Reduced-pressure, compression systems and apparatuses for use on a curved body part

Information

  • Patent Grant
  • 11969319
  • Patent Number
    11,969,319
  • Date Filed
    Friday, October 2, 2020
    3 years ago
  • Date Issued
    Tuesday, April 30, 2024
    15 days ago
Abstract
A system for providing a force to a desired area on a curved body part of a person includes a dressing assembly shaped and configured to be placed on the desired area of the person, a releaseable circumferential member surrounding the curved body part that holds the dressing assembly against the desired area, a sealing subsystem for providing a fluid seal over the dressing assembly and the person's skin, and a reduced-pressure subsystem for providing a reduced pressure to the dressing assembly. When reduced pressure is supplied, the system generates the force against the desired area on the curved body part.
Description
BACKGROUND

The present invention relates generally to medical treatment systems, and more particularly, to reduced-pressure wound treatment systems.


Physicians perform millions of surgical procedures each year around the world. Many of the procedures are performed as open surgery and an increasing number are performed using minimally invasive surgery, such as endoscopic, arthroscopic, and laparoscopic procedures. As one example, the American Society for Aesthetic Plastic Surgery reports that there were more than 450,000 liposuction procedures in the United States in 2007.


Surgical procedures involve acute wounds, e.g., an incision, in the skin and related tissue. In many instances, the incision is closed at the conclusion of the procedure using a mechanical apparatus, such as staples or suture, or closed using adhesives. Thereafter, the wound is often merely covered with a dry, sterile bandage. Of course, there is usually more disruption than just at the epidermis.


With many surgical procedures, particularly those done with minimally invasive techniques, much of the disruption or damage is below the epidermis, or at a subcutaneous level. Again, as one example, in one type of liposuction procedure, after the introduction of a tumescent fluid (saline, mild painkiller, and epinephrine), the surgeon will use a trocar and cannula with suction to remove fatty areas. In doing so, it is not uncommon to have subcutaneous voids and other tissue defects formed at tissue sites remote from the incision through which the cannula was placed or other incisions through which equipment was placed. The damaged tissue will need time and care to heal and poses a number of potential complications and risks including edema, seroma, hematoma, further bruising, and ecchymosis to name some.


BRIEF SUMMARY

According to one illustrative embodiment, a system for providing a force to a desired treatment area on a curved body part of a person includes a dressing assembly for placing on the desired treatment area of the person. The dressing assembly has a longitudinal portion with a first end and a second end. The dressing assembly also includes an interior surface member having a first surface and a second, inward-facing surface and a dressing bolster having a first surface and a second, inward-facing surface. The second, inward-facing surface of the dressing bolster is disposed against the first surface of the interior surface member. The system further includes a releaseable circumferential member coupled to the first end and second end of the dressing assembly, a sealing subsystem for providing a fluid seal over the dressing assembly, and a reduced-pressure subsystem for providing a reduced pressure to the dressing assembly.


According to one illustrative embodiment, a system for providing a force to a desired treatment area on a curved body part of a person includes a dressing assembly for placing on the desired treatment area of the person. The dressing assembly has a longitudinal portion with a first end and a second end. The dressing assembly includes a first material having a first surface and a second, inward-facing surface and a second material having a first surface and a second, inward-facing surface. The second, inward-facing surface of the first material is disposed against the first surface of the second material. The system further includes a releaseable circumferential member coupled to the first end and second end of the dressing assembly and a reduced-pressure subsystem for providing a reduced pressure to the dressing assembly.


According to one illustrative embodiment, a system for providing a compressive force to a desired treatment area on a person's torso includes a dressing assembly shaped and configured to be placed on at least a portion of the person's torso and a releasable circumferential connector for holding the dressing assembly against the torso. The circumferential connector and the dressing assembly include a circumferential member. The system further includes a sealing subsystem for providing a fluid seal over the dressing assembly and the person's epidermis and a reduced-pressure subsystem for providing reduced pressure to the dressing assembly whereupon the system is operable to generate a compressive force against at least a portion of the torso.


According to one illustrative embodiment, a system for providing a compressive force to a desired treatment area on a person's torso includes a dressing assembly for placing on the desired treatment area of the person. The dressing assembly includes a longitudinal portion with a first end and a second end, and a dressing bolster having a first surface and a second, inward-facing surface. The second, inward-facing surface of the dressing bolster is disposed against the first surface of the interior surface member. The dressing assembly further includes an envelope member surrounding the dressing bolster. The envelope member includes an interior surface member having a first surface and a second, inward-facing surface, and an exterior surface member having a first surface and a second, inward-facing surface. The second, inward-facing surface of the exterior surface member is disposed proximate the first surface of the dressing bolster. The dressing bolster is formed from a bolster material having a density greater than 25 kg/m3. the system further includes a releaseable circumferential member coupled to the first end and second end of the dressing assembly and a sealing subsystem for providing a fluid seal over the dressing assembly and the person's epidermis. The sealing subsystem includes an over-drape that extends over the exterior surface member, and a sealing apparatus for providing a fluid seal over a person's epidermis and the over-drape.


According to one illustrative embodiment, a method of manufacturing a system for providing a compressive force to a desired treatment area on a curved body part of a person includes the step of forming a dressing assembly shaped and configured to be placed on the desired treatment area of the person. The method further includes providing a releasable circumferential connector for holding the dressing assembly against the desired treatment area and providing a sealing subsystem for providing a fluid seal over the dressing assembly and the person's epidermis.


According to one illustrative embodiment, a method of providing a force to at least a portion of a curved body part of a person includes the steps of: deploying a dressing assembly on the curved body part. The dressing assembly includes an interior surface member for placing over the desired treatment area and having a first surface and a second, inward-facing surface and a dressing bolster having a first surface and a second, inward-facing surface. The second, inward-facing surface of the dressing bolster is disposed against the first surface of the interior surface member thereby sealing the dressing assembly to the curved body part. The method further includes providing reduced pressure to the dressing assembly. The dressing bolster has a first volume (V1) at ambient pressure and a second volume (V2) when under reduced pressure and V1>V2.


According to one illustrative embodiment, a method for providing a force to a curved body part includes the step of: placing a dressing assembly against a desired area. The dressing assembly has a longitudinal portion with a first end and a second end. The method further includes releasably coupling the first end to the second end to hold the longitudinal portion of the dressing assembly against the patient in the desired treatment area; fluidly coupling a reduced-pressure source to the dressing assembly; and activating the reduced pressure source to provide reduced pressure to the dressing assembly. The dressing assembly is placed under reduced pressure and contracts to form a directed force.


Other objects, features, and advantages of the illustrative embodiments will become apparent with reference to the drawings and the detailed description that follow.





BRIEF DESCRIPTION OF THE DRAWINGS

A more complete understanding of the present invention may be obtained by reference to the following Detailed Description when taken in conjunction with the accompanying Drawings wherein:



FIG. 1 is a schematic, perspective view of a portion of an illustrative embodiment of a reduced-pressure system shown on a person's torso;



FIG. 2 is a schematic, perspective view, with a portion in cross section, of an illustrative embodiment of a reduced-pressure system shown over an incision and above undermined subcutaneous tissue;



FIG. 3 is a cross-section of a portion of an illustrative embodiment of a reduced-pressure system shown on intact skin and over an area of undermined subcutaneous tissue;



FIG. 4 is schematic, cross-section of a portion of an illustrative embodiment of a reduced-pressure system shown applied on a torso of a person;



FIG. 5 is schematic, cross-section of a portion of an illustrative embodiment of a reduced-pressure system shown applied on a torso of a person;



FIG. 6 is an anterior, schematic, perspective view of a portion of an illustrative embodiment of a reduced-pressure system shown on a torso;



FIG. 7 is a posterior, schematic, perspective view of a portion of the illustrative system shown in FIG. 6;



FIG. 8 is a schematic cross-section of a portion of an illustrative embodiment of a reduced-pressure, compression system;



FIG. 9 is a schematic perspective view showing a bolster material;



FIG. 10 is an anterior, schematic, perspective view of an illustrative embodiment of a brassiere for providing support to breast tissue;



FIG. 11 is a cross section of the brassiere of FIG. 10 taken from one side;



FIG. 12 is an anterior, schematic, perspective view of the brassiere of FIGS. 10-11 with a portion of the brassiere released to show a back portion of the brassiere;



FIG. 13 is a schematic cross-section of a portion of the brassiere of FIGS. 10-12; and



FIG. 14 is a schematic cross section of a portion of the brassiere of FIGS. 10-12 showing an illustrative, alternative aspect.





DETAILED DESCRIPTION

In the following detailed description of illustrative embodiments, reference is made to the accompanying drawings that form a part hereof, and in which is shown, by way of illustration, specific embodiments in which the invention may be practiced. These embodiments are described in sufficient detail to enable those skilled in the art to practice the invention, and it is understood that other embodiments may be utilized and that logical structural, mechanical, electrical, and chemical changes may be made without departing from the spirit or scope of the invention. To avoid detail not necessary to enable those skilled in the art to practice the invention, the description may omit certain information known to those skilled in the art. The following detailed description is, therefore, not to be taken in a limiting sense, and the scope of the present invention is defined only by the appended claims.


Referring to FIG. 1, a system 2 for providing a force to a desired treatment area 3 on a person's torso 4 is shown. The system 2 may be applied in any situation in which support is desired for a given portion of a person's body such as the torso, an arm, leg, or other curved body part, but is described in the context of the torso 4. The system 2 may be applied when a force is desired for therapeutic reasons, such as providing a compression force, or inward force (or tangential force), and a lifting force, or upward force, to a desired treatment area while optionally removing fluids, such as exudates. The system 2 may be applied to treat subcutaneous tissue, treat surface tissue, or provide support. As used herein, subcutaneous means tissue at least as deep as the subcutaneous tissue, but also may include deeper tissues, including organs. Unless otherwise indicated, as used herein, “or” does not require mutual exclusivity. The system 2 may be applied simply when support is desired for cosmetic reasons or for any reason at all.


The system 2 allows support to be given to a portion of a person's body with relative ease, and the system 2 allows various sizes of body parts to be accommodated by a single system or apparatus thereby reducing the need for large inventories. When used with a wound, the system 2 may keep the wound dry, reduce dead space formation, improve perfusion, reduce seroma and hematoma formation, and reduce bruising and edema secondary to certain surgical procedures. The system 2 also provides comparative comfort for the patient or person using the system 2. The force developed by system 2 may be varied by varying the reduced pressure delivered to the system 2, and a feedback loop may be used to allow automated adjustments of reduced pressure to maintain a desired compressive force on a treatment site even as swelling increases or decreases.


Referring now to FIG. 2, an illustrative system 10 for treating undermined subcutaneous tissue in a peri-incisional region according to one illustrative embodiment is presented. The system 10 is shown in a peri-incisional region around an incision 12, which is through epidermis 14, or skin, and dermis 16 and reaches into a hypodermis, or subcutaneous tissue 18. The subcutaneous tissue 18 may include numerous tissue types such as fatty tissue or muscle. The undermined subcutaneous tissue site 20 is shown extending from incision 12 and includes, in this instance, subcutaneous defect or void 22. The undermined subcutaneous tissue 20 is often caused by surgical procedures such as liposuction. The undermined subcutaneous tissue 20 may include voids, such as the void 22, open spaces, and various defects that can be troublesome for a number of reasons. For example, the void 22 may allow fluids to build and that may result in edema. The term “fluid” as used herein generally refers to gas or liquid, but may also include any other flowable material, including but not limited to gels, colloids, and foams.


The incision 12 may be closed using any closing device such as staples, sutures, or adhesive, but is shown in this illustrative embodiment with a suture 13. The system 10 typically is for treating an area and, in particular, is typically for treating a subcutaneous tissue site 20 and the tissue around subcutaneous tissue 20, but the system 10 may also be used to treat the more limited area of the incision 12.


The system 10 includes a dressing assembly 30, which includes a shaped dressing bolster 32 (or dressing bolster), a sealing subsystem 60, and a reduced-pressure subsystem 80. The system 10 develops a net compressive force, represented by reference numerals 24, that is realized at the subcutaneous tissue 20. As described further below, the shaped dressing bolster 32 may be shaped and configured to allow the compressive force 24 to be distributed fairly evenly over the patient's epidermis 14 and beneath the epidermis 14. Otherwise, if there are areas of substantially increased force as compared to other areas, skin irritation may result. The system 10 may also be operable to develop an inward force (or closing force), i.e. towards an interior portion of dressing assembly 30. The inward force is represented by reference numerals 26. The inward force 26 may remain substantially within the plane of the epidermis 14. In other words, the inward force 26 operates mainly within the epidermis 14. In addition, the system 10 is operable to deliver reduced pressure to the incision 12. The reduced pressure may be realized at the level of the subcutaneous void 22 to help approximate—bring together—the tissues in that region as well as to help remove any air or any other fluids, e.g., exudates.


The dressing assembly 30 includes the shaped dressing bolster 32, which has a first side 34 and a second, inward (tissue-facing) side 36. The shaped dressing bolster 32 may be sized and shaped to substantially match the estimated area of undermined subcutaneous tissue 20 although a larger or smaller size may be used. The shaped dressing bolster 32 has a peripheral edge 38. The shaped dressing bolster 32 may be made of a number of different bolster materials. In one illustrative embodiment, the shaped dressing bolster 32 is made from a porous and permeable foam-like material and, more particularly, a reticulated, open-cell polyurethane or polyether foam that allows good permeability of wound fluids while under a reduced pressure. One such foam material that has been used is the VAC® Granufoam® material that is available from Kinetic Concepts, Inc. (KCI) of San Antonio, Texas Any material or combination of materials might be used for the bolster material provided that the bolster material is operable to distribute the reduced pressure and provide the desired forces.


The shaped dressing bolster 32 may be a manifold that is sized and shaped to distribute forces evenly and to distribute reduced pressure. The term “manifold” as used herein generally refers to a substance or structure that is provided to assist in applying reduced pressure to, delivering fluids to, or removing fluids from a tissue site. The manifold typically includes a plurality of flow channels or pathways that are interconnected to improve distribution of fluids provided to and removed from the tissue site around the manifold. The manifold may be a biocompatible material that is capable of being placed in contact with the tissue site and distributing reduced pressure to the tissue site. Examples of manifolds may include, for example, without limitation, devices that have structural elements arranged to form flow channels, such as, for example, cellular foam, open-cell foam, porous tissue collections, liquids, gels, and foams that include, or cure to include, flow channels. The manifold may be porous and may be made from foam, gauze, felted mat, or any other material suited to a particular biological application. Other embodiments might include “closed cells.” In some situations, the manifold may also be used to distribute fluids such as medications, antibacterials, growth factors, and various solutions to the tissue site. Other layers may be included in or on the manifold, such as absorptive materials, wicking materials, hydrophobic materials, and hydrophilic materials.


The reticulated pores of the Granufoam® material, that are in the range from about 400 to 600 microns, are helpful in carrying out the manifolding function, but other materials may be used. The density of the medical bolster material, e.g., Granufoam® material, is typically in the range of about 1.3 lb/ft3-1.6 lb/ft3 (20.8 kg/m3-25.6 kg/m3). A material with a higher density (smaller pore size) than Granufoam® material may be desirable in some situations. For example, the Granufoam® material or similar material with a density greater than 1.6 lb/ft3 (25.6 kg/m3) may be used. As another example, the Granufoam® material or similar material with a density greater than 2.0 lb/ft3 (32 kg/m3) or 5.0 lb/ft3 (80.1 kg/m3) or even more may be used. The more dense the material is, the higher compressive force that may be generated for a given reduced pressure. If a foam with a density less than the tissue at the tissue site is used as the medical bolster material, a lifting force may be developed. In one illustrative embodiment, a portion, e.g., the edges, of the dressing assembly may exert a compressive force while another portion, e.g., a central portion, may provide a lifting force.


The bolster material may be a reticulated foam that is later felted to thickness of about one third (⅓) of the foam's original thickness. Among the many possible bolster materials, the following may be used: Granufoam® material or a Foamex® technical foam (www.foamex.com). In some instances it may be desirable to add ionic silver to the foam in a microbonding process or to add other substances to the bolster material such as antimicrobial agents. The bolster material may be isotropic or anisotropic depending on the exact orientation of the compressive forces 24 that are desired during the application of reduced pressure. The bolster material may also be a bio-absorbable material.


The sealing subsystem 60 includes an over-drape 62 (drape) or sealing member. The over-drape 62 may be an elastomeric material or may be any material that provides a fluid seal. “Fluid seal,” or “seal,” means a seal adequate to hold reduced pressure at a desired site given the particular reduced-pressure subsystem involved. “Elastomeric” means having the properties of an elastomer and generally refers to a polymeric material that has rubber-like properties. More specifically, most elastomers have elongation rates greater than 100% and a significant amount of resilience. The resilience of a material refers to the material's ability to recover from an elastic deformation. Examples of elastomers may include, but are not limited to, natural rubbers, polyisoprene, styrene butadiene rubber, chloroprene rubber, polybutadiene, nitrile rubber, butyl rubber, ethylene propylene rubber, ethylene propylene diene monomer, chlorosulfonated polyethylene, polysulfide rubber, polyurethane, EVA film, co-polyester, and silicones. As non-limiting examples, the over-drape 62 may be formed from materials that include a silicone, 3M Tegaderm® drape material, acrylic drape material such as one available from Avery, or an incise drape material.


The over-drape 62 may be coupled to the bolster 32. The coupling may occur in many ways. The over-drape 62 and the bolster 32 may be coupled using adhesives such as an acrylic adhesive, silicone adhesive, hydrogel, hydrocolloid, etc. The over-drape 62 and the bolster 32 might be bonded by heat bonding, ultrasonic bonding, and radio frequency bonding, etc. The coupling may occur in discrete patterns or more completely. Structural members might be added to the bond to make the over-drape 62 behave anisotropically in a desired direction, i.e. to make an anisotropic drape material. An anisotropic drape material helps the dressing assembly 30 to primarily move in a given direction, i.e. only about a certain axis or axes.


In the illustrative embodiment of FIG. 2, the over-drape 62 may be sized to extend beyond the peripheral edge 38 on an extremity 33 of the shaped dressing bolster 32 to form a drape extension 64. The drape extension 64 has a first surface 66 and a second, inward-facing surface 68. The over-drape 62 may be sealed against the epidermis 14 of the patient using a sealing apparatus or device 69 for providing a seal. The over-drape 62 and sealing apparatus 69 allow reduced pressure to be maintained at the tissue site by the reduced-pressure subsystem 80. The sealing apparatus 69 may take numerous forms, such as an adhesive 70; a sealing tape, or drape tape or strip; double-side drape tape; paste; hydrocolloid; hydrogel; or other sealing means. If a tape is used, it may be formed of the same material as the over-drape 62 with a pre-applied, pressure-sensitive adhesive. The pressure-sensitive adhesive 70 may be applied on the second surface 68 of the drape extension 64. The adhesive 70 provides a substantial fluid seal between the over-drape 62 and the epidermis 14 of the patient. The adhesive 70 may have removable strips covering the adhesive 70 that are removed before the drape extension 64 is applied to the patient's epidermis 14.


The reduced-pressure subsystem 80 includes a reduced-pressure source 82, which can take many different forms. The reduced-pressure source 82 provides a reduced pressure as a part of the system 10. The reduced-pressure source 82 may be any device for supplying a reduced pressure, such as a vacuum pump, wall suction, or other source. While the amount and nature of reduced pressure applied to a tissue site and shaped dressing bolster 32 will typically vary according to the application, the reduced pressure will typically be between −5 mm Hg and −500 mm Hg and more typically between −100 mm Hg and −300 mm Hg.


As used herein, “reduced pressure” generally refers to a pressure less than the ambient pressure at a tissue site that is being subjected to treatment. In most cases, this reduced pressure will be less than the atmospheric pressure at which the patient is located. Alternatively, the reduced pressure may be less than a hydrostatic pressure at the tissue site. Unless otherwise indicated, values of pressure stated herein are gauge pressures. The reduced pressure delivered may be constant or varied (patterned or random) and may be delivered continuously or intermittently. Although the terms “vacuum” and “negative pressure” may be used to describe the pressure applied to the tissue site, the actual pressure applied to the tissue site may be more than the pressure normally associated with a complete vacuum. Consistent with the use herein, an increase in reduced pressure or vacuum pressure typically refers to a relative reduction in absolute pressure.


In order to maximize patient mobility and ease, the reduced-pressure source 82 may be a battery-powered, single-use reduced-pressure generator. Such a reduced-pressure source 82 facilitates application in the operating room and provides mobility and convenience for the patient during the rehabilitation phase. The reduced-pressure source 82 has a battery compartment 84 and a canister region 86 with windows 88 providing a visual indication of the level of fluid within the canister 86. An interposed membrane filter, such as hydrophobic or oleophobic filter, might be interspersed between a reduced-pressure delivery conduit, or tubing, 90 and the reduced-pressure source 82.


For many procedures, it is believed that the patient would be directed to wear the system 10 for three to five days and may be directed to wear system 10 for 15 days or more. Still, the treatment time is a welcomed time period in contrast to treatment with conventional compressive garments, which are worn after many procedures today for up to six weeks. Accordingly, the battery life and/or power provisions may need to accommodate up to 15 days of operation. Other sources of reduced pressure may also be utilized such as V.A.C.® therapy unit, which is available from KCI of San Antonio, Texas, or a wall suction unit. The reduced-pressure source 82 may also be supplied by a portable mechanical device, such as a piston in a tube, depending on how much leakage there is with the fluid seal between the shaped dressing bolster 32 and the epidermis 14.


The reduced pressure developed by the reduced-pressure source 82 is delivered through the reduced-pressure delivery conduit 90 to a reduced-pressure interface 92, which may be an elbow port 94. In one illustrative embodiment, the port 94 is a TRAC® technology port available from KCI of San Antonio, Texas. The reduced-pressure interface 92 allows the reduced pressure to be delivered to the sealing subsystem 60 and realized within an interior portion of the sealing subsystem 60. In this illustrative embodiment, the port 94 extends through the over-drape 62 and into the shaped dressing bolster 32.


In operation, the system 10 may be applied in the operating room after a surgical procedure on the patient or at another time. The second surface 36 of the shaped dressing bolster 32 is placed against the patient's epidermis 14 with the shaped dressing bolster 32 over the undermined subcutaneous tissue site 20 and with a portion over the incision 12. The dressing assembly 30 may be sized for the typical application involved in the procedure performed by a healthcare provider. The dressing assembly 30 may be sized, shaped, and configured to work with different anatomical applications such as abdominal, chest, thighs, arms, etc.


If the over-drape 62 has not already been coupled (see other illustrative embodiments below) to the shaped dressing bolster 32, the over-drape 62 is then placed over the first surface 34 of the shaped dressing bolster 32 with an extra portion extending beyond the peripheral edge 38 to form the drape extension 64. The drape extension 64 can then be taped to the epidermis 14 (see 172 in FIG. 2) or an adhesive 70 (FIG. 1) used to form a fluid seal between the over-drape 62 and the patient's epidermis 14. The fluid seal need only be adequate to allow the system 10 to hold a reduced pressure on the treatment site. The reduced-pressure interface 92 and the reduced-pressure sources 82 are fluidly coupled using the reduced-pressure delivery conduit 90. The reduced-pressure source 82 may then be activated and reduced pressure delivered to the shaped dressing bolster 32.


As the pressure is reduced at the shaped dressing bolster 32, the shaped dressing bolster 32 compresses and contracts laterally and forms a semi-rigid substrate and, as a result, a number of beneficial forces and actions take place. The reduced pressure is transmitted further still through the shaped dressing bolster 32 so that reduced pressure is experienced at the patient's epidermis 14 at the incision 12. At least at the early stages of the healing process, the reduced pressure is realized through the incision 12 and into the subcutaneous tissue 20 and the reduction of pressure helps close defects, such as subcutaneous void 22, and generally provides stability to the area. The reduced pressure delivered to the shaped dressing bolster 32 also develops the compressive force 24 that again may provide stability and therapy. The compressive force 24 is more than just at the epidermis 14. The compressive force 24 extends down deeper and may be experienced at the level of subcutaneous tissue 20.


As the over-drape 62 and shaped dressing bolster 32 laterally contract under the influence of the reduced pressure, and as the downward force acts through the Poisson's ratio for the epidermis 14, an inward force 26 develops that may help hold a closing force on the incision 12 and may generally provide additional stability to the incision 12 or treatment site. The inward force 26 may rely in part on friction between the shaped dressing bolster 32 and the epidermis 14 to communicate the force to the epidermis 14 and may involve force transmission from the drape extension 64 to the epidermis 14 by way of the adhesive 70 or through friction if tape (172 in FIG. 2) is used. At the same time, the reduced pressure delivered to and through shaped dressing bolster 32 helps to remove any exudates or other fluids from the incision 12. The system 10 also allows the epidermis to be smoothed out with an even application of force—it contours and smoothes the epidermis 14. All these actions may improve healing of the incision 12 and the undermined subcutaneous tissue 20.


One operational concern is to avoid skin irritation in deploying and using the system 10. Accordingly, care is taken to avoid skin irritation, such as blistering of the patient's epidermis 14, that may be due to secondary shear, secondary strain or other effects. For this reason, the extremity 33 of the shaped dressing bolster 32 may be shaped to provide an even distribution of compressive forces. The extremity 33 is the outer, shaped portion of bolster 32 and the peripheral edge is generally the most outboard portion of the shaped dressing bolster 32 or the most outboard portion that interface with patient's epidermis. The extremity 33 may be a chamfered surface, but other shapes, e.g., an arcuate shape in system 110 (FIG. 2), may be used. Shapes that evenly distribute the resultant forces are desired. For comparison, when a dressing bolster with a square-edge is used, a “tent area” may form when the over-drape is applied over the dressing bolster and onto the patient's epidermis. The “tent area” is believed to contribute to issues with skin irritation. The “tent area” may be avoided by shaping the shaped bolster 32 or by attaching the over-drape to a side area of the dressing bolster.


The shaped edge, or extremity, of the shaped dressing bolster 32 allows a compressive force 24 to be developed without a big “edge effect”; that is, without causing shear or stress to rise to a level that causes skin irritation such as erythema or blistering. The shaped portion gradually distributes the force to avoid irritation. This way of carefully applying the forces to the epidermis 14 to avoid irritation is generally referred to as “evenly distributing” the compressive force 24, but is not strictly used in a literal sense. There may be some variation, but not enough to cause irritation of the epidermis 14. As another precaution against skin irritation, an inner layer might be added between the shaped dressing bolster 32 and the patient's epidermis 14 (see 857 in FIG. 11) or placed in other locations as explained in connection with other illustrative embodiments further below.


It may be desirable to apply the system 10 in the operating room and allow the system 10 to remain on the patient until adequate healing has taken place. In this regard, it may be desirable to form the over-drape 62, the shaped dressing bolster 32, and any other layers from see-through materials to allow the healthcare provider to gain visual cues about the healing of the incision 12 and the undermined subcutaneous tissue 20 without having to remove the dressing assembly 30.


Referring now to FIG. 3, another illustrative embodiment of a system 110 for treating undermined subcutaneous tissue in a patient is presented. The system 110 is analogous in most respects to the system 10 of FIG. 2 and analogous parts are generally indicated in this embodiment by indexing the numerals by 100. In this particular illustrative embodiment, the system 110 is placed over intact epidermis 115, i.e., there is no incision or other linear wound in this instance. There is, however, undermined subcutaneous tissue 120 including a subcutaneous void 122. The system 110 helps treat the undermined subcutaneous tissue 120 whether or not there is an incision.


The system 110 includes a dressing assembly 130 having a shaped dressing bolster 132. The shaped dressing bolster 132 has a first side 132 and a second, inward-facing side 136. While the shaped dressing bolster 32 of FIG. 2 was shown with a trapezoidal cross-section, a shaped dressing bolster 132 of FIG. 3 has a cross-section that is formed with an elliptical shape with an extremity 133 having radiused edges, or having an arcuate edge. The shaped dressing bolster 132 may be shaped with a double-beveled cross-section or other shape. As before, the shape of the shaped dressing bolster 132 is facilitates the even distribution of the compressive force to an extent that skin irritation is avoided during reduced pressure. In the illustrative embodiment of FIG. 3, a sealing apparatus 169 provides a fluid seal between an over-drape 162 and epidermis 114 of the patient. In this example, the sealing apparatus 169 is a sealing tape 172.


The system 110 includes a sealing subsystem 160 to provide a fluid seal over the shaped dressing bolster 132. A reduced-pressure delivery conduit 190 delivers reduced pressure to a reduced-pressure interface 192, e.g., a port 194, that is in fluid communication with an interior portion of the sealing subsystem 160.


In this illustrative embodiment, the ambient pressure provides a force 131 on a first surface 161 of the over-drape 162 and the contraction of the shaped dressing bolster 132 develops a compression force 124 to provide a net force that is experienced down into the skin and that reaches dermis 116 and may reach other subcutaneous levels 118. At the same time, a substantially in-plane force directed inward is developed. The inward force might be developed through two different mechanisms. First, an inward force 127 is an inward contraction force caused by the shaped dressing bolster 132 being compressed and as the shaped dressing bolster 132 compresses the shaped dressing bolster 132 is drawn inward. At the same time, as the reduced pressure is applied, the over-drape 162 is drawn into the area proximate the extremity 133 as suggested by arrow 128. Because a drape extension 164 is secured to the epidermis 114, the horizontal component of the resultant force 128 would pull the epidermis 114 inward as is suggested by the inward force 129.


Referring now to FIG. 4, a system 210 for treating a tissue site 220, e.g., an undermined subcutaneous tissue site, is shown on a curved body part 200, such as a patient's torso. The system 210 includes a dressing assembly 230 and a sealing subsystem 260. The dressing assembly 230 includes a shaped dressing bolster 232. The sealing subsystem 260 includes an over-drape 262 with an extension 264. The extension 264 may be secured to the patient's epidermis 214 by a sealing apparatus, such as an adhesive 270. A reduced-pressure source (not shown) provides reduced pressure to a reduced-pressure delivery conduit 290, which delivers the reduced pressure to a reduced-pressure interface 292.


The reduced-pressure interface 292 delivers the reduced pressure to the shaped dressing bolster 232. As the shaped dressing bolster 232 is compressed under the influence of reduced pressure, a net compressive force 224 is developed that is delivered to the tissue site 220. In this embodiment, an extremity 233 of the shaped dressing bolster 232 is formed with an orthogonal end. The over-drape 262 forms a “tent” area 229 around a void 235. Under reduced pressure, the over-drape 262 is pulled into the void 235 and a force is thereby applied that develops an inward contracting force 226.


In the system 210, the curvature of the shaped dressing bolster 232 also helps develop a compressive force. A first surface 234 of the shaped dressing bolster 232 has a greater surface area than the surface area of a second, inward-facing surface 236 of the shaped dressing bolster 232. Thus, under reduced pressure, this difference in surface areas also facilitates the development of a net compressive force 224.


Referring now to FIG. 5, an illustrative system 310 for treating a tissue site 320, e.g., an undermined subcutaneous tissue site, is presented. The system 310 is generally analogous in most respects to the system 210 of FIG. 4, and analogous parts are indicated by indexing the reference numerals of FIG. 4 by 100. The system 310 is applied to a curved body part 300, e.g., a patient's torso. The system 310 presents a completely circumferential dressing assembly 330 deployed proximate epidermis 314.


A dressing bolster 332 is disposed against the epidermis 314 and a drape, or an over-drape 362, is used to form a sealed area containing the dressing bolster 332. Reduced pressure is delivered through a reduced-pressure conduit 390 to a reduced-pressure interface 392. The reduced-pressure interface 392 delivers reduced pressure to the dressing bolster 332. Circumferential forces developed during the application of reduced pressure combine in the system 310 to develop inward compressive forces 324. The compressive forces can be higher than a flat or partial-torso application because there is no off-loading of force to the drape and to the skin.


Referring now to FIGS. 6-8, a system 410 for treating a treatment area 412 of a patient is presented. The treatment provided in this illustration is a force to the treatment area 412, which on the patient's torso 404. Treatment could also include removal of fluids at an incision or incisions. For this illustrative embodiment, the desired treatment area 412 is shown as the abdomen of the patient. If the patient has had, for example, tumescent liposuction, it may be desirable to use the system 410 to apply a compressive force realized at an incision or incisions, to apply a compressive force that is realized at the dermis 416 and at undermined subcutaneous tissue 420, to provide for the approximation of subcutaneous tissue 418 as well as stabilizing the tissue against sheer stress, and to remove any exiting fluids such as tumescent fluid or exudate. The system 410 includes a dressing assembly 430 that extends circumferentially at least partially around the torso 404 of the patient. The dressing assembly 430 includes a dressing bolster 432, which has a first peripheral edge 439.


As shown clearly in FIG. 8, the dressing bolster 432 has a first surface 434 and a second, inward-facing (or tissue-facing) surface 436. The dressing bolster 432 distributes reduced pressure and provides a force, which may be a compression force or lifting force, to the desired treatment area, e.g., treatment area 412. An interior surface member 440, which has a first surface 442 and a second, inward-facing surface 444, may be disposed between the patient's epidermis 414 and the dressing bolster 432. The second surface 436 of the dressing bolster 432 may be coupled, e.g., bonded or incorporated into, to the first surface 442 of the interior surface member 440. The interior surface member 440 may be independent of the dressing bolster 432. The interior surface member 440 may be fluid permeable or impermeable and may provide a barrier between the dressing bolster 432 and the patient's epidermis. In one illustrative embodiment, the interior surface member 440 avoid skin irritation that might result from the dressing bolster 432 interfacing with the patient's skin and facilitates removal sweat and other fluids at the surface using reduced pressure.


The dressing bolster 432 may be made from any of the bolster materials described elsewhere in this application. The dressing bolster 432 may include bolster material that is not uniform throughout since one may want the dressing bolster 432 to be more rigid (and not provide as much lift) in some places or one may want the dressing bolster 432 to be less rigid and to develop maximum lift in some places, e.g., like at the breasts on the brassiere embodiment below. The bolster material may be made more or less rigid using a bolster material with varying properties or using two or more different materials that are combined to form the bolster material. In some applications, it may be desirable to form the bolster material from a honeycomb material such as a Supracor® fusion-bonded honeycomb material from Supracor Systems, Inc. of Sunnyvale, California.


The dressing assembly 430 may further include an exterior surface member 446, or exterior member, which has a first side 448 and a second side 450. The interior surface member 440, or interior member, and the exterior surface member 446 may be made with a pre-tensioned elastic material such as a spandex material; for example, a Lycra® brand material might be used. The interior surface member 440 has high contractibility to avoid wrinkling, which would result in contact loading against the skin. Furthermore, the low friction of the material used for the inner surface member 440 helps to reduce the possibility of shear injury to the epidermis. Moreover, the permeability of the inner surface member 440, or layer, results in reduced-pressure transmission to the tissue site and provides a pathway for exudate removal. The interior surface member 440, or interior member, and the exterior surface member 446 may be coupled to form an envelope surrounding the dressing bolster 432.


The second side 450 of the exterior surface member 446 may be coupled to the first surface 434 of the dressing bolster 432. The coupling of the various members (e.g., surface 436 to surface 442 and surface 450 to 434) may occur in many ways; a number of examples follow. One might use adhesives such as acrylic adhesive, silicone adhesive, hydrogel, hydrocolloid, etc. or might use bonding such as heat bonding, ultrasonic bonding, or radio frequency bonding, etc. The coupling may occur in patterns or may cover the whole. Structural members may be added to the coupling to make the member behave anisotropically in a desired direction. In addition, struts or other mechanical elements may be supplied within the bolster to change the compression and characteristics of the dressing bolster 432.


The dressing assembly 430 is shown in FIGS. 6 through 8 with a substantially rectangular cross-section, but other shapes may be utilized to provide more of a vertical lifting force (vertical for the orientation shown in FIGS. 6 and 7). While the dressing bolster 432 is shown as an integral member, the dressing bolster 432 may also be formed with different sections of bolster material, each having distinct supplies of reduced-pressure, and may even have a section with positive pressure. Concerning the latter, one or more sealed chambers may be added to which a positive pressure could be provided to help redistribute loading or to add structural elements.


The dressing bolster 432 and any additional layers such as the interior surface member 440 and the exterior surface member 446 may be covered with an over-drape 462, which is part of a sealing subsystem 460. The over-drape 462 may extend beyond peripheral edges 438 and 439 to form drape extension 464, which has a first side 466 and a second side 468. A fluid seal may be formed between the drape extension 464 and the patient's epidermis 414 by using a sealing apparatus 469, such as a sealing tape, or drape tape 471, an adhesive (see adhesive 5 in FIG. 1), paste, hydrocolloid, hydrogel, or other sealing means. The drape tape 471 includes an adhesive 473. In some applications, a gasket material might be added between the epidermis 414 and the dressing bolster 432 or the over-drape 462. In another embodiment, the over-drape 462 may be applied only on the first side of the dressing bolster 432, and then a wide drape tape used to seal the edges, or peripheral portion, of the dressing bolster 432 with or without extensions 464.


The sealing subsystem 460 provides a fluid seal, or otherwise allows the system 410 to maintain reduced pressure at the desired treatment site 412. The sealing subsystem 460 preferably includes the over-drape 462 and the sealing apparatus 469. While described as forming a fluid seal, there may in fact be some leakage and the resultant small air leaks actually provide a low velocity airflow throughout the dressing assembly 430 that is distributed and helps to remove moisture. In an alternative embodiment, instead of using the over-drape 462, the exterior surface member 446 may be made to have an airtight exterior portion and drape tape may be directed to cover the edges of the bolster material as well an other portions that are not otherwise sealed.


A reduced-pressure subsystem 480 is shown in part and is analogous to the reduced-pressure subsystems of previously presented embodiments, e.g., 80 of FIG. 2. The reduced-pressure subsystem 480 includes a reduced-pressure interface 492, such as elbow port 494, that allows the reduced-pressure source to deliver reduced pressure through a reduced-pressure conduit 479 into the dressing assembly 430 and, in particular, into the dressing bolster 432. The reduced-pressure subsystem 480 may be controlled so as to vary the pressure to provide a constant level of compression as the patient's size changes due to edema decreasing. The reduced-pressure source may supply a constant reduced pressure or a variable reduced pressure. As with other embodiments described above, the reduced-pressure source may take many different forms including those mentioned elsewhere herein.


As shown clearly in FIG. 7, the dressing assembly 430 may include a transition area 452 on a portion of the dressing bolster 432. The transition area 452 may be tapered or otherwise shaped to reduce the thickness and increase flexibility and maximize shear compliance at the borders. This may help to distribute any concentrated shear loads such as those caused by contraction of the dressing assembly 430, patient mobility, and load concentrations caused by the discontinuity of stiffness between the dressing/splinted areas and the unsupported dermis. The transition area 452 may transition to one or more connection pieces 454, or joining elements 454.


A portion of the joining elements 454 may include fasteners 456, which may be a hook and loop fastener, clasps, or other means of connecting two portions of the joining elements 454. The joining elements 454 and fasteners 456 form a circumferential connector and with the dressing assembly 430 complete a path around the curved body part or form a completed, releasable circumferential member 458. Thus, the releasable circumferential member 458 extends around the patient's torso 404 to allow the releasable circumferential member 458 to be held against the torso 404 and, in particular, holds bolster 432 against the desired treatment area 412 even before the reduced pressure is delivered by the reduced-pressure subsystem 480. Additional drape tape may be used to provide a fluid seal over the joining elements 454 and fasteners 456.


The transition area 452 may include a first end 453 and a second end 455 of the dressing assembly 430 and in particular the ends of a longitudinal portion 457 that is shown surrounding the patient's torso 404. The two ends are thus brought together and releasably held by the releasable circumferential member 458, which includes the joining elements 454 and fasteners 456.


The differences in surface areas of the first surface 434 and second surface 436 of the dressing bolster 432 contributes to the production of a net compressive (inward) force. The net compressive force increases linearly with the increase in the ratio of the circumference of the first surface 434 of the dressing bolster 432 to the second surface 436 of the dressing bolster 432. Thus, to have a greater compression developed, the dressing bolster 432 may be made thicker to increase the ratio. The bending stiffness of the dressing bolster 432 may also influence the delivery of the developed compression force. The net compressive force is distributed fairly uniformly if the dressing 430 has a low-bending stiffness. With reference briefly to FIG. 9, the low elastic stiffness along a second axis, which is parallel to 542, and the first axis, which is parallel to 540, contributes to reducing the bending stiffness of the dressing bolster 532.


Returning now to FIG. 6-8, in operation, the dressing assembly 430 is placed around the curved body part, e.g., the torso 404, of the patient with the dressing bolster 432 against the desired treatment area 412. The releasable circumferential connector 458 is utilized (i.e. joining elements 454 and fasteners 456 are activated) to form the completed releasable circumferential member. The reduced-pressure subsystem 480 may be activated so that the reduced-pressure subsystem 480 delivers reduced pressure to the sealing subsystem 460 causing the reduced pressure to be delivered to the dressing bolster 432. The dressing bolster 432 may then compress and collapse under the reduced pressure to deliver the support force to the desired treatment area 412. The support force may include a compressive force, which acts into the patient's torso and down into the epidermis 14, dermis 416, and down to subcutaneous levels 418 to the undermined subcutaneous tissue 420. The net compressive force for one segment is shown in FIG. 8 with reference numeral 424. A lateral force 426, i.e., toward peripheral edge 439, or lifting or upward force 426, may also be developed.


Referring now to FIG. 9, a portion of a dressing bolster 532 is shown which is made from an anisotropic material. One anisotropic material that may be used is AirX compression material, or fabric, available from the Tytex Group (www.tytex.com). The dressing bolster 532 has a first surface 534 and a second surface 536. It also has a top portion 537 which would be closest to the person's head for the embodiment shown in FIGS. 6 and 7, and a bottom portion 539 which would be closest to the person's feet for the embodiment shown in FIGS. 6 and 7. For description purposes, the dressing bolster 532 has three axes that are parallel to reference lines 540, 542, and 544, respectively. The material of the dressing bolster 532 is potentially anisotropic, which means that it will have different mechanical properties along different axes. For example, the compressive modulus may differ between at least two of the first, second, and third axes. In one illustrative embodiment, when it is desirable to provide an enhanced force, an anisotropic material may be selected and oriented to extend or to contract preferentially along one or more axes. This may be particularly desirable in applying a similar system to breast tissue as will now be considered.


Referring to FIGS. 10-14, a system 610 for providing a support force to breast tissue is presented. The system 610 includes a therapeutic brassiere 612 to provide support to breast tissue 614 in a breast area 616 on an upper portion of a patient's torso 604. Support may be provided in a defined support area 618 near or on the breast tissue 614, which may have been the subject of a surgical procedure, such as a partial or total mastectomy or a breast augmentation procedure. In the event of a mastectomy, the support area 618 may support remaining breast tissue.


The system 610 includes a dressing assembly 630, which includes a dressing bolster 632 having a first surface 634 and a second, inward-facing surface 636. The dressing assembly 630 may include an interior surface member 638 having a first surface 640 and a second, inward-facing surface 642. The interior surface member 638 may be coupled on a first surface 640 to the second surface 636 of the dressing bolster 632. The dressing assembly 630 may also include an exterior surface member 644, which has a first surface 646 and a second, inward-facing surface 648. The exterior surface member 644 may be coupled on a second surface to the first surface 634 of the bolster 632.


A sealing subsystem 660 provides a fluid seal sufficient to maintain a reduced pressure against the patient's epidermis in the desired support area 618 when under a reduced pressure from a reduced-pressure subsystem 680. The sealing subsystem 660 may take a number of different forms. The present embodiment includes an over-drape 662 that covers the dressing bolster 632 and may extend beyond peripheral edges 650 of the dressing bolster 632 to form extensions 664 to which a sealing apparatus 667 may be applied to form the fluid seal with the epidermis. The sealing apparatus 667 may take numerous forms such as adhesive, a sealing tape 668 or strip, double-sided sealing tape, paste, hydrocolloid, hydrogel, or other sealing means. The sealing apparatus 667 might also involve additional elements as shown in FIG. 13.


Referring now to FIG. 13, a closing apparatus 667 may simply be a tape 668 or an adhesive as previously mentioned or may further include a sealing bolster 670 which may be under more tension than the dressing bolster 632. The sealing bolster 670 has a portion of the over-drape 662 over the sealing bolster 670 and may form a compartment to which reduced-pressure subsystem 680 delivers reduced pressure or may be fluidly connected to the dressing bolster 632 to receive reduced pressure from the reduced-pressure subsystem 680.


Referring now to FIG. 14, an illustrative, alternative embodiment of sealing apparatus 667 is presented. In this embodiment, the exterior surface member 644 and interior surface member 638 are placed adjacent to one another beyond the peripheral edge 650. The second surface 648 of the exterior surface member 644 and the first surface 640 of the interior surface member 638 may be coupled to one another by any known means. The members may be coupled in many different ways including one of the following: using adhesives such as by acrylic adhesive, silicone adhesive, hydrogel, hydrocolloid, etc; bonded by heating bonding, ultrasonic bonding, and radio frequency bonding, etc.; or other means. The coupling may occur in patterns or more completely. Structure might be added to the bond to make the material behave anisotropically in a desired direction. The embodiment in FIG. 14 shows an adhesive strip 674 applied between the second surface 642 of the interior surface member 638 and the patient's epidermis 611. Before the adhesive strip 674 is applied against the epidermis 611, the adhesive strip 674 may be covered with a removable backing or strip.


Referring now primarily to FIGS. 10-12, support forces delivered to the support area 618 will now be explained in terms of the therapeutic brassiere 612. The brassiere 612 is formed as previously described in connection with the dressing assembly 630 and includes a first breast cup 682 and a second breast cup 684. In forming the breast cups 682 and 684 it may be necessary to add one or more seams 686. Each breast cup 682, 684 forms a pocket, such as pocket 688 shown in FIG. 11. The pocket 688 is for receiving breast tissue 614, or in the case of a mastectomy, may receive a temporary, post-surgical prosthetic, such as a silicon gel insert covered with a super absorbent material for assisting in the process of collecting exudates and helping to apply pressure to an underlying wound. In an alternative embodiment, a single cup may be formed that covers both breasts or more generally a portion of the patient's chest.


The therapeutic brassiere 612 might be bifurcated to have separate bolsters with separate sealing subsystems for each breast cup 682, 684 so that different pressure levels can be supplied to each breast cup 682, 684 to accommodate different sizes or situations. For example, if one breast has been the subject of a mastectomy and the other has not, different reduced pressures may be desired.


Referring now primarily to FIG. 12, the therapeutic brassiere 612 may have a transition area 652 that includes a joining element 654. The joining element 654 may be a web material and one or more fasteners 656, which couple with a receiving fastener on the opposite transition area 652 (not explicitly shown, but analogous to fastener 456 in FIG. 7). The fasteners 656 may be hook and loop members, zipper members, snaps, or other means. It may be desirable in some situations to apply drape tape over the top of the fasteners 456 to provide an adequate fluid seal. The reduced-pressure subsystem 680, which is only shown in part, delivers a reduced pressure through a reduced-pressure conduit 687, which is in fluid communication with the dressing bolster 632 through a reduced-pressure interface 692, such as an elbow port 694.


In operation, the system 610 is utilized by placing the therapeutic brassiere 612 on the torso 604 so that at least a portion of the bolster 632 is proximate the breast tissue 614, and preferably proximate the support area 618. The dressing assembly 630 along with the joining element 654 and fasteners 656 form a releasable circumferential connector 698 that holds the therapeutic brassiere 612 in place even before the reduced pressure from the reduced-pressure subsystem 680 is applied. Once the therapeutic brassier 612 is in place, the reduced-pressure subsystem 680 is activated and reduced pressure is delivered through the reduced-pressure interface 692 to the dressing bolster 632. The dressing bolster 632 collapses and contracts under the influence of the reduced pressure and thereby causes tension to develop throughout the circumferential connector 698 and provides a compression force and an element of a supporting (upward) force to the support area 618 or to the breast tissue 614.


The systems and apparatuses have been shown applied on various body parts, e.g., abdomen and breast, but other applications are included. For example, the system may be used on a thigh of a person in which case the bolster assembly might be held in place by a pair of shorts similar to biking shorts. As another example, the systems and apparatuses described for breast tissue might be modified to form a large single front cup that could be used to lift and support a pannus or other hanging flap of tissue. As still one more example, a reduced-pressure cup made in a analogous style to that presented for the breast tissue could be used for testicular support after surgery and might be incorporated into shorts.


According to another illustrative embodiment, a method of providing a force to at least a portion of a curved body part of a person includes the step of deploying a dressing assembly on the curved body part. The dressing assembly includes an interior surface member for placing over the desired treatment area and having a first surface and a second, inward-facing surface. The dressing bolster has a first surface and a second, inward-facing surface. The second, inward-facing surface of the dressing bolster is disposed against the first surface of the interior surface member. The dressing assembly may be sealed to the curved body part. The method further includes providing reduced pressure to the dressing assembly. When reduced pressure is applied, the dressing bolster goes from a first volume (V1) at ambient pressure to a second volume (V2) at reduced pressure. In other words, the first volume is greater than the second: V1>V2. As the volume changes, a directed force is developed that may include a compressive portion, a lifting portion, or a inward closing portion.


Although the present invention and its advantages have been disclosed in the context of certain illustrative, non-limiting embodiments, it should be understood that various changes, substitutions, permutations, and alterations can be made without departing from the scope of the invention as defined by the appended claims. It will be appreciated that any feature that is described in a connection to any one embodiment may also be applicable to any other embodiment.

Claims
  • 1. A system for treating a curved body part on a patient, comprising: a dressing assembly shaped and configured to form a pocket to receive at least a portion of the curved body part, the dressing assembly including: an interior surface member having a first surface and a second, inward-facing surface, anda dressing bolster having a first surface and a second, inward-facing surface, wherein the second, inward-facing surface of the dressing bolster is disposed against the first surface of the interior surface member; andan over-drape configured to extend over the dressing assembly.
  • 2. The system of claim 1, wherein the curved body part comprises breast tissue.
  • 3. The system of claim 1, wherein the dressing bolster is a shaped dressing bolster configured to conform to the curved body part.
  • 4. The system of claim 3, wherein the shaped dressing bolster comprises a peripheral edge including a chamfer, taper, or arcuate shape.
  • 5. The system of claim 1, further comprising: a gasket material configured to be positioned between a portion of the dressing bolster and an epidermis of the patient; anda sealing apparatus configured to provide a seal between the over-drape and the epidermis.
  • 6. The system of claim 1, wherein the dressing bolster is formed from a bolster material having a density greater than 25 kg/m3.
  • 7. The system of claim 1, wherein the dressing assembly further comprises an exterior surface member having a first surface and a second, inward-facing surface, wherein the second, inward-facing surface of the exterior surface member is disposed against the first surface of the dressing bolster.
  • 8. The system of claim 1, wherein the dressing bolster comprises an anisotropic bolster material having a first, second, and third axes, and wherein compressive modulus differ between at least two of the first, second, and third axes.
  • 9. The system of claim 1, wherein the interior surface member comprises an elastic material.
  • 10. The system of claim 1, wherein the dressing assembly comprises: an exterior surface member having a first surface and a second, inward-facing surface, wherein the second, inward-facing surface of the exterior surface member is disposed against the first surface of the dressing bolster; andwherein the exterior surface member comprises an elastic material.
  • 11. The system of claim 1, wherein the dressing assembly further comprises: an exterior surface member having a first surface and a second, inward-facing surface, wherein the second, inward-facing surface of the exterior surface member is coupled to the first surface of the dressing bolster.
  • 12. The system of claim 1, wherein the dressing assembly further comprises: a longitudinal portion with a first end and a second end; anda releaseable connector coupled to the first end and second end of the dressing assembly and adapted to releasably couple the first end of the dressing assembly to the second end of the dressing assembly.
  • 13. The system of claim 12, wherein the releaseable connector comprises: a joining element and a releasable fastener.
  • 14. The system of claim 1, further comprising a reduced-pressure subsystem for providing a reduced pressure to the dressing assembly, wherein the reduced-pressure subsystem comprises: a reduced-pressure source for providing reduced pressure;a reduced-pressure interface configured to be coupled to the over-drape;a reduced-pressure delivery conduit for providing reduced pressure from the reduced-pressure source to the reduced-pressure interface.
  • 15. The system of claim 1, wherein the dressing assembly is operable to generate a directed force under reduced pressure.
  • 16. The system of claim 1, wherein the dressing assembly is operable to generate a lifting force under reduced pressure.
  • 17. The system of claim 1, further comprising a releasable connector for holding the dressing assembly against the patient, wherein the releaseable connector comprises a joining element and a releasable fastener.
  • 18. The system of claim 1, wherein the dressing bolster comprises an anisotropic bolster material having a first, second, and third axes, and wherein tension applied on the first axis causes a greater than 1:1 response of the anisotropic bolster material along the second axis.
  • 19. A method for treating a curved body part of a patient using the dressing assembly of claim 1, comprising: conforming the dressing assembly around the curved body part to form the pocket;inserting a at least a portion of the curved body part into the pocket;fluidly coupling a reduced-pressure source to the dressing assembly; andactivating the reduced pressure source to provide reduced pressure to the dressing assembly, whereby the dressing assembly contracts to form a directed force.
  • 20. The method of claim 19, wherein the dressing assembly comprises a dressing bolster formed from a bolster material having a density greater than 25 kg/m3.
  • 21. The method of claim 19, wherein the dressing assembly comprises a dressing bolster formed from a bolster material having a density less than a density of an epidermis of the patient, and wherein the directed force is a lifting force.
RELATED APPLICATIONS

This application is a continuation of U.S. patent application Ser. No. 15/864,937, filed Jan. 8, 2018, which is a continuation of U.S. patent application Ser. No. 14/252,605, filed Apr. 14, 2014, which is a continuation of U.S. patent application Ser. No. 13/253,711 entitled “Reduced-Pressure, Compression Systems And Apparatuses For Use On A Curved Body Part”, filed Oct. 5, 2011, now U.S. Pat. No. 8,722,959 which issued on May 13, 2014, which is a continuation of U.S. patent application Ser. No. 12/475,301, entitled “Reduced-Pressure, Compression Systems And Apparatuses For Use On A Curved Body Part,” filed May 29, 2009, now U.S. Pat. No. 8,129,580 which issued on Mar. 6, 2012; which claims the benefit, under 35 USC § 119(e), of the filing of U.S. Provisional Patent Application Ser. No. 61/144,067, entitled “Reduced-Pressure, Compression System and Apparatus for use on a Joint,” filed Jan. 12, 2009; which claims priority from U.S. Provisional Patent Application Ser. No. 61/121,362, entitled “Reduced-Pressure Wound treatment System Employing an Anisotropic Drape,” filed Dec. 10, 2008; which claims priority from U.S. Provisional Patent Application Ser. No. 61/057,802, entitled “Reduced-Pressure Dressing Assembly For Use in Applying a Closing Force,” filed May 30, 2008; which claims priority from U.S. Provisional Patent Application Ser. No. 61/057,803, entitled “Reduced-Pressure, Linear-Wound Treatment System,” filed May 30, 2008; which claims priority from U.S. Provisional Patent Application Ser. No. 61/057,807, entitled “Reduced-pressure Surgical Wound Treatment System,” filed May 30, 2008; which claims priority from U.S. Provisional Patent Application Ser. No. 61/057,808, entitled “See-Through, Reduced-Pressure Dressing,” filed May 30, 2008; which claims priority from U.S. Provisional Patent Application Ser. No. 61/057,810, entitled “Reduced-Pressure, Compression System and Apparatus for use on a Joint,” filed May 30, 2008; which claims priority from U.S. Provisional Patent Application Ser. No. 61/057,800, entitled “Reduced-Pressure, Compression System and Apparatus for use on a Curved Body Part,” filed May 30, 2008; which claims priority from U.S. Provisional Patent Application Ser. No. 61/057,798, entitled “Dressing Assembly For Subcutaneous Wound treatment Using Reduce Pressure,” filed May 30, 2008; which claims priority from U.S. Provisional Patent Application Ser. No. 61/057,797, entitled “Reduced-Pressure, Compression System and Apparatus for use on Breast Tissue,” filed May 30, 2008; and which claims priority from U.S. Provisional Patent Application Ser. No. 61/057,805, entitled “Super-Absorbent, Reduced-Pressure Wound Dressing and System,” filed May 30, 2008. All of the patent applications listed in this paragraph are hereby incorporated by reference for all purposes.

US Referenced Citations (303)
Number Name Date Kind
1195430 Angier Aug 1916 A
1355846 Rannells Oct 1920 A
1638043 Lee Aug 1927 A
1845630 Scholl Feb 1932 A
2452345 Ceyl Oct 1948 A
2547758 Kelling Apr 1951 A
2632443 Lesher Mar 1953 A
2682873 Evans et al. Jul 1954 A
2896618 Schaefer Jul 1959 A
2910763 Lauterbach Nov 1959 A
2969057 Simmons Jan 1961 A
3026874 Stevens Mar 1962 A
3066672 Crosby, Jr. et al. Dec 1962 A
3367332 Groves Feb 1968 A
3419006 Warwick Dec 1968 A
3520300 Flower, Jr. Jul 1970 A
3568675 Harvey Mar 1971 A
3648692 Wheeler Mar 1972 A
3682180 McFarlane Aug 1972 A
3826254 Mellor Jul 1974 A
3892229 Taylor et al. Jul 1975 A
3903882 Augurt Sep 1975 A
3969561 Marshall Jul 1976 A
4080970 Miller Mar 1978 A
4091804 Hasty May 1978 A
4096853 Weigand Jun 1978 A
4121582 Masso Remiro Oct 1978 A
4139004 Gonzalez, Jr. Feb 1979 A
4165748 Johnson Aug 1979 A
4184510 Murry et al. Jan 1980 A
4224945 Cohen Sep 1980 A
4233969 Lock et al. Nov 1980 A
4245630 Lloyd et al. Jan 1981 A
4256109 Nichols Mar 1981 A
4261363 Russo Apr 1981 A
4266545 Moss May 1981 A
4275721 Olson Jun 1981 A
4284079 Adair Aug 1981 A
4297995 Golub Nov 1981 A
4333468 Geist Jun 1982 A
4373519 Errede et al. Feb 1983 A
4375217 Arkans Mar 1983 A
4382441 Svedman May 1983 A
4392853 Muto Jul 1983 A
4392858 George et al. Jul 1983 A
4419097 Rowland Dec 1983 A
4430998 Harvey et al. Feb 1984 A
4465485 Kashmer et al. Aug 1984 A
4475909 Eisenberg Oct 1984 A
4480638 Schmid Nov 1984 A
4525166 Leclerc Jun 1985 A
4525374 Vaillancourt Jun 1985 A
4540412 Van Overloop Sep 1985 A
4543100 Brodsky Sep 1985 A
4548202 Duncan Oct 1985 A
4551139 Plaas et al. Nov 1985 A
4569348 Hasslinger Feb 1986 A
4572814 Naylor et al. Feb 1986 A
4605399 Weston et al. Aug 1986 A
4608041 Nielsen Aug 1986 A
4612230 Liland et al. Sep 1986 A
4640688 Hauser Feb 1987 A
4655754 Richmond et al. Apr 1987 A
4663352 Onofrj May 1987 A
4664662 Webster May 1987 A
4710165 McNeil et al. Dec 1987 A
4722332 Saggers Feb 1988 A
4727868 Szycher et al. Mar 1988 A
4733659 Edenbaum et al. Mar 1988 A
4743232 Kruger May 1988 A
4751133 Szycher et al. Jun 1988 A
4758220 Sundblom et al. Jul 1988 A
4770490 Gruenewald et al. Sep 1988 A
4787888 Fox Nov 1988 A
4795435 Steer Jan 1989 A
4826494 Richmond et al. May 1989 A
4838883 Matsuura Jun 1989 A
4840187 Brazier Jun 1989 A
4863449 Therriault et al. Sep 1989 A
4865026 Barrett Sep 1989 A
4872450 Austad Oct 1989 A
4878901 Sachse Nov 1989 A
4897081 Poirier et al. Jan 1990 A
4902565 Brook Feb 1990 A
4906233 Moriuchi et al. Mar 1990 A
4906240 Reed et al. Mar 1990 A
4917112 Kalt Apr 1990 A
4919654 Kalt Apr 1990 A
4941882 Ward et al. Jul 1990 A
4953565 Tachibana et al. Sep 1990 A
4969880 Zamierowski Nov 1990 A
4985019 Michelson Jan 1991 A
5000741 Kalt Mar 1991 A
5018515 Gilman May 1991 A
5037397 Kalt et al. Aug 1991 A
5086170 Luheshi et al. Feb 1992 A
5092858 Benson et al. Mar 1992 A
5100396 Zamierowski Mar 1992 A
5106629 Cartmell et al. Apr 1992 A
5134994 Say Aug 1992 A
5149331 Ferdman et al. Sep 1992 A
5160315 Heinecke et al. Nov 1992 A
5167613 Karami et al. Dec 1992 A
5176663 Svedman et al. Jan 1993 A
5215522 Page et al. Jun 1993 A
5232453 Plass et al. Aug 1993 A
5261893 Zamierowski Nov 1993 A
5278100 Doan et al. Jan 1994 A
5279550 Habib et al. Jan 1994 A
5298015 Komatsuzaki et al. Mar 1994 A
5306798 Horn et al. Apr 1994 A
5342376 Ruff Aug 1994 A
5344415 DeBusk et al. Sep 1994 A
5358494 Svedman Oct 1994 A
5376067 Daneshvar Dec 1994 A
5380294 Persson Jan 1995 A
5423737 Cartmell et al. Jun 1995 A
5429593 Matory Jul 1995 A
5435009 Schild et al. Jul 1995 A
5437622 Carion Aug 1995 A
5437651 Todd et al. Aug 1995 A
5489262 Cartmell et al. Feb 1996 A
5497788 Inman et al. Mar 1996 A
5520629 Heinecke et al. May 1996 A
5527293 Zamierowski Jun 1996 A
5538502 Johnstone Jul 1996 A
5549584 Gross Aug 1996 A
5556375 Ewall Sep 1996 A
5607388 Ewall Mar 1997 A
5628230 Flam May 1997 A
5636643 Argenta et al. Jun 1997 A
5645081 Argenta et al. Jul 1997 A
5653244 Shaw Aug 1997 A
5714225 Hansen et al. Feb 1998 A
5792088 Felder et al. Aug 1998 A
5844013 Kenndoff et al. Dec 1998 A
5866249 Yarusso et al. Feb 1999 A
5944017 Tweedle Aug 1999 A
5950238 Klein Sep 1999 A
5973221 Collyer et al. Oct 1999 A
6071267 Zamierowski Jun 2000 A
6086450 Mankovitz Jul 2000 A
6109267 Shaw et al. Aug 2000 A
6135116 Vogel et al. Oct 2000 A
6162960 Klein Dec 2000 A
6176868 Detour Jan 2001 B1
6213840 Han Apr 2001 B1
6241747 Ruff Jun 2001 B1
6270910 Jaeger et al. Aug 2001 B1
6287316 Agarwal et al. Sep 2001 B1
6320093 Augustine et al. Nov 2001 B1
6345623 Heaton et al. Feb 2002 B1
6361397 Mankovitz et al. Mar 2002 B1
6420622 Johnston et al. Jul 2002 B1
6426931 Parienti Jul 2002 B1
6440093 McEwen et al. Aug 2002 B1
6458109 Henley et al. Oct 2002 B1
6488643 Tumey et al. Dec 2002 B1
6493568 Bell et al. Dec 2002 B1
6500112 Khouri Dec 2002 B1
6528697 Knutson et al. Mar 2003 B1
6553998 Heaton et al. Apr 2003 B2
6566576 Komerska et al. May 2003 B1
6648862 Watson Nov 2003 B2
6685681 Lockwood et al. Feb 2004 B2
6752794 Lockwood et al. Jun 2004 B2
6814079 Heaton et al. Nov 2004 B2
6824533 Risk, Jr. et al. Nov 2004 B2
6855135 Lockwood et al. Feb 2005 B2
6867342 Johnston et al. Mar 2005 B2
D503509 Bell et al. Apr 2005 S
6936037 Bubb et al. Aug 2005 B2
6951553 Bubb et al. Oct 2005 B2
7004915 Boynton et al. Feb 2006 B2
7070584 Johnson et al. Jul 2006 B2
7090647 Mimura et al. Aug 2006 B2
7135007 Scott et al. Nov 2006 B2
7144294 Bell et al. Dec 2006 B2
7195624 Lockwood et al. Mar 2007 B2
7201063 Taylor Apr 2007 B2
7201263 Osada et al. Apr 2007 B2
7214202 Vogel et al. May 2007 B1
7316672 Hunt et al. Jan 2008 B1
7338482 Lockwood et al. Mar 2008 B2
7361184 Joshi Apr 2008 B2
7381859 Hunt et al. Jun 2008 B2
7455681 Wilke et al. Nov 2008 B2
7504549 Castellani et al. Mar 2009 B2
7520872 Biggie et al. Apr 2009 B2
7532953 Vogel May 2009 B2
7534927 Lockwood et al. May 2009 B2
7569742 Haggstrom et al. Aug 2009 B2
7699831 Bengtson et al. Apr 2010 B2
7700819 Ambrosio et al. Apr 2010 B2
7846141 Weston Dec 2010 B2
8062273 Weston Nov 2011 B2
8100848 Wilkes et al. Jan 2012 B2
8129580 Wilkes Mar 2012 B2
8202261 Kazala, Jr. Jun 2012 B2
8216198 Heagle et al. Jul 2012 B2
8241261 Randolph et al. Aug 2012 B2
8251979 Malhi Aug 2012 B2
8257327 Blott et al. Sep 2012 B2
8398614 Blott et al. Mar 2013 B2
8399730 Kazala, Jr. et al. Mar 2013 B2
8449509 Weston May 2013 B2
8529548 Blott et al. Sep 2013 B2
8535296 Blott et al. Sep 2013 B2
8551060 Schuessler et al. Oct 2013 B2
8568386 Malhi Oct 2013 B2
8641691 Fink et al. Feb 2014 B2
8679081 Heagle et al. Mar 2014 B2
8722959 Wilkes May 2014 B2
8834451 Blott et al. Sep 2014 B2
8926592 Blott et al. Jan 2015 B2
9017302 Vitaris et al. Apr 2015 B2
9044579 Blott et al. Jun 2015 B2
9095468 Kazala, Jr. et al. Aug 2015 B2
9198801 Weston Dec 2015 B2
9211365 Weston Dec 2015 B2
9289542 Blott et al. Mar 2016 B2
9456928 Haggstrom et al. Oct 2016 B2
9572719 Long Feb 2017 B2
9750641 Kazala, Jr. et al. Sep 2017 B2
9895269 Wilkes Feb 2018 B2
10143593 Kazala, Jr. et al. Dec 2018 B2
10226384 Kazala, Jr. et al. Mar 2019 B2
10568768 Long et al. Feb 2020 B2
11020277 Wilkes Jun 2021 B2
20010029956 Argenta et al. Oct 2001 A1
20010043943 Coffey Nov 2001 A1
20020007014 Hyde et al. Jan 2002 A1
20020077661 Saadat Jun 2002 A1
20020115951 Norstrem et al. Aug 2002 A1
20020120185 Johnson Aug 2002 A1
20020143286 Tumey Oct 2002 A1
20030040691 Griesbach et al. Feb 2003 A1
20030109816 Lachenbruch et al. Jun 2003 A1
20030139697 Gilman Jul 2003 A1
20030212359 Butler Nov 2003 A1
20040006319 Lina et al. Jan 2004 A1
20040030304 Hunt et al. Feb 2004 A1
20040039415 Zamierowski Feb 2004 A1
20040064111 Lockwood et al. Apr 2004 A1
20040064132 Boehringer et al. Apr 2004 A1
20040127836 Sigurjonsson et al. Jul 2004 A1
20040242119 Francis Dec 2004 A1
20040243073 Lockwood et al. Dec 2004 A1
20050059918 Sigurjonsson et al. Mar 2005 A1
20050070858 Lockwood et al. Mar 2005 A1
20050101940 Radl et al. May 2005 A1
20050142331 Anderson et al. Jun 2005 A1
20050209574 Boehringer et al. Sep 2005 A1
20050222544 Weston Oct 2005 A1
20050228329 Boehringer et al. Oct 2005 A1
20060041247 Petrosenko et al. Feb 2006 A1
20060064049 Marcussen Mar 2006 A1
20060079852 Bubb et al. Apr 2006 A1
20060149171 Vogel et al. Jul 2006 A1
20060173253 Ganapathy et al. Aug 2006 A1
20060189910 Johnson et al. Aug 2006 A1
20060213527 Argenta et al. Sep 2006 A1
20060264796 Flick et al. Nov 2006 A1
20070021697 Ginther et al. Jan 2007 A1
20070027414 Hoffman et al. Feb 2007 A1
20070032755 Walsh Feb 2007 A1
20070044801 Mathis et al. Mar 2007 A1
20070066946 Haggstrom et al. Mar 2007 A1
20070078366 Haggstrom et al. Apr 2007 A1
20070129707 Blott et al. Jun 2007 A1
20070135777 Greene et al. Jun 2007 A1
20070167884 Mangrum et al. Jul 2007 A1
20070185426 Ambrosio et al. Aug 2007 A1
20070185463 Mulligan Aug 2007 A1
20070219497 Johnson et al. Sep 2007 A1
20070219513 Lina et al. Sep 2007 A1
20070219532 Karpowicz et al. Sep 2007 A1
20070225663 Watt et al. Sep 2007 A1
20070255193 Patel et al. Nov 2007 A1
20080004549 Anderson et al. Jan 2008 A1
20080009812 Riesinger Jan 2008 A1
20080026023 Tauer et al. Jan 2008 A1
20080039763 Sigurjonsson et al. Feb 2008 A1
20080071207 de Luis et al. Mar 2008 A1
20080071214 Locke et al. Mar 2008 A1
20080076844 Van Sumeren et al. Mar 2008 A1
20080103462 Wenzel et al. May 2008 A1
20080103489 Dahners May 2008 A1
20080119802 Riesinger May 2008 A1
20090043268 Eddy et al. Feb 2009 A1
20090047855 Seth et al. Feb 2009 A1
20090125004 Shen et al. May 2009 A1
20090177051 Arons et al. Jul 2009 A1
20090204084 Blott et al. Aug 2009 A1
20090204085 Biggie et al. Aug 2009 A1
20090227968 Vess Sep 2009 A1
20090234307 Vitaris Sep 2009 A1
20090264807 Haggstrom et al. Oct 2009 A1
20090293887 Wilkes et al. Dec 2009 A1
20090299257 Long et al. Dec 2009 A1
20120220963 Hunt et al. Aug 2012 A1
20140163491 Schuessler et al. Jun 2014 A1
20150080788 Blott et al. Mar 2015 A1
Foreign Referenced Citations (105)
Number Date Country
550575 Mar 1986 AU
745271 Mar 2002 AU
755496 Dec 2002 AU
2005436 Jun 1990 CA
2468309 Jul 2003 CA
2560068 Oct 2005 CA
2651833 Nov 2007 CA
101277734 Oct 2008 CN
26 40 413 Mar 1978 DE
39 07 522 Apr 1990 DE
43 06 478 Sep 1994 DE
29 504 378 Sep 1995 DE
20 2006 007877 Jul 2006 DE
102005007016 Aug 2006 DE
0100148 Feb 1984 EP
0117632 Sep 1984 EP
0161865 Nov 1985 EP
0330373 Aug 1989 EP
0358302 Mar 1990 EP
0421465 Apr 1991 EP
0424165 Apr 1991 EP
0619105 Oct 1994 EP
0691113 Jan 1996 EP
0756854 Feb 1997 EP
1018967 Jul 2000 EP
2282788 Dec 2016 EP
1163907 Oct 1958 FR
2661821 Nov 1991 FR
692578 Jun 1953 GB
1574066 Sep 1980 GB
2195255 Apr 1988 GB
2 197 789 Jun 1988 GB
2 220 357 Jan 1990 GB
2 235 877 Mar 1991 GB
2 329 127 Mar 1999 GB
2 333 965 Aug 1999 GB
1545991 Nov 2004 IN
H08154964 Jun 1996 JP
H10356 Jan 1998 JP
2000-189427 Jul 2000 JP
2000210386 Aug 2000 JP
2002-078730 Mar 2002 JP
2003-116907 Apr 2003 JP
2004-160220 Jun 2004 JP
2006-141908 Jun 2006 JP
2006219776 Aug 2006 JP
2006239213 Sep 2006 JP
4129536 Aug 2008 JP
71559 Apr 2002 SG
8002182 Oct 1980 WO
8704626 Aug 1987 WO
90010424 Sep 1990 WO
9205755 Apr 1992 WO
1993000056 Jan 1993 WO
93009727 May 1993 WO
199415562 Jul 1994 WO
9420041 Sep 1994 WO
199420152 Sep 1994 WO
199514451 Jun 1995 WO
9605873 Feb 1996 WO
1997005838 Feb 1997 WO
199711658 Apr 1997 WO
9718007 May 1997 WO
9901173 Jan 1999 WO
9913793 Mar 1999 WO
0007653 Feb 2000 WO
2000061206 Oct 2000 WO
200102478 Jan 2001 WO
01034223 May 2001 WO
0185248 Nov 2001 WO
200189431 Nov 2001 WO
200220067 Mar 2002 WO
2002083046 Oct 2002 WO
2003017898 Mar 2003 WO
03057307 Jul 2003 WO
2003057071 Jul 2003 WO
03070135 Aug 2003 WO
2003077989 Sep 2003 WO
2003086262 Oct 2003 WO
2003101385 Dec 2003 WO
2004047695 Jun 2004 WO
2004060413 Jul 2004 WO
2005025447 Mar 2005 WO
2005034797 Apr 2005 WO
2005051461 Jun 2005 WO
2005082435 Sep 2005 WO
2005091884 Oct 2005 WO
2005123170 Dec 2005 WO
2006012745 Feb 2006 WO
2007030599 Mar 2007 WO
2007031762 Mar 2007 WO
2007033679 Mar 2007 WO
2007041642 Apr 2007 WO
2007085396 Aug 2007 WO
2007120138 Oct 2007 WO
2008013869 Jan 2008 WO
2008013896 Jan 2008 WO
2008020209 Feb 2008 WO
2008041926 Apr 2008 WO
2008054312 May 2008 WO
2008063281 May 2008 WO
2008104609 Sep 2008 WO
2009019496 Feb 2009 WO
2009047524 Apr 2009 WO
2009071926 Jun 2009 WO
Non-Patent Literature Citations (88)
Entry
European Search Report for EP 09770665.9, dated Feb. 25, 2015.
Laskin, et al.; “Minimally Invasive Total Knee Replacement Through a Mini-Midvastus Incision: An Outcome Study,” Surgical Technology International XIII, 2004; 231-8.
A. Dee, “The successful management of a dehisced surgical wound with TNP following Femoropopliteal bypass”, Journal of Wound Care, vol. 16, No. 1, Jan. 2007.
Ogazon, Use of Vacuum-Assisted Closure in the Treatment of Surgical Infection Sites Cir. Mar. 2006-Apr. 74(2): 107-13 (Spanish).
Timmenga, “The Effects of Mechanical Stress on Healing Skin Wounds: An Experimental Study in Rabbits Using Tissues Expansions,” British Journal of Plastic Surgery 1991; 44(7): 514-519.
Cunningham “Development of in-vitro Model to Simulate Dermal Wound Bed Interaction with GranuFoam and Gauze Dressing under Sub Atmospheric Pressure” RPT 111-05-02, Device Implant Innovations 2006.
Delalleau, A., et al., “Characterization of the Mechanical Properties of Skin by Inverse Analysis Combined with the Indentation Test” Journal of Biomechanics, 2006; pp. 1603-1610.
Pailler-Mattei, C., “Caracte; Risation Me' Canique et Tribologizue de la Peau Humain In Vivo”, 2004-31.
Khatyr, F., “Model of the Viscoelastic Behavior of Skin In Vivo and Study of Anisotropy”, Skin Research and Technology 2004; pp. 96-103.
Wilkes, “3D Strain Measurement in Soft Tissue: Demonstration of a Novel Inverse Finite Element Model Algorithm on MicroCT Images of a Tissue Phantom Exposed to Negative Pressure Wound Therapy,” Journal of the Mechanical Behavior of Biomedical Materials (2008), pp. 1-16.
Diridollou, “In vivo Model of the Mechanical Properties of the Human Skin under Suction”, Skin Research and Technology, 2000; 6:214-221.
Woo, “Structural Model to Describe the Non-Linear Stress-Strain Behavior for Parallel-Fibered Collagenous Tissues,” Journal of Biomechanical Engineering, Nov. 1989, vol. 111/361.
International Search Report and Written Opinion dated Oct. 20, 2009; PCT International Application No. PCT/US2009/045747.
International Search Report and Written Opinion dated Oct. 16, 2009; PCT International Application No. PCT/US2009/045752.
International Search Report and Written Opinion dated Oct. 14, 2009; PCT International Application No. PCT/US2009/045746.
International Search Report and Written Opinion dated Oct. 27, 2009; PCT International Application No. PCT/US2009/045744.
International Search Report and Written Opinion dated Oct. 26, 2009; PCT International Application No. PCT/US2009/045751.
International Search Report and Written Opinion dated Nov. 11, 2009; PCT International Application No. PCT/US2009/045754.
International Search Report and Written Opinion dated Oct. 21, 2009; PCT International Application No. PCT/US2009/045749.
International Search Report and Written Opinion dated Feb. 25, 2010; PCT International Application No. PCT/US2009/045750.
International Search Report and Written Opinion dated Mar. 12, 2010; PCT International Application No. PCT/US2009/045755.
Product Information for OptSiteTM dressing. Accessed Aug. 14, 2011.
International Search Report and Written Opinion dated Aug. 30, 2011 for PCT International Application No. PCT/US2011/034300.
International Search Report and Written Opinion dated Aug. 20, 2009; PCT International Application No. PCT/US2009/045743.
International Search Report and Written Opinion dated Nov. 12, 2009; PCT International Application No. PCT/US2009/045753.
Canadian Examiner's Report for Corresponding Application No. 2980359, dated Jul. 31, 2018.
A Prospective, Blinded, Randomized, Controlled Clinical Trial of Topical Negative Pressure Use in Skin Grafting, Elias Moisidis, Tim Heath, Catherine Boorer, Kevin Ho, Anand K. Deva, Sydney, Australia, From the Department of Plastic and Maxillofacial Surgery, Liverpool Hospital. Received for publication Mar. 25, 2003; revised Oct. 1, 2003.
The Vacuum Assisted Closure Device, a Method of Securing Skin Grafts and Improving Grafts Survival; Lynette A. Scherer, MD; Stephen Shiver, MD; Michael Chang, MD; J_ Wayne Meredith, MD; John T. Owings. MD; From the Departments of Surgery, University of California-Davis Medical Center, Sacramento (Ors. Sherer and Owings), and Wake Forest University Baptist Medical Center, Winston-Salem, NC (Ors. Shiver, Chang, and Meredith); Arch SurQNol 137, AuQ 2002; www.archsurQ.com.
Examination Report for corresponding EP 09770659.2, dated Sep. 4, 2013.
Extended European Search Report corresponding to Application No. 171645070, dated Jul. 18, 2017.
Extended European Search Report for corresponding Eurpean Application No. 12171212.9 dated Nov. 14, 2012.
European Search Report for EP 14182278.3 dated Jan. 7, 2015.
European Examination Report for corresponding EP09770663.4, dated Aug. 9, 2013.
Chintamani V.S. et al. : “Half Versus Full Vacuum Suction Drainage After Modified Radical Mastectomy for Breast Cancer—a Prospective Randomized Clinical Trial [ISRCTN24484328]”, BMC Cancer, 2005, vol. 5, article 11; abstract.
Japanese Office Action corresponding to Application No. 2016104769, dated Mar. 7, 2017.
European Search Report for corresponding Application No. 16171527.1 dated Dec. 9, 2016.
Communication pursuant to Rule 114(2) EPC for corresponding EP Application 09770664.2, dated Aug. 22, 2013.
Canadian Office Action dated May 25, 2016, corresponding to Canada Application No. 2,725,945.
Mexican Office Action corresponding to Application No. MX/a/2010/013134, dated Oct. 26, 2017.
Indian Examination Report for corresponding Application No. 9029/DELNP/2010, dated Nov. 23, 2017.
Extended European Search Report for corresponding Application No. 161998968, dated Mar. 1, 2017.
Japanese Notice of Rejection Corresponding to Application No. 2017-235283, dated Aug. 6, 2019.
Extended European Search Report for corresponding Application No. 201963739, dated Jan. 1, 2021.
Japanese Notice of Rejection for corresponding Application No. 2020-005250, dated Oct. 27, 2020.
Chinese First Office Action for corresponding Application No. 202011083392.4, dated Aug. 2, 2021.
Louis C. Argenta, MD and Michael J. Morykwas, PHD; Vacuum-Assisted Closure: A New Method for Wound Control and Treatment: Clinical Experience; Annals of Plastic Surgery; vol. 38, No. 6, Jun. 1997; pp. 563-576.
Susan Mendez-Eatmen, RN; “When wounds Won't Heal” RN Jan. 1998, vol. 61 (1); Medical Economics Company, Inc., Montvale, NJ, USA; pp. 20-24.
James H. Blackburn II, MD et al.: Negative-Pressure Dressings as a Bolster for Skin Grafts; Annals of Plastic Surgery, vol. 40, No. 5, May 1998, pp. 453-457; Lippincott Williams & Wilkins, Inc., Philidelphia, PA, USA.
John Masters; “Reliable, Inexpensive and Simple Suction Dressings”; Letter to the Editor, British Journal of Plastic Surgery, 1998, vol. 51 (3), p. 267; Elsevier Science/The British Association of Plastic Surgeons, UK.
S.E. Greer, et al. “The Use of Subatmospheric Pressure Dressing Therapy to Close Lymphocutaneous Fistulas of the Groin” British Journal of Plastic Surgery (2000), 53, pp. 484-487.
George V. Letsou, MD., et al.; “Stimulation of Adenylate Cyclase Activity in Cultured Endothelial Cells Subjected to Cyclic Stretch”; Journal of Cardiovascular Surgery, 31, 1990, pp. 634-639.
Orringer, Jay, et al; “Management of Wounds in Patients with Complex Enterocutaneous Fistulas”; Surgery, Gynecology & Obstetrics, Jul. 1987, vol. 165, pp. 79-80.
International Search Report for PCT International Application PCT/GB95/01983; dated Nov. 23, 1995.
PCT International Search Report for PCT International Application PCT/GB98/02713; dated Jan. 8, 1999.
PCT Written Opinion; PCT International Application PCT/GB98/02713; dated Jun. 8, 1999.
PCT International Examination and Search Report, PCT International Application PCT/GB96/02802; dated Jan. 15, 1998 & Apr. 29, 1997.
PCT Written Opinion, PCT International Application PCT/GB96/02802; dated Sep. 3, 1997.
Dattilo, Philip P., Jr., et al; “Medical Textiles: Application of an Absorbable Barbed Bi-directional Surgical Suture”; Journal of Textile and Apparel, Technology and Management, vol. 2, Issue 2, Spring 2002, pp. 1-5.
Kostyuchenok, B.M., et al; “Vacuum Treatment in the Surgical Management of Purulent Wounds”; Vestnik Khirurgi, Sep. 1986, pp. 18-21 and 6 page English translation thereof.
Davydov, Yu. A., et al; “Vacuum Therapy in the Treatment of Purulent Lactation Mastitis”; Vestnik Khirurgi, May 14, 1986, pp. 66-70, and 9 page English translation thereof.
Yusupov. Yu.N., et al; “Active Wound Drainage”, Vestnki Khirurgi, vol. 138, Issue 4, 1987, and 7 page English translation thereof.
Davydov, Yu.A., et al; “Bacteriological and Cytological Assessment of Vacuum Therapy for Purulent Wounds”; Vestnik Khirugi, Oct. 1988, pp. 48-52, and 8 page English translation thereof.
Davydov, Yu.A., et al; “Concepts for the Clinical-Biological Management of the Wound Process in the Treatment of Purulent Wounds by Means of Vacuum Therapy”; Vestnik Khirurgi, Jul. 7, 1980, pp. 132-136, and 8 page English translation thereof.
Chariker, Mark E., M.D., et al; “Effective Management of incisional and cutaneous fistulae with closed suction wound drainage”; Contemporary Surgery, vol. 34, Jun. 1989, pp. 59-63.
Egnell Minor, Instruction Book, First Edition, 300 7502, Feb. 1975, pp. 24.
Egnell Minor: Addition to the Users Manual Concerning Overflow Protection—Concerns all Egnell Pumps, Feb. 3, 1983, pp. 2.
Svedman, P.: “Irrigation Treatment of Leg Ulcers”, The Lancet, Sep. 3, 1983, pp. 532-534.
Chinn, Steven D. et al.: “Closed Wound Suction Drainage”, The Journal of Foot Surgery, vol. 24, No. 1, 1985, pp. 76-81.
Arnljots, Björn et al.: “Irrigation Treatment in Split-Thickness Skin Grafting of Intractable Leg Ulcers”, Scand J. Plast Reconstr. Surg., No. 19, 1985, pp. 211-213.
Svedman, P.: “A Dressing Allowing Continuous Treatment of a Biosurface”, IRCS Medical Science: Biomedical Technology, Clinical Medicine, Surgery and Transplantation, vol. 7, 1979, p. 221.
Svedman, P. et al: “A Dressing System Providing Fluid Supply and Suction Drainage Used for Continuous of Intermittent Irrigation”, Annals of Plastic Surgery, vol. 17, No. 2, Aug. 1986, pp. 125-133.
N.A. Bagautdinov, “Variant of External Vacuum Aspiration in the Treatment of Purulent Diseases of Soft Tissues,” Current Problems in Modern Clinical Surgery: Interdepartmental Collection, edited by V. Ye Volkov et al. (Chuvashia State University, Cheboksary, U.S.S.R. 1986); pp. 94-96 (copy and certified translation).
K.F. Jeter, T.E. Tintle, and M. Chariker, “Managing Draining Wounds and Fistulae: New and Established Methods,” Chronic Wound Care, edited by D. Krasner (Health Management Publications, Inc., King of Prussia, PA 1990), pp. 240-246.
G. {hacek over (Z)}ivadinovi?, V. ?uki?, {hacek over (Z)}. Maksimovi?, ?. Radak, and P. Pe{hacek over (s)}ka, “Vacuum Therapy in the Treatment of Peripheral Blood Vessels,” Timok Medical Journal 11 (1986), pp. 161-164 (copy and certified translation).
F.E. Johnson, “An Improved Technique for Skin Graft Placement Using a Suction Drain,” Surgery, Gynecology, and Obstetrics 159 (1984), pp. 584-585.
A.A. Safronov, Dissertation Abstract, Vacuum Therapy of Trophic Ulcers of the Lower Leg with Simultaneous Autoplasty of the Skin (Central Scientific Research Institute of Traumatology and Orthopedics, Moscow, U.S.S.R. 1967) (copy and certified translation).
M. Schein, R. Saadia, J.R. Jamieson, and G.A.G. Decker, “The ‘Sandwich Technique’ in the Management of the Open Abdomen,” British Journal of Surgery 73 (1986), pp. 369-370.
D.E. Tribble, An Improved Sump Drain-Irrigation Device of Simple Construction, Archives of Surgery 105 (1972) pp. 511-513.
M.J. Morykwas, L.C. Argenta, E.I. Shelton-Brown, and W. McGuirt, “Vacuum-Assisted Closure: A New Method for Wound Control and Treatment: Animal Studies and Basic Foundation,” Annals of Plastic Surgery 38 (1997), pp. 553-562 (Morykwas I).
C.E. Tennants, “The Use of Hypermia in the Postoperative Treatment of Lesions of the Extremities and Thorax,” Journal of the American Medical Association 64 (1915), pp. 1548-1549.
Selections from W. Meyer and V. Schmieden, Bier's Hyperemic Treatment in Surgery, Medicine, and the Specialties: A Manual of Its Practical Application, (W.B. Saunders Co., Philadelphia, PA 1909), pp. 17-25, 44-64, 90-96, 167-170, and 210-211.
V.A. Solovev et al., Guidelines, The Method of Treatment of Immature External Fistulas in the Upper Gastrointestinal Tract, editor-in-chief Prov. V.I. Parahonyak (S.M. Kirov Gorky State Medical Institute, Gorky, U.S.S.R. 1987) (“Solovev Guidelines”).
V.A. Kuznetsov & N.a. Bagautdinov, “Vacuum and Vacuum-Sorption Treatment of Open Septic Wounds,” in II All-Union Conference on Wounds and Wound Infections: Presentation Abstracts, edited by B.M. Kostyuchenok et al. (Moscow, U.S.S.R. Oct. 28-29, 1986) pp. 91-92 (“Bagautdinov II”).
V.A. Solovev, Dissertation Abstract, Treatment and Prevention of Suture Failures after Gastric Resection (S.M. Kirov Gorky State Medical Institute, Gorky, U.S.S.R. 1988) (“Solovev Abstract”).
V.A.C.® Therapy Clinical Guidelines: A Reference Source for Clinicians; Jul. 2007.
Office action for related U.S. Appl. No. 16/242,825, dated Oct. 27, 2021.
Office Action for related U.S. Appl. No. 16/278,638, dated Sep. 29, 2021.
Office Action for related U.S. Appl. No. 16/740,004, dated Oct. 4, 2021.
Related Publications (1)
Number Date Country
20210022925 A1 Jan 2021 US
Provisional Applications (11)
Number Date Country
61144067 Jan 2009 US
61121362 Dec 2008 US
61057810 May 2008 US
61057803 May 2008 US
61057805 May 2008 US
61057802 May 2008 US
61057798 May 2008 US
61057808 May 2008 US
61057807 May 2008 US
61057800 May 2008 US
61057797 May 2008 US
Continuations (4)
Number Date Country
Parent 15864937 Jan 2018 US
Child 17062382 US
Parent 14252605 Apr 2014 US
Child 15864937 US
Parent 13253711 Oct 2011 US
Child 14252605 US
Parent 12475301 May 2009 US
Child 13253711 US