1. Field of the Invention
The present invention relates generally to x-ray tubes and power supplies for x-ray tubes.
2. Related Art
A desirable characteristic of x-ray sources, especially portable x-ray sources, is reduced power consumption, thus allowing for longer battery life. Another desirable characteristic of x-ray sources is power supply electronic stability.
Power Loss Due to Filament Heat Loss
One component of x-ray sources that requires power input is an x-ray tube filament, located at an x-ray tube cathode. Alternating current through the filament can heat the filament to very high temperatures, such as around 1000-3000° C. The high temperature of the filament, combined with a large voltage differential between the x-ray tube cathode and anode can result in electrons propelled from the filament to the anode.
Some of the heat at the filament can be lost to surrounding components through conduction and radiation heat transfer. Electric power input to the filament is required to compensate for this heat loss and keep the filament at the required high temperature. This electric power input to compensate for heat loss results in wasted power and, for x-ray sources that use batteries, decreased battery life.
The wasted heat can be transferred to electronic components in the power supply, resulting in temperature fluctuations in these electronic components. These temperature fluctuations can cause instability in the power supply because of the temperature dependency of many electronic components.
Power Loss Due to Linear Regulator
Another component of x-ray sources that can cause power loss in x-ray sources is a linear regulator in an alternating current source for an x-ray tube filament.
Voltage source 401 can provide direct current (DC) to a direct current to alternating current (DC to AC) converter 403. Voltage source 401 can be a constant voltage power supply. X-ray tube 405 is shown comprising a filament 406, cathode 407, evacuated cylinder 408, and anode 409. The DC to AC converter 403 can provide alternating current to x-ray tube filament 406. A transformer 404 may separate the DC to AC converter 403, at low DC bias voltage, from the filament 406, at high DC bias voltage, thus an AC signal can be passed from a low DC bias to a high DC bias. Due to heat caused by alternating current through the filament 406, and due to a large DC voltage differential between the filament 406 and the anode 409, an electron beam 410 may be generated from the filament 406 to the anode 409. Electrons from this electron beam 410 impinge upon the anode, thus producing x-rays 417.
There is often a need to change the flux of x-rays 417 exiting the x-ray tube 405. Adjusting alternating current flow through the filament 406 can change the electron beam 410 flux and thus the x-ray 417 flux. A linear regulator 72 can be used to adjust alternating current flow through the filament 406.
Electron beam 410 flux and thus x-ray 417 flux can be approximated by an amount of electrical current flowing from a high voltage multiplier 411 through feedback module 414 to a filament circuit 412. The feedback module 414 can determine the current flow, such as by measuring voltage drop across a resistor. The feedback module 414 can receive input 416, such as from an operator of the x-ray source, of a desired x-ray 417 flux. The feedback module 414 can then send a signal 415 to the linear regulator 72 to change the amount of current to the DC to AC converter 403 based on the input 416 and the x-ray 417 flux.
For example, input 416 can be reduced for a desired reduction in x-ray 417 flux. Feedback module 414 can detect that x-ray 417 flux is too high due to too large of a current through the feedback module for the new, lower input 416. A signal 415 can be sent to the linear regulator 72 to increase voltage drop across the linear regulator 72, thus allowing a lower DC voltage to reach the DC to AC converter 403. The DC to AC converter 403 can then provide less alternating current to the filament 406 resulting in lower filament 406 temperature, lower electron beam 410 flux and lower x-ray 417 flux.
The larger voltage drop across the linear regulator 72 at low x-ray 417 flux levels can result in wasted power because the power input from the voltage source 401 can be the same at low x-ray 417 flux as at high x-ray 417 flux. Another problem with this design is that the wasted heat, due to larger voltage drop across the linear regulator 72 at low x-ray 417 flux, can heat surrounding electronic components, resulting in temperature fluctuations and instability in these electronic components.
High Voltage Multiplier Distributed Capacitance Power Loss
As shown in
It has been recognized that it would be advantageous to create an x-ray source with reduced power consumption, such as by reducing (1) heat loss from the x-ray tube filament, (2) power lost in regulating power flow to the DC to AC converter, and/or (3) distributed capacitance power loss between a high voltage multiplier and ground. It has been recognized that it would be advantageous to create an x-ray source with improved power supply electronic stability, such as by reducing heat transfer, from wasted heat, to the power supply electronics. The present invention is directed to an x-ray source that satisfies the need for reduced power consumption and/or improved electronic stability.
In one embodiment, the x-ray tube comprises an evacuated insulative cylinder with an anode disposed at one end and a cathode disposed at an opposing end. The anode includes a material configured to produce x-rays in response to impact of electrons. The cathode includes a filament disposed at an inward face of the cathode. The filament is configured to produce electrons accelerated towards the anode in response to an electric field between the anode and the cathode. An infrared heat reflector is disposed inside the insulative cylinder between the cathode and the anode and oriented to reflect a substantial portion of infrared heat radiating from the filament back to the filament, thus reducing heat loss from the filament. The reflector has a curved, concave shape facing the cathode. The reflector has an opening aligned with an electron path between the filament and the anode and the opening is sized to allow a substantial amount of electrons to flow from the filament to the anode. Reduced heat loss results in reduce wasted power consumption and reduced heating of surrounding electronic components.
In another embodiment, an alternating current source for an x-ray tube filament comprises a voltage source, a switch that is electrically coupled to the voltage source, the switch having a first switch position in which electrical current is allowed to flow through the switch to a DC to AC converter and a second switch position in which electrical current is not allowed to flow through the switch. The DC to AC converter provides alternating current to the x-ray tube filament when the switch is in the first position. A feedback module receives input regarding an electron beam current level from the filament and directs the switch to the first switch position for more or less time based on the electron beam current level. Thus, electrical current is not allowed to flow through the switch for more time for lower power settings, rather than converting excess power into heat, as is the case with linear regulators.
In another embodiment, capacitive power loss between a high voltage multiplier and ground may be reduced with a neutral grounded, direct current (DC) high voltage, power supply. The power supply comprises (1) a first alternating current (AC) source having a first connection and a second connection; (2) a second AC source having a first connection and a second connection; (3) a first high voltage multiplier having an AC connection, a ground connection, and an output connection; and (4) a second high voltage multiplier having an AC connection, a ground connection, and an output connection. The first connection of the first AC source is electrically connected to (1) the second connection of the second AC source; (2) an electrical ground; (3) the first high voltage multiplier ground connection; and (4) the second high voltage multiplier ground connection. The second connection of the first AC source is electrically connected to the first high voltage multiplier AC connection. The first connection of the second AC source is electrically connected to the second high voltage multiplier AC connection. The first high voltage multiplier output connection is electrically connected to the second high voltage multiplier output connection. With this design, the amount of current flowing to ground can be reduced, thus minimizing capacitive power loss between ground and high voltage multiplier.
Reference will now be made to the exemplary embodiments illustrated in the drawings, and specific language will be used herein to describe the same. It will nevertheless be understood that no limitation of the scope of the invention is thereby intended. Alterations and further modifications of the inventive features illustrated herein, and additional applications of the principles of the inventions as illustrated herein, which would occur to one skilled in the relevant art and having possession of this disclosure, are to be considered within the scope of the invention.
Infrared Focusing for Power Reduction of X-Ray Tube Electron Emitter
As illustrated in
The above embodiment can have many advantages including reduced power consumption. Reduced power consumption can be achieved by the reflector 16 reflecting infrared heat back to the filament 14, thus resulting in reduced heat loss from the filament 14. Lower power input can be achieved due to the reduced heat loss. Reduced power input can result in cost savings, and for battery powered x-ray sources, longer battery life. Improved power supply electronic stability may also be achieved by reducing heat transfer to the power supply electronics. Heat transfer to the power supply electronics can be reduced by reflecting some of the heat radiated from the filament 14 back to the filament 14 rather than allowing this radiated heat to escape the x-ray tube and heat surrounding electronics.
The curved, concave shape 19 of the reflector 16 can have various shapes of curvature. In one embodiment, the curved, concave shape 19 can include a portion of a spherical shape. In another embodiment, the curved, concave shape 19 can include a portion of an elliptical shape. In another embodiment, the curved, concave shape 19 can include a portion of a parabolic shape. In another embodiment, the curved, concave shape 19 can include a portion of a hyperbolic shape. The curved shape 19 may be selected based on which shape: (1) is most readily available, (2) fits best into an x-ray tube design, (3) better reflects heat back to the filament, and/or is easier to manufacture. A portion of a spherical shape may be preferred for improved heat reflection back to the filament 14.
Improved performance can be achieved by situating the filament in a location in which optimal heat transfer back to the filament 14 may be achieved. It is believed that optimal heat transfer may be achieved if the filament 14 is disposed at or near a focal point of the reflector. For example, a focal point of a sphere is one half of a radius of the sphere, thus optimal heat transfer may be achieved with the filament 14 disposed at a distance of one half of the radius from the reflector 16.
Improved heat transfer back to the filament 14 can be achieved by use of a surface on the reflector that optimizes reflection of infrared radiation. For example, a metallic surface, especially a smooth, specular surface, can aid in optimizing reflection of infrared radiation back to the filament 14. The entire reflector 16 can be metallic or the reflector can include a metallic surface on a side 19 facing the filament 14. In one embodiment, the reflector can have a reflectivity on a side 19 facing the filament 14 of greater than about 0.75 for infrared wavelengths of 1 to 3 μm.
In one embodiment, an area of the opening 17 can be less than 10% of a surface area of the reflector 16 on a side of the reflector facing the filament. In another embodiment, an area of the opening 17 can be at least 10% of a surface area of the reflector 16 on a side of the reflector facing the filament. In another embodiment, an area of the opening 17 can be at least 25% of a surface area of the reflector 16 on a side of the reflector facing the filament. In another embodiment, an area of the opening 17 can be at least 50% of a surface area of the reflector 16 on a side of the reflector facing the filament. In another embodiment, an area of the opening 17 can be at least as great a surface area of the reflector on a side of the reflector facing the filament.
As shown in
As shown in
The reflector 16 can be manufactured by machining. The reflector can be attached to the cathode 13 and/or the cylinder 11 by an adhesive or by welding.
Amplitude Modulation of X-Ray Tube Filament Power
As illustrated in
X-ray tube 405 is also shown in
There can be a need to change the flux of x-rays 417 exiting the x-ray tube 405. Adjusting alternating current flow through the filament 406 can change the filament temperature which results in a change in electron beam 410 flux and thus a change in the x-ray 417 flux.
Switch 402 can be used to adjust alternating current flow through the filament 406. The switch 402 can have two positions. Electrical current flow through the switch when the switch is in the first switch position can be substantially higher than electrical current flow through the switch when the switch is in the second switch position. In a preferred embodiment, no electrical current is allowed to flow through the switch when the switch is in the second position. As used herein, the phrase “no electrical current is allowed to flow through the switch” means that no electrical current, or only a very negligible amount of current, is allowed to flow through the switch. Due to imperfections in switches, switches can have a minimal amount of leakage current even when the switch is positioned to prevent current flow.
In one embodiment, electrical current flow through the switch when the switch is in the first switch position is at least 3 times more than electrical current flow through the switch when the switch is in the second switch position. In another embodiment, electrical current flow through the switch when the switch is in the first switch position is at least 5 times more than electrical current flow through the switch when the switch is in the second switch position. In another embodiment, electrical current flow through the switch when the switch is in the first switch position is at least 10 times more than electrical current flow through the switch when the switch is in the second switch position. In another embodiment, electrical current flow through the switch when the switch is in the first switch position is at least 100 times more than electrical current flow through the switch when the switch is in the second switch position. In another embodiment, electrical current flow through the switch when the switch is in the first switch position is at least 1000 times more than electrical current flow through the switch when the switch is in the second switch position.
Thus, when a lower x-ray 417 flux is desired, the switch 402 can turn to the second switch position, then back the first switch position again. The switch can repeatedly go back and forth between the first switch position and the second switch position. The switch can either be left in the second switch position for a longer time, or turned to the second switch position more frequently, if lower x-ray flux 417 is desired. Alternatively, the switch can either be left in the second switch position for a shorter time, or turned to the second switch position less frequently, if higher x-ray flux 417 is desired. This switching from one switch position to the other can occur rapidly, such as for example, from about 3 Hz to 50 kHz or more.
A setpoint for desired x-ray 417 flux can be input 416, such as by an operator of the x-ray source. This input 416 can give a signal to a feedback module 414. The feedback module 414 can receive a signal of x-ray 417 flux, compare this x-ray 417 flux to the input 416 setpoint and send a signal 415 to the switch 402 to change the amount of time the switch is in one of the positions compared to the other position in order to cause the input x-ray 417 flux to match the setpoint. Note that when the switch is in the second position, no or less electrical current passes through the switch 402, and thus no or less DC voltage reaches the DC to AC converter 403 and no or less current flows through the filament 406. With the switch in the second position for an increased proportion of time, the filament 406 will have a lower temperature with resulting lower electron beam 410 flux and lower x-ray 417 flux.
Electron beam 410 flux and thus x-ray 417 flux can be approximated by an amount of electrical current flowing from the high voltage multiplier 411 to the filament circuit 412. The amount of electrical current flowing from the high voltage multiplier 411 through feedback module 414 to the filament circuit 412 can be measured, such as by measuring voltage drop across a resistor, and this amount of electrical current can be input to the feedback module 414.
For example, for a desired reduction in x-ray 417 flux, input 416 can be reduced. Feedback module 414 can detect that x-ray 417 flux is too high due to too large of a current to the filament circuit 412 as recognized in the feedback module 414. A signal 415 can be sent to the switch 402 to increase the proportion of time that the switch 402 is in the second position, thus decreasing the total amperage through the filament. Note that rather than decreasing electrical current through the filament 406 by a higher voltage drop across a linear regulator 92, thus producing heat and wasting energy, the electrical current through the filament 406 is decreased by turning power to the filament 406 off for a larger proportion of time, thus avoiding the power loss and heat generated as with a linear regulator 92.
Input 416 can include a first setpoint and a second setpoint. The feedback module 414 can be configured to set the switch 402 to the first switch position (1) for more time when the electron beam current level is below the first set point or (2) for less time when the electron beam current level is above the second set point. The first and second setpoints can be different, or the first setpoint can equal the second setpoint.
The DC to AC converter 403 can be configured to provide alternating current to the x-ray tube filament 406 at a frequency between about 0.5 MHz to about 200 MHz. For example, in one embodiment, the frequency is about 1 MHz to about 4 MHz.
One embodiment of the present invention includes a method for providing alternating current to the x-ray tube filament 406. The method comprises providing alternating current to the filament 406 from a voltage source 401 through a switch 402 and a DC to AC converter 403. The filament 406 generates an electron beam 410, the electron beam 410 having an electron beam current level. A feedback signal is sent to the switch 402 based on the electron beam current level. The voltage source 401 is connected to the DC to AC converter 403 through the switch 402 for (1) more time when electron beam current level is less than a first set point and (2) less time when electron beam current level is greater than a second set point. The first and second setpoints can be the same (a single set point) or can be different values. The switch can be an analog switch.
In the various embodiments described herein, the DC to AC converter can comprise an oscillator and a chopper.
Neutral Grounding of High Voltage Multiplier
As illustrated in
The first connection 51a of the first AC source 51 is electrically connected to the second connection 52b of the second AC source 52, an electrical ground 53, the first high voltage multiplier ground connection, and the second high voltage multiplier ground connection. The second connection of the first AC source is electrically connected to the first high voltage multiplier AC connection. The first connection of the second AC source is electrically connected to the second high voltage multiplier AC connection. The first high voltage multiplier output connection is electrically connected to the second high voltage multiplier output connection.
With this design, the amount of current flowing to ground can be reduced, thus minimizing capacitive power loss between ground and high voltage multiplier. This is accomplished by power flow between the two high voltage multipliers. In a preferred embodiment, no electrical current, or negligible electrical current, flows to ground, but rather all, or nearly all, of the alternating current flows between the two high voltage multipliers. With no or negligible electrical current flowing to ground, capacitive power loss between the high voltage multipliers and ground can be eliminated or significantly reduced. The two AC sources may be configured to be operated in phase with each other in order to avoid electrical current flow to ground. In case it is not practical for the AC sources to be in phase, then they may be operated close to being in phase, such as for example, less than 30 degrees out of phase, less than 60 degrees out of phase, or less than or equal to 90 degrees out of phase.
The high voltage multipliers can generate a very high DC voltage differential between the ground and the high voltage multiplier output connections. For example, this DC voltage differential can be at least 10 kilovolts, at least 40 kilovolts, or at least 60 kilovolts.
In one embodiment, the high voltage power supplies described herein can be used to supply high DC voltage to an x-ray tube 405 filament 406 as shown in
As shown in
It is to be understood that the above-referenced arrangements are only illustrative of the application for the principles of the present invention. Numerous modifications and alternative arrangements can be devised without departing from the spirit and scope of the present invention. While the present invention has been shown in the drawings and fully described above with particularity and detail in connection with what is presently deemed to be the most practical and preferred embodiment(s) of the invention, it will be apparent to those of ordinary skill in the art that numerous modifications can be made without departing from the principles and concepts of the invention as set forth herein.
Priority is claimed to U.S. Provisional Patent Application Ser. No. 61/435,545, filed Jan. 24, 2011, and is hereby incorporated herein by reference in its entirety.
Number | Name | Date | Kind |
---|---|---|---|
1276706 | Snook et al. | May 1918 | A |
1881448 | Forde et al. | Oct 1932 | A |
1946288 | Kearsley | Feb 1934 | A |
2291948 | Cassen | Aug 1942 | A |
2316214 | Atlee et al. | Apr 1943 | A |
2329318 | Atlee et al. | Sep 1943 | A |
2340363 | Atlee et al. | Feb 1944 | A |
2502070 | Atlee et al. | Mar 1950 | A |
2663812 | Jamison et al. | Mar 1950 | A |
2683223 | Hosemann | Jul 1954 | A |
2952790 | Steen | Sep 1960 | A |
3356559 | Mohn et al. | Dec 1967 | A |
3397337 | Denholm | Aug 1968 | A |
3434062 | Cox | Mar 1969 | A |
3538368 | Oess | Nov 1970 | A |
3665236 | Gaines et al. | May 1972 | A |
3679927 | Kirkendall | Jul 1972 | A |
3691417 | Gralenski | Sep 1972 | A |
3741797 | Chavasse, Jr. et al. | Jun 1973 | A |
3751701 | Gralenski et al. | Aug 1973 | A |
3801847 | Dietz | Apr 1974 | A |
3828190 | Dahlin et al. | Aug 1974 | A |
3851266 | Conway | Nov 1974 | A |
3872287 | Kooman | Mar 1975 | A |
3882339 | Rate et al. | May 1975 | A |
3894219 | Weigel | Jul 1975 | A |
3962583 | Holland et al. | Jun 1976 | A |
3970884 | Golden | Jul 1976 | A |
4007375 | Albert | Feb 1977 | A |
4075526 | Grubis | Feb 1978 | A |
4160311 | Ronde et al. | Jul 1979 | A |
4163900 | Warren et al. | Aug 1979 | A |
4178509 | More et al. | Dec 1979 | A |
4184097 | Auge | Jan 1980 | A |
4200795 | Kawamura et al. | Apr 1980 | A |
4250127 | Warren et al. | Feb 1981 | A |
4293373 | Greenwood | Oct 1981 | A |
4368538 | McCorkle | Jan 1983 | A |
4393127 | Greschner et al. | Jul 1983 | A |
4400822 | Kuhnke et al. | Aug 1983 | A |
4421986 | Friauf et al. | Dec 1983 | A |
4443293 | Mallon et al. | Apr 1984 | A |
4463338 | Utner et al. | Jul 1984 | A |
4504895 | Steigerwald | Mar 1985 | A |
4521902 | Peugeot | Jun 1985 | A |
4532150 | Endo et al. | Jul 1985 | A |
4573186 | Reinhold | Feb 1986 | A |
4576679 | White | Mar 1986 | A |
4584056 | Perret et al. | Apr 1986 | A |
4591756 | Avnery | May 1986 | A |
4608326 | Neukermans et al. | Aug 1986 | A |
4645977 | Kurokawa et al. | Feb 1987 | A |
4675525 | Amingual et al. | Jun 1987 | A |
4679219 | Ozaki | Jul 1987 | A |
4688241 | Peugeot | Aug 1987 | A |
4696994 | Nakajima | Sep 1987 | A |
4705540 | Hayes | Nov 1987 | A |
4734924 | Yahata et al. | Mar 1988 | A |
4761804 | Yahata | Aug 1988 | A |
4777642 | Ono | Oct 1988 | A |
4797907 | Anderton | Jan 1989 | A |
4818806 | Kunimune et al. | Apr 1989 | A |
4819260 | Haberrecker | Apr 1989 | A |
4862490 | Karnezos et al. | Aug 1989 | A |
4870671 | Hershyn | Sep 1989 | A |
4876330 | Higashi et al. | Oct 1989 | A |
4878866 | Mori et al. | Nov 1989 | A |
4885055 | Woodbury et al. | Dec 1989 | A |
4891831 | Tanaka et al. | Jan 1990 | A |
4933557 | Perkins | Jun 1990 | A |
4939763 | Pinneo et al. | Jul 1990 | A |
4957773 | Spencer et al. | Sep 1990 | A |
4960486 | Perkins et al. | Oct 1990 | A |
4969173 | Valkonet | Nov 1990 | A |
4979198 | Malcolm et al. | Dec 1990 | A |
4979199 | Cueman et al. | Dec 1990 | A |
4995069 | Tanaka | Feb 1991 | A |
5010562 | Hernandez et al. | Apr 1991 | A |
5060252 | Vogler et al. | Oct 1991 | A |
5063324 | Grunwald | Nov 1991 | A |
5066300 | Isaacson et al. | Nov 1991 | A |
5077771 | Skillicorn et al. | Dec 1991 | A |
5077777 | Daly | Dec 1991 | A |
5090046 | Friel | Feb 1992 | A |
5105456 | Rand et al. | Apr 1992 | A |
5117829 | Miller et al. | Jun 1992 | A |
5153900 | Nomikos et al. | Oct 1992 | A |
5161179 | Suzuki et al. | Nov 1992 | A |
5173612 | Imai et al. | Dec 1992 | A |
5178140 | Ibrahim | Jan 1993 | A |
5187737 | Watanabe | Feb 1993 | A |
5196283 | Ikeda et al. | Mar 1993 | A |
5200984 | Laeuffer | Apr 1993 | A |
5217817 | Verspui et al. | Jun 1993 | A |
5226067 | Allred et al. | Jul 1993 | A |
RE34421 | Parker et al. | Oct 1993 | E |
5258091 | Imai et al. | Nov 1993 | A |
5267294 | Kuroda et al. | Nov 1993 | A |
5302523 | Coffee et al. | Apr 1994 | A |
5343112 | Wegmann | Aug 1994 | A |
5347571 | Furbee et al. | Sep 1994 | A |
5391958 | Kelly | Feb 1995 | A |
5392042 | Pellon | Feb 1995 | A |
5400385 | Blake et al. | Mar 1995 | A |
5422926 | Smith et al. | Jun 1995 | A |
5428658 | Oettinger et al. | Jun 1995 | A |
5432003 | Plano et al. | Jul 1995 | A |
5469429 | Yamazaki et al. | Nov 1995 | A |
5469490 | Golden et al. | Nov 1995 | A |
5478266 | Kelly | Dec 1995 | A |
5521851 | Wei et al. | May 1996 | A |
5524133 | Neale et al. | Jun 1996 | A |
RE35383 | Miller et al. | Nov 1996 | E |
5571616 | Phillips et al. | Nov 1996 | A |
5578360 | Viitanen | Nov 1996 | A |
5602507 | Suzuki | Feb 1997 | A |
5607723 | Plano et al. | Mar 1997 | A |
5621780 | Smith et al. | Apr 1997 | A |
5627871 | Wang | May 1997 | A |
5631943 | Miles | May 1997 | A |
5673044 | Pellon | Sep 1997 | A |
5680433 | Jensen | Oct 1997 | A |
5682412 | Skillicorn et al. | Oct 1997 | A |
5696808 | Lenz | Dec 1997 | A |
5706354 | Stroehlein | Jan 1998 | A |
5729583 | Tang et al. | Mar 1998 | A |
5774522 | Warburton | Jun 1998 | A |
5812632 | Schardt et al. | Sep 1998 | A |
5835561 | Moorman et al. | Nov 1998 | A |
5870051 | Warburton | Feb 1999 | A |
5898754 | Gorzen | Apr 1999 | A |
5907595 | Sommerer | May 1999 | A |
5978446 | Resnick | Nov 1999 | A |
6002202 | Meyer et al. | Dec 1999 | A |
6005918 | Harris et al. | Dec 1999 | A |
6044130 | Inazura et al. | Mar 2000 | A |
6062931 | Chuang et al. | May 2000 | A |
6063629 | Knoblauch | May 2000 | A |
6069278 | Chuang | May 2000 | A |
6073484 | Miller et al. | Jun 2000 | A |
6075839 | Treseder | Jun 2000 | A |
6097790 | Hasegawa et al. | Aug 2000 | A |
6129901 | Moskovits et al. | Oct 2000 | A |
6133401 | Jensen | Oct 2000 | A |
6134300 | Trebes et al. | Oct 2000 | A |
6184333 | Gray | Feb 2001 | B1 |
6205200 | Boyer et al. | Mar 2001 | B1 |
6277318 | Bower et al. | Aug 2001 | B1 |
6282263 | Arndt et al. | Aug 2001 | B1 |
6288209 | Jensen | Sep 2001 | B1 |
6307008 | Lee et al. | Oct 2001 | B1 |
6320019 | Lee et al. | Nov 2001 | B1 |
6351520 | Inazaru | Feb 2002 | B1 |
6385294 | Suzuki et al. | May 2002 | B2 |
6388359 | Duelli et al. | May 2002 | B1 |
6438207 | Chidester et al. | Aug 2002 | B1 |
6477235 | Chornenky et al. | Nov 2002 | B2 |
6487272 | Kutsuzawa | Nov 2002 | B1 |
6487273 | Takenaka et al. | Nov 2002 | B1 |
6494618 | Moulton | Dec 2002 | B1 |
6546077 | Chornenky et al. | Apr 2003 | B2 |
6567500 | Rother | May 2003 | B2 |
6645757 | Okandan et al. | Nov 2003 | B1 |
6646366 | Hell et al. | Nov 2003 | B2 |
6658085 | Sklebitz et al. | Dec 2003 | B2 |
6661876 | Turner et al. | Dec 2003 | B2 |
6740874 | Doring | May 2004 | B2 |
6778633 | Loxley et al. | Aug 2004 | B1 |
6799075 | Chornenky et al. | Sep 2004 | B1 |
6803570 | Bryson, III et al. | Oct 2004 | B1 |
6816573 | Hirano et al. | Nov 2004 | B2 |
6819741 | Chidester | Nov 2004 | B2 |
6838297 | Iwasaki | Jan 2005 | B2 |
6852365 | Smart et al. | Feb 2005 | B2 |
6866801 | Mau et al. | Mar 2005 | B1 |
6876724 | Zhou | Apr 2005 | B2 |
6900580 | Dai et al. | May 2005 | B2 |
6956706 | Brandon | Oct 2005 | B2 |
6962782 | Livache et al. | Nov 2005 | B1 |
6976953 | Pelc | Dec 2005 | B1 |
6987835 | Lovoi | Jan 2006 | B2 |
7035379 | Turner et al. | Apr 2006 | B2 |
7046767 | Okada et al. | May 2006 | B2 |
7049735 | Ohkubo et al. | May 2006 | B2 |
7050539 | Loef et al. | May 2006 | B2 |
7075699 | Oldham et al. | Jul 2006 | B2 |
7085354 | Kanagami | Aug 2006 | B2 |
7108841 | Smalley | Sep 2006 | B2 |
7110498 | Yamada | Sep 2006 | B2 |
7130380 | Lovoi et al. | Oct 2006 | B2 |
7130381 | Lovoi et al. | Oct 2006 | B2 |
7189430 | Ajayan et al. | Mar 2007 | B2 |
7203283 | Puusaari | Apr 2007 | B1 |
7206381 | Shimono et al. | Apr 2007 | B2 |
7215741 | Ukita | May 2007 | B2 |
7224769 | Turner | May 2007 | B2 |
7233071 | Furukawa et al. | Jun 2007 | B2 |
7233647 | Turner et al. | Jun 2007 | B2 |
7286642 | Ishikawa et al. | Oct 2007 | B2 |
7305066 | Ukita | Dec 2007 | B2 |
7317784 | Durst et al. | Jan 2008 | B2 |
7358593 | Smith et al. | Apr 2008 | B2 |
7382862 | Bard et al. | Jun 2008 | B2 |
7399794 | Harmon et al. | Jul 2008 | B2 |
7410603 | Noguchi et al. | Aug 2008 | B2 |
7428298 | Bard et al. | Sep 2008 | B2 |
7448801 | Oettinger et al. | Nov 2008 | B2 |
7448802 | Oettinger et al. | Nov 2008 | B2 |
7486774 | Cain | Feb 2009 | B2 |
7526068 | Dinsmore | Apr 2009 | B2 |
7529345 | Bard et al. | May 2009 | B2 |
7618906 | Meilahti | Nov 2009 | B2 |
7634052 | Grodzins et al. | Dec 2009 | B2 |
7649980 | Aoki et al. | Jan 2010 | B2 |
7650050 | Haffner et al. | Jan 2010 | B2 |
7657002 | Burke et al. | Feb 2010 | B2 |
7675444 | Smith et al. | Mar 2010 | B1 |
7680652 | Giesbrecht et al. | Mar 2010 | B2 |
7693265 | Hauttmann et al. | Apr 2010 | B2 |
7709820 | Decker et al. | May 2010 | B2 |
7737424 | Xu et al. | Jun 2010 | B2 |
7756251 | Davis et al. | Jul 2010 | B2 |
20020075999 | Rother | Jun 2002 | A1 |
20020094064 | Zhou | Jul 2002 | A1 |
20030096104 | Tobita et al. | May 2003 | A1 |
20030152700 | Asmussen et al. | Aug 2003 | A1 |
20030165418 | Ajayan et al. | Sep 2003 | A1 |
20040076260 | Charles, Jr. et al. | Apr 2004 | A1 |
20040192997 | Lovoi | Sep 2004 | A1 |
20050018817 | Oettinger et al. | Jan 2005 | A1 |
20050141669 | Shimono et al. | Jun 2005 | A1 |
20050207537 | Ukita | Sep 2005 | A1 |
20060073682 | Furukawa et al. | Apr 2006 | A1 |
20060098778 | Oettinger et al. | May 2006 | A1 |
20060210020 | Takahashi et al. | Sep 2006 | A1 |
20060233307 | Dinsmore | Oct 2006 | A1 |
20060269048 | Cain | Nov 2006 | A1 |
20060280289 | Hanington et al. | Dec 2006 | A1 |
20070025516 | Bard et al. | Feb 2007 | A1 |
20070087436 | Miyawaki et al. | Apr 2007 | A1 |
20070111617 | Meilahti | May 2007 | A1 |
20070133921 | Haffner et al. | Jun 2007 | A1 |
20070142781 | Sayre | Jun 2007 | A1 |
20070165780 | Durst et al. | Jul 2007 | A1 |
20070172104 | Nishide | Jul 2007 | A1 |
20070176319 | Thostenson et al. | Aug 2007 | A1 |
20070183576 | Burke et al. | Aug 2007 | A1 |
20070217574 | Beyerlein | Sep 2007 | A1 |
20080199399 | Chen et al. | Aug 2008 | A1 |
20080296479 | Anderson et al. | Dec 2008 | A1 |
20080296518 | Xu et al. | Dec 2008 | A1 |
20080317982 | Hecht | Dec 2008 | A1 |
20090085426 | Davis et al. | Apr 2009 | A1 |
20090086923 | Davis et al. | Apr 2009 | A1 |
20090213914 | Dong et al. | Aug 2009 | A1 |
20090243028 | Dong et al. | Oct 2009 | A1 |
20100096595 | Prud'Homme et al. | Apr 2010 | A1 |
20100098216 | Dobson | Apr 2010 | A1 |
20100126660 | O'Hara | May 2010 | A1 |
20100140497 | Damiano, Jr. et al. | Jun 2010 | A1 |
20100189225 | Ernest et al. | Jul 2010 | A1 |
20100239828 | Cronaby et al. | Sep 2010 | A1 |
20100243895 | Xu et al. | Sep 2010 | A1 |
20100248343 | Aten et al. | Sep 2010 | A1 |
20100285271 | Davis et al. | Nov 2010 | A1 |
20100323419 | Aten et al. | Dec 2010 | A1 |
20110017921 | Jiang et al. | Jan 2011 | A1 |
20110022446 | Carney et al. | Jan 2011 | A1 |
Number | Date | Country |
---|---|---|
1030936 | May 1958 | DE |
4430623 | Mar 1996 | DE |
19818057 | Nov 1999 | DE |
0297808 | Jan 1989 | EP |
0330456 | Aug 1989 | EP |
0400655 | May 1990 | EP |
0676772 | Mar 1995 | EP |
1252290 | Nov 1971 | GB |
57 082954 | Aug 1982 | JP |
3170673 | Jul 1991 | JP |
4171700 | Jun 1992 | JP |
05066300 | Mar 1993 | JP |
5066300 | Mar 1993 | JP |
5135722 | Jun 1993 | JP |
06119893 | Jul 1994 | JP |
6289145 | Oct 1994 | JP |
6343478 | Dec 1994 | JP |
8315783 | Nov 1996 | JP |
08315783 | Nov 1996 | JP |
2003007237 | Jan 2003 | JP |
2003088383 | Mar 2003 | JP |
2003510236 | Mar 2003 | JP |
2003211396 | Jul 2003 | JP |
2006297549 | Nov 2006 | JP |
1020050107094 | Nov 2005 | KR |
WO 9965821 | Dec 1999 | WO |
WO 0009443 | Feb 2000 | WO |
WO 0017102 | Mar 2000 | WO |
WO 03076951 | Sep 2003 | WO |
WO2008052002 | May 2008 | WO |
WO 2008052002 | May 2008 | WO |
WO 2009009610 | Jan 2009 | WO |
WO 2009045915 | Apr 2009 | WO |
WO 2009085351 | Jul 2009 | WO |
WO 2010107600 | Sep 2010 | WO |
Entry |
---|
Chakrapani et al.; Capillarity-Driven Assembly of Two-Dimensional Cellular Carbon Nanotube Foams; PNAS; Mar. 23, 2004; pp. 4009-4012; vol. 101; No. 12. |
Chen, Xiaohua et al., “Carbon-nanotube metal-matrix composites prepared by electroless plating,” Composites Science and Technology, 2000, pp. 301-306, vol. 60. |
Coleman, et al.; “Mechanical Reinforcement of Polymers Using Carbon Nanotubes”; Adv. Mater. 2006, 18, 689-706. |
Coleman, et al.; “Small but strong: A review of the mechanical properties of carbon nanotube-polymer composites”; Carbon 44 (2006) 1624-1652. |
Flahaut, E. et al, “Carbon Nanotube-metal-oxide nanocomposites; microstructure, electrical conductivity and mechanical properties,” Acta mater., 2000, pp. 3803-3812.Vo. 48. |
Gevin et al., “IDeF-X V1.0: performances of a new CMOS multi channel analogue readout ASIC for Cd(Zn)Te detectors”, IDDD, Oct. 2005, 433-437, vol. 1. |
Grybos et al., “DEDIX—development of fully integrated multichannel ASCI for high count rate digital x-ray imaging systems”, IEEE, 693-696, vol. 2. |
Grybos et al., “Measurements of matching and high count rate performance of mulitchannel ASIC for digital x-ray imaging systems”, IEEE, Aug. 2007, 1207-1215, vol. 54, Issue 4. |
Grybos et al., “Pole-Zero cancellation circuit with pulse pile-up tracking system for low noise charge-sensitive amplifiers”, Feb. 2008, 583-590, vol. 55, Issue 1. |
Hexcel Corporation; “Prepreg Technology” brochure; http://www.hexcel.com/Reso2882urces/DataSheets/Brochure-Data-Sheets/Prepreg—Technology.pdf. |
http://www.orau.org/ptp/collectio/xraytubescollidge/MachlettCW250T.htm, 1999, 2 pages. |
Hu, et al.; “Carbon Nanotube Thin Films: Fabrication, Properties, and Applications”; 2010 American Chemical Society Jul. 22, 2010. |
Hutchison, “Vertically aligned carbon nanotubes as a framework for microfabrication of high aspect ration mems,” 2008, pp. 1-50. |
Jiang, Linquin et al., “Carbon nanotubes-metal nitride composites; a new class of nanocomposites with enhanced electrical properties,” J. Mater. Chem., 2005, pp. 260-266, vol. 15. |
Li, Jun et al., “Bottom-up approach for carbon nanotube interconnects,” Applied Physics Letters, Apr. 14, 2003, pp. 2491-2493, vol. 82 No. 15. |
Ma. R.Z., et al., “Processing and properties of carbon nanotubes-nano-SIC ceramic”, Journal of Materials Science 1998, pp. 5243-5246, vol. 33. |
Micro X-ray Tube Operation Manual, X-ray and Specialty Instruments Inc., 1996, 5 pages. |
Moore, A. W., S. L. Strong, and G. L. Doll, “Properties and characterization of codeposited boron nitride and carbon materials,” J. Appl. Phys. 65, 5109 (1989). |
Najafi, et al.; “Radiation resistant polymer-carbon nanotube nanocomposite thin films”; Department of Materials Science and Engineering . . . Nov. 21, 2004. |
Nakajima et al; Trial Use of Carbon-Fiber-Reinforced Plastic as a Non-Bragg Window Material of X-Ray Transmission; Rev. Sci. Instrum.; Jul. 1989; pp. 2432-2435; vol. 60, No. 7. |
Nakamura, K., “Preparation and properties of amorphous boron nitride films by molecular flow chemical vapor deposition,” J. Electrochem. Soc. 132, 1757 (1985). |
Neyco, “SEM & TEM: Grids”; catalog; http://www.neyco.fr/pdf/Grids.pdf#page=1. |
Panayiotatos, et al., “Mechanical performance and growth characteristics of boron nitride films with respect to their optical, compositional properties and density,” Surface and Coatings Technology, 151-152 (2002) 155-159. |
Peigney, et al., “Carbon nanotubes in novel ceramic matrix nanocomposites,” Ceramics International, 2000, pp. 677-683, vol. 26. |
Perkins, F. K., R. A. Rosenberg, and L. Sunwoo, “Synchrotronradiation deposition of boron and boron carbide films from boranes and carboranes: decaborane,” J. Appl. Phys. 69,4103 (1991). |
Powell et al., “Metalized polyimide filters for x-ray astronomy and other applications,” SPIE, pp. 432-440, vol. 3113. |
Rankov et al., “A novel correlated double sampling poly-Si circuit for readout systems in large area x-ray sensors”, IEEE, May 2005, 728-731, vol. 1. |
Roca i Cabarrocas, P., S. Kumar, and B. Drevillon, “In situ study of the thermal decomposition of B.sub.2 H.sub.6 by combining spectroscopic ellipsometry and Kelvin probe measurements,” J. Appl. Phys. 66, 3286 (1989). |
Satishkumar B.C., et al. “Synthesis of metal oxide nanorods using carbon nanotubes as templates,” Journal of Materials Chemistry, 2000, pp. 2115-2119, vol. 10. |
Scholze et al., “Detection efficiency of energy-dispersive detectors with low-energy windows” X-Ray Spectrometry, X-Ray Spectrom, 2005: 34: 473-476. |
Sheather, “The support of thin windows for x-ray proportional counters,” Journal Phys,E., Apr. 1973, pp. 319-322, vol. 6, No. 4. |
Shirai, K., S.-I. Gonda, and S. Gonda, “Characterization of hydrogenated amorphous boron films prepared by electron cyclotron resonance plasma chemical vapor deposition method,” J. Appl. Phys. 67, 6286 (1990). |
Tamura, et al “Developmenmt of ASICs for CdTe Pixel and Line Sensors”, IEEE Transactions on Nuclear Science, vol. 52, No. 5, Oct. 2005. |
Tien-Hui Lin et al., “An investigation on the films used as the windows of ultra-soft X-ray counters.” Acta Physica Sinica, vol. 27, No. 3, pp. 276-283, May 1978, abstract only. |
U.S. Appl. No. 12/640,154, filed Dec. 17, 2009; Krzysztof Kozaczek. |
U.S. Appl. No. 12/726,120, filed Mar. 17, 2010; Michael Lines. |
U.S. Appl. No. 12/783,707, filed May 20, 2010; Steven D. Liddiard. |
U.S. Appl. No. 12/899,750, filed Oct. 7, 2010; Steven Liddiard. |
U.S. Appl. No. 13/018,667, filed Feb. 1, 2011; Robert C. Davis. |
U.S. Appl. No. 13/018,667, filed Feb. 1, 2011; Lei Pei. |
U.S. Appl. No. 13/307,559, filed Nov. 30, 2011; Dongbing Wang. |
Vajtai et al.; Building Carbon Nanotubes and Their Smart Architectures; Smart Mater. Struct.; 2002; vol. 11; pp. 691-698. |
Vandenbulcke, L. G., “Theoretical and experimental studies on the chemical vapor deposition of boron carbide,” Indust. Eng. Chem. Prod. Res. Dev. 24, 568 (1985). |
Viitanen Veli-Pekka et al., Comparison of Ultrathin X-Ray Window Designs, presented at the Soft X-rays in the 21st Century Conference held in Provo, Utah Feb. 10-13, 1993, pp. 182-190. |
Wagner et al, “Effects of Scatter in Dual-Energy Imaging: An Alternative Analysis”; IEEE; Sep. 1989, vol. 8. No. 3. |
Wang, et al.; “Highly oriented carbon nanotube papers made of aligned carbon nanotubes”; Tsinghua-Foxconn Nanotechnology Research Center and Department of Physics; Published Jan. 31, 2008. |
Winter, J., H. G. Esser, and H. Reimer, “Diborane-free boronization,” Fusion Technol. 20, 225 (1991). |
Wu, et al.; “Mechanical properties and thermo-gravimetric analysis of PBO thin films”; Advanced Materials Laboratory, Institute of Electro-Optical Engineering; Apr. 30, 2006. |
www.moxtek,com, Moxtek, Sealed Proportional Counter X-Ray Windows, Oct. 2007, 3 pages. |
www.moxtek.com, Moxtek, AP3 Windows, Ultra-thin Polymer X-Ray Windows, Sep. 2006, 2 pages. |
www.moxtek.com, Moxtek, DuraBeryllium X-Ray Windows, May 2007, 2 pages. |
www.moxtek.com, Moxtek, ProLine Series 10 Windows, Ultra-thin Polymer X-Ray Windows, Sep. 2006, 2 pages. |
www.moxtek.com, X-Ray Windows, ProLINE Series 20 Windows Ultra-thin Polymer X-ray Windows, 2 pages. Applicant believes that this product was offered for sale prior to the filed of applicant's application. |
Xie, et al.; “Dispersion and alignment of carbon nanotubes in polymer matrix: A review”; Center for Advanced Materials Technology; Apr. 20, 2005. |
Yan, Xing-Bin, et al., Fabrications of Three-Dimensional ZnO-Carbon Nanotube (CNT) Hybrids Using Self-Assembled CNT Micropatterns as Framework, 2007. pp. 17254-17259, vol. III. |
Zhang, et al.; “Superaligned Carbon Nanotube Grid for High Resolution Transmission Electron Microscopy of Nanomaterials”; 2008 American Chemical Society. |
Anderson et al., U.S. Appl. No. 11/756,962, filed Jun. 1, 2007. |
Barkan et al., “Improved window for low-energy x-ray transmission a Hybrid design for energy-dispersive microanalysis,” Sep. 1995, 2 pages, Ectroscopy 10(7). |
Blanquart et al.; “XPAD, a New Read-out Pixel Chip for X-ray Counting”; IEEE Xplore; Mar. 25, 2009. |
Comfort, J. H., “Plasma-enhanced chemical vapor deposition of in situ doped epitaxial silicon at low temperatures,” J. Appl. Phys. 65, 1067 (1989). |
Das, D. K., and K. Kumar, “Chemical vapor deposition of boron on a beryllium surface,” Thin Solid Films, 83(1), 53-60. |
Das, K., and Kumar, K., “Tribological behavior of improved chemically vapor-deposited boron on beryllium,” Thin Solid Films, 108(2), 181-188. |
Hanigofsky, J. A., K. L. More, and W. J. Lackey, “Composition and microstructure of chemically vapor-deposited boron nitride, aluminum nitride, and boron nitride + aluminum nitride composites,” J. Amer. Ceramic Soc. 74, 301 (1991). |
Komatsu, S., and Y. Moriyoshi, “Influence of atomic hydrogen on the growth reactions of amorphous boron films in a low-pressure B.sub.2 H.sub.6 +He+H.sub.2 plasma”, J. Appl. Phys. 64, 1878 (1988). |
Komatsu, S., and Y. Moriyoshi, “Transition from amorphous to crystal growth of boron films in plasma-enhanced chemical vapor deposition with B.sub.2 H.sub.6 +He,” J. Appl. Phys., 66, 466 (1989). |
Komatsu, S., and Y. Moriyoshi, “Transition from thermal-to electron-impact decomposition of diborane in plasma-enhanced chemical vapor deposition of boron films from B.sub.2 H.sub.6 +He,” J. Appl. Phys. 66, 1180 (1989). |
Lee, W., W. J. Lackey, and P. K. Agrawal, “Kinetic analysis of chemical vapor deposition of boron nitride,” J. Amer. Ceramic Soc. 74, 2642 (1991). |
Lines, U.S. Appl. No. 12/352,864, filed Jan. 13, 2009. |
Lines, U.S. Appl. No. 12/726,120, filed Mar. 17, 2010. |
Maya, L., and L. A. Harris, “Pyrolytic deposition of carbon films containing nitrogen and/or boron,” J. Amer. Ceramic Soc. 73, 1912 (1990). |
Michaelidis, M., and R. Pollard, “Analysis of chemical vapor deposition of boron,” J. Electrochem. Soc. 132, 1757 (1985). |
PCT Application PCT/US2011/044168; filing date Jul. 15, 2011; Dongbing Wang; International Search Report mailed Mar. 28, 2012. |
U.S. Appl. No. 12/899,750, filed Oct. 7, 2010; Steven Liddiard; notice of allowance dated Jun. 4, 2013. |
U.S. Appl. No. 12/890,325, filed Sep. 24, 2010; Dongbing Wang; notice of allowance dated Jul. 16, 2013. |
U.S. Appl. No. 12/890,325, filed Sep. 24, 2010; Dongbing Wang; office action dated Sep. 7, 2012. |
Number | Date | Country | |
---|---|---|---|
61435545 | Jan 2011 | US |