-frequency sampling bandpass filter, A/D converter and other circuitry depicted in FIGS. 5 and 6. The ambient voltages are subtracted 932 and the values Y.sub.v and X.sub.v are calculated according to equations (1) and (2) 934. The Y.sub.v and X.sub.v values are then converted to X.sub.s and Y.sub.s values 936 using equations (3) and (4). The position values Y.sub.s and X.sub.s are then sent to the host computer over communication circuit 620. Normally, the system would be configured to continuously monitor for touches and thus the system would be configured to obtain another location 940 by returning to the state in which the system determines whether any touch of the screen is being made 924. Otherwise, the routine ends 942.
In performing a calibration 916, the system first determines whether the monitor is sufficiently warmed up 950 and cycles through successive ten second wait periods 952 until warm up is completed. Next, the CPU 450 sends a request, via communications device 620 to the host computer, requesting the host computer to display instructions to the user on the touch screen 954. During the time when the user is not touching the touch screen, the computer measures the voltages on the four channels 106a, 106b, 106c, 106d and stores these values, e.g., for use in steps 924 and 932. The CPU 450 then requests the host computer to display a touch dot (a dot or other indicium on the touch screen at a predetermined location). The computer also displays instructions telling the user to touch the screen precisely at the location of the displayed touch dot 958. The system determines whether there is a touch 960 and whether the voltage is in the defined limits 962, 964 as described above for steps 924, 926, and 928. The ambient voltages are subtracted 966 and the measured values are stored 968. The CPU 450 then requests the host computer to place the next dot on the screen 970 in the next predetermined location, unless all the dots have been displayed 972. In one embodiment, a total of nine touch dots or calibration points are used, preferably defining four substantially rectangular and identical quadrants or regions.
After all of the touch dots have been displayed and values of voltages Y.sub.v and X.sub.v have been stored, corresponding to each of the touch dots, the system calculates the parameters a.sub.0, a.sub.1, a.sub.2, a.sub.3, b.sub.0, b.sub.1, b.sub.2, b.sub.3, which will be used in equations (3) and (4) 974. This can be done by solving or fitting equations (3) and (4) for each of the variables, a.sub.0, a.sub.1, a.sub.2, a.sub.3, b.sub.0, b.sub.1, b.sub.2, b.sub.3. Since nine measurements have been made, this will result in a system of 18 equations and eight unknowns and thus will be overdetermined. Accordingly, a "best fit" method is used to determine values for the unknowns a.sub.0, a.sub.1, a.sub.2, a.sub.3, b.sub.0, b.sub.1, b.sub.2, b.sub.3 which provide the best fit to the nine measured values of X.sub.v and Y.sub.v These values of the unknowns are then stored for use in calculating X.sub.s and Y.sub.s in step 936. The system then returns to step 918, described above.
In light of the above description, it will be apparent to those of skill in the art that the present invention provides a number of advantages. The present invention is able to determine the location of a touch on a touch screen with a fine resolution but at a relatively low cost and high rapidity. The present invention reduces costs by eliminating steps such as steps of providing a back electrode and/or back conductive coating and reduces the requirement for the number of steps that must be performed in a separate vacuum chamber processes. The system provides for linearization of the data to determine the location of a touch with a high degree of accuracy without the need for individual manual linearization of touch screen devices.
A number of variations and modifications can be used. It is possible to use some aspects of the invention without using others. For example, it is possible to use the simplified screen production technique of the present invention without using the linearization of FIG. 7 and/or the circuitry of FIGS. 5 and 6. In addition to use in connection with gaming machines, PCs, and other devices as described above, the present invention can also be used in connection with other interactive applications such as locator or navigation devices, automatic teller machines (ATM) in connection with vehicle and/or machinery control devices and the like.
Although the application has been described by way of a preferred embodiment and certain variations and modifications, other variations and modifications can also be used, the invention being defined by the following claims.
Claims
  • 1. A touch screen apparatus for sensing contact of a human finger or passive probe at a preselected location on a touch screen surface comprising:
  • a cathode ray tube (CRT) screen having an exterior surface and an interior surface, said exterior surface having an exterior edge at the periphery of the screen;
  • a plurality of bar electrodes positioned on said exterior surface substantially near the exterior edge of the screen in the absence of electrodes being placed on said interior surface;
  • a driver having a plurality of channels, each channel connected to one of the bar electrodes, for providing voltages to the bar electrodes, and for providing signals indicating contact of said human finger or passive probe on the surface, the signal resulting from a current flow through said human finger or passive probe contacting the surface, the signals being a function of a difference in voltage level at a first time, t.sub.1, when there is no contact and at a second time t.sub.2, coincident with the time of contact such that the potential at one of said plurality of electrodes changes from a first value to a second value when said touch screen is touched; and
  • position determining means for receiving the signals from the channels and evaluating the signals to identify the position of the touch relative to the plurality of bar electrodes
  • wherein the driver further comprises an oscillator connected to each of the channels for setting up timing intervals for digitizing analog signals generated by each of the channels;
  • amplifier means in each of the channels having a first input, a second input, and an output, the first input being connected to the oscillator, the second input being connected to the oscillator and to a corresponding bar electrode, such that when no touch is present, the amplifier means is at equilibrium with a substantially constant amplifier output signal, and when a touch occurs on the surface, a current flows from the screen through the touching apparatus, causing a voltage drop across the inputs on the amplifier means and a resulting amplifier output signal;
  • a filter in each of the channels for receiving the resulting amplifier output signal from the amplifier means and substantially passing signals greater than a predetermined frequency.
  • 2. The touch screen apparatus of claim 1, wherein the touch screen surface is substantially rectangular, further comprising:
  • a first bar electrode positioned substantially parallel to and near a top edge of the screen;
  • a second bar electrode positioned substantially parallel to and near a bottom edge of the screen;
  • a third bar electrode positioned substantially parallel to and near a left edge of the screen;
  • a fourth bar electrode positioned substantially parallel to and near a right edge of the screen;
  • the first and second bar electrodes functioning as a pair to determine a relative vertical position of the touch; and
  • the third and fourth bar electrodes functioning as a pair to determine a relative horizontal position of the touch.
  • 3. A touch screen apparatus for sensing contact at a preselected location on a touch screen surface comprising:
  • a screen having a surface with an exterior edge at the periphery of the screen;
  • wherein the touch screen surface is substantially rectangular;
  • a plurality of bar electrodes positioned substantially near the exterior edge of the screen;
  • a driver having a plurality of channels, each channel connected to one of the bar electrodes, for providing voltages to the bar electrodes, and for providing signals indicating contact on the surface, the signal resulting from a current flow through a touching apparatus contacting the surface, the signals being a function of a difference in voltage level at a first time, t.sub.1, when there is no contact and at a second time t.sub.2, coincident with the time of contact;
  • position determining means for receiving the signals from the channels and evaluating the signals to identity the position of the touch relative to the plurality of bar electrodes;
  • a first bar electrode positioned substantially parallel to and near a top edge of the screen;
  • a second bar electrode positioned substantially parallel to and near a bottom edge of the screen;
  • a third bar electrode positioned substantially parallel to and near a left edge of the screen;
  • a fourth bar electrode positioned substantially parallel to and near a right edge of the screen;
  • the first and second bar electrodes functioning as a pair to determine a relative vertical position of the touch;
  • the third and fourth bar electrodes functioning as a pair to determine a relative horizontal position of the touch;
  • wherein the relative vertical position of P.sub.V of the touch is determined as a function of voltage measured at the first bar electrodes (V.sub.T), and voltage means used at the second bar electrode (V.sub.B), as follows: ##EQU2## and the relative horizontal position (P.sub.h) of the touch is determined as a function of voltage measured at the third bar electrode (V.sub.L) and voltage measured at the fourth bar electrode (V.sub.R), as follows: ##EQU3##
  • 4. A touch screen apparatus for sensing contact at a preselected location on a touch screen surface comprising:
  • a screen having a surface with an exterior edge at the periphery of the screen;
  • a plurality of bar electrodes positioned substantially near the exterior edge of the screen;
  • a driver having a plurality of channels, each channel connected to one of the bar electrodes, for providing voltages to the bar electrodes, and for providing signals indicating contact on the surface, the signal resulting from a current flow through a touching apparatus said human finger or passive probe contacting the surface, the signals being a function of a difference in voltage level at a first time, t.sub.1, when there is no contact and at a second time t.sub.2, coincident with the time of contact;
  • position determining means for receiving the signals from the channels and evaluating the signals to identify the position of the touch relative to the plurality of bar electrodes;
  • wherein the driver further comprises an oscillator connected to each of the channels for setting up timing intervals for digitizing analog signals generated by each of the channels;
  • amplifier means in each of the channels having a first input, a second input, and an output, the first input being connected to the oscillator, the second input being connected to the oscillator and to a corresponding bar electrode, such that when no touch is present, the amplifier means is at equilibrium with a substantially constant amplifier output signal, and when a touch occurs on the surface, a current flows from the screen through the touching apparatus, causing a voltage drop across the inputs on the amplifier means and a resulting amplifier output signal;
  • a filter in each of the channels for receiving the resulting amplifier output signal from the amplifier means and substantially passing signals greater than a predetermined frequency; and
  • an analog-to-digital converter for sampling the filtered output signal at at least a predetermined sampling rate.
  • 5. The touch screen apparatus of claim 4, wherein the driver further comprises a clock connected to the filter in each of the channels for synchronizing a sampling rate of each filter.
  • 6. The touch screen apparatus of claim 5, wherein the filter in each channel samples at a rate of at least three times per cycle of the clock signal.
  • 7. The touch screen apparatus of claim 5, wherein the filter samples at a rate configured to enable a determination of an AC component of amplitude, an AC component of phase, and a DC component.
  • 8. The touch screen apparatus of claim 7, wherein the sampling rate is at least 40 KHz.
  • 9. The touch screen apparatus of claim 7, wherein a touch is determined to have occurred upon a peak of a sampled signal from the filter being above a threshold level, the sampled signal being represented by the following equation:
  • S=A(.omega.t+.phi.)+T sin (.omega.t+.phi.)) (9)
  • wherein=
  • S represents the sampled signal;
  • A is the amplitude of the sampled signal;
  • .omega. is the phase angle;
  • .phi. is the phase of the sampled signal;
  • T is the amplitude of the current flowing through the touch apparatus.
Parent Case Info

This is a Division of application Ser. No. 08/294,227 filed Aug. 22, 1994, incorporated herein by reference .

US Referenced Citations (102)
Number Name Date Kind
3382588 Serrell et al. May 1968
3466391 Ellis Sep 1969
3482241 Johnson Dec 1969
3591718 Asano et al. Jul 1971
3622105 Buchholz et al. Nov 1971
3632874 Malavard et al. Jan 1972
3699439 Turner Oct 1972
3732369 Cotter May 1973
3732557 Evans et al. May 1973
3757322 Barkan et al. Sep 1973
3798370 Hurst Mar 1974
3815127 Blumke et al. Jun 1974
3836909 Cockerell Sep 1974
3971013 Challoner et al. Jul 1976
3999012 Dym Dec 1976
4018989 Snyder et al. Apr 1977
4022971 Rodgers May 1977
4029899 Gordon Jun 1977
4055726 Turner et al. Oct 1977
4079194 Kley Mar 1978
4088904 Green May 1978
4103252 Bobick Jul 1978
4110749 Janko Aug 1978
4112415 Hilbrink Sep 1978
4129747 Pepper Dec 1978
4175239 Sandler Nov 1979
4177354 Mathews Dec 1979
4177421 Thornburg Dec 1979
4178481 Kley Dec 1979
4186392 Holz Jan 1980
4198539 Pepper Apr 1980
4214122 Kley Jul 1980
4221975 Ledniczki et al. Sep 1980
4230967 Holz et al. Oct 1980
4233593 Bigelow Nov 1980
4235522 Simpson et al. Nov 1980
4242676 Piguet et al. Dec 1980
4264903 Bigelow Apr 1981
4281323 Burnett et al. Jul 1981
4286289 Ottesen et al. Aug 1981
4291303 Cutler et al. Sep 1981
4293734 Pepper Oct 1981
4305007 Hughes Dec 1981
4305071 Bell et al. Dec 1981
4307383 Brienza Dec 1981
4353552 Pepper Oct 1982
4371746 Pepper Feb 1983
4374381 Ng et al. Feb 1983
4379287 Tyler et al. Apr 1983
4431882 Frame Feb 1984
4435616 Kley Mar 1984
4455452 Schuyler Jun 1984
4475235 Graham Oct 1984
4476463 Ng et al. Oct 1984
4484038 Dorman et al. Nov 1984
4523654 Quayle et al. Jun 1985
4567470 Yoshikawa et al. Jan 1986
4595913 Aubuchon Jun 1986
4621257 Brown Nov 1986
4622437 Bloom et al. Nov 1986
4623757 Marino Nov 1986
4639720 Rympalski et al. Jan 1987
4649232 Nakamura et al. Mar 1987
4649499 Sutton et al. Mar 1987
4653086 Laube Mar 1987
4661655 Gibson et al. Apr 1987
4675569 Bowman et al. Jun 1987
4680429 Murdock et al. Jul 1987
4680430 Yoshikawa et al. Jul 1987
4684801 Carroll et al. Aug 1987
4686332 Greanias et al. Aug 1987
4687885 Talmage et al. Aug 1987
4694279 Meno Sep 1987
4698460 Krein et al. Oct 1987
4698461 Meadows et al. Oct 1987
4707845 Krein et al. Nov 1987
4731508 Gibson et al. Mar 1988
4733222 Evans Mar 1988
4740781 Brown Apr 1988
4743895 Alexander May 1988
4755634 Pepper Jul 1988
4763356 Day et al. Aug 1988
4777328 Talmage et al. Oct 1988
4797514 Talmage et al. Jan 1989
4806709 Evans Feb 1989
4822957 Talmage et al. Apr 1989
4825212 Adler et al. Apr 1989
4839634 More et al. Jun 1989
4853498 Meadows et al. Aug 1989
4873400 Rapp et al. Oct 1989
4875036 Washizuka et al. Oct 1989
4896223 Todome Jan 1990
4910504 Ericksson Mar 1990
4914624 Dunthorn Apr 1990
4922061 Meadows et al. May 1990
4924222 Antikidis et al. May 1990
4954823 Binstead Sep 1990
4958148 Olson Sep 1990
5016008 Gruaz et al. May 1991
5027115 Sato et al. Jun 1991
5053757 Meadows Oct 1991
5251123 Reiffel et al. Oct 1993
Foreign Referenced Citations (1)
Number Date Country
3511353 Oct 1986 DEX
Divisions (1)
Number Date Country
Parent 294227 Aug 1994