The present invention relates generally to medical treatment systems and, more particularly, to reduced-pressure, deep-tissue closure systems and methods.
Whether the etiology of a wound, or damaged area of tissue, is trauma, surgery, or another cause, proper care of the wound, or wounds, is important to the outcome. Unique challenges exist when the wound involves locations that require reentry, for example, the peritoneal cavity and more generally the abdominal cavity. Often times when surgery or trauma involves the abdominal cavity, establishing a wound management system that facilitates reentry allows for better and easier care and helps to address such things as peritonitis, abdominal compartment syndrome, and infections that might inhibit final healing of the wound and the internal organs. In providing such care, it may be desirable to remove unwanted fluids from the cavity, help approximate to the fascia and other tissues, and finally to help provide a closing force on the wound itself at the level of the epidermis.
A number of deep tissues, e.g., fat, muscle, or particularly fascia, may need to be addressed when one is temporarily closing the abdomen. Unless otherwise indicated, as used herein, “or” does not require mutual exclusivity. If not addressed, the deep tissue may retract further into the abdominal cavity and subsequently cause difficulties. The surgeon may suture the deep tissue, e.g., the fascia, while placing the fascia under tension. This can be problematic, however, if reduced-pressure treatment in the area is desired or if the dressing needs to be replaced. Moreover, suturing the deep tissue can at times cause necrosis. If a complex wound, e.g., a wound that is infected, is involved, the fascia may be very fragile and may not be able to endure suturing. If a mesh is used to assist in the latter situation, removal of the mesh can be difficult and may require surgery. At the same time, if the deep tissue, notably the fascia, is not closed, the situation can lead to hernias and other complications.
In addition to accessing the cavity for reentry, it may be desirable to remove fluids from the cavity. It may also be desirable to provide reduced-pressure therapy to the tissue or wound, including wounds that may be within the abdominal cavity. This treatment (frequently referred to in the medical community as “negative pressure wound therapy,” “reduced pressure therapy,” or “vacuum therapy”) may provide a number of benefits, including faster healing and increased formulation of granulation tissue.
It would be desirable to provide a system and method that could facilitate reduced-pressure treatment and help close the deep tissue in a way that avoids or minimizes complications, such as the retraction of deep tissue or necrosis.
Problems with existing deep tissue closing systems, devices, and methods are addressed by the systems, devices, and methods of the illustrative embodiments described herein. According to one illustrative embodiment, a reduced-pressure, deep-tissue closure system for applying a closing force proximate to a deep tissue includes a contractible matrix being formed with a first plurality of apertures, and having a first side and a second, inward-facing side. A reduced-pressure source is fluidly coupled to the contractible matrix and operable to deliver reduced pressure to the contractible matrix.
According to another illustrative embodiment, a reduced-pressure, deep-tissue closure system for applying a closing force proximate to a deep tissue includes a contractible matrix being formed with a first plurality of apertures and having a first side and a second, inward-facing side. The second side is formed with a first plurality of cells, each open cell having cell walls. A second plurality of apertures is formed in the cell walls. A reduced-pressure source is fluidly coupled to the contractible matrix and operable to deliver reduced pressure to the contractible matrix.
According to another illustrative embodiment, a reduced-pressure treatment system for applying a closing force to a deep-tissue wound in a body cavity of a patient includes a contractible matrix being formed with a first plurality of apertures and having a first side and a second, inward-facing side. The second side is formed with a plurality of cells and with a second plurality of apertures. The illustrative reduced-pressure treatment system also includes a manifold member operable to distribute a reduced pressure and a reduced-pressure source fluidly coupled to the manifold member and to the contractible matrix. The reduced-pressure source delivers reduced pressure to the manifold member and to the contractible matrix. The illustrative reduced-pressure treatment system also includes a sealing member operable to provide a pneumatic seal over the body cavity.
According to another illustrative embodiment, a method of manufacturing a reduced-pressure treatment system for applying a closing force to a deep tissue in a body cavity of a patient includes the steps of: forming a contractible matrix having a first plurality of apertures, and having a first side and a second, inward-facing side. The second side is formed with a plurality of cells and further being formed with a second plurality of apertures. The method further includes providing a manifold member operable to distribute a reduced pressure and providing a sealing member operable to provide a pneumatic seal over the body cavity.
According to another illustrative embodiment, a method of providing a closing force to a deep tissue in a body cavity of a patient includes the step of placing a contractible matrix in the body cavity adjacent the deep tissue. The contractible matrix is formed with a plurality of apertures and has a first side and a second, inward-facing side. The second side being formed with a first plurality of cells and with a second plurality of apertures. The method may further include fluidly coupling a reduced-pressure source to the contractible matrix and sealing the body cavity with a sealing member.
Other objects, features, and advantages of the illustrative embodiments will become apparent with reference to the drawings and detailed description that follow.
In the following detailed description of the illustrative embodiments, reference is made to the accompanying drawings that form a part hereof. These embodiments are described in sufficient detail to enable those skilled in the art to practice the invention, and it is understood that other embodiments may be utilized and that logical structural, mechanical, electrical, and chemical changes may be made without departing from the spirit or scope of the invention. To avoid detail not necessary to enable those skilled in the art to practice the embodiments described herein, the description may omit certain information known to those skilled in the art. The following detailed description is, therefore, not to be taken in a limiting sense, and the scope of the illustrative embodiments are defined only by the appended claims.
Referring to
In this illustrative embodiment, a wound extends through a patient's epidermis 112, fat layer 114, muscle 116, and fascia 110. Of these layers, particular attention is often given to closing the fascia 110. While this illustrative embodiment focuses on fascia 110, it should be understood that the reduced-pressure, deep-tissue closure system 100 and the reduced-pressure, deep-tissue closure device 102 could be used on other deep-tissues or deep-tissue wounds.
The deep-tissue wound 108 in the fascia 110, in this illustration, involves a laceration or incision creating fascia edges 118. It is desired to close or urge the fascia edges 118 together with a closing force. As used herein, unless otherwise indicated, “or” does not require mutual exclusivity. When reentry may be needed, a temporary closure of the fascia 110 is preferred. Thus, it is desirable to close or apply a closing force on the fascia 110 by proximating the fascia edges 118. As will be described more below, the reduced-pressure, deep-tissue closure device 102 of this illustrative embodiment helps to close or apply a closing force on the fascia 110.
In this illustrative embodiment, the body cavity 106 is an abdominal cavity and the tissue site 104 is a portion of an abdominal contents 122 or the tissue proximate to the abdominal contents 122. In providing open wound management utilizing the reduced-pressure, deep-tissue closure system 100, it may be desirable to first place a body-cavity dressing 120 on the abdominal contents 122. The abdominal contents 122 provide support for the body-cavity dressing 120.
The body-cavity dressing 120 may include a non-adherent, encapsulated manifold member 124. The encapsulating layers of the body-cavity dressing 120 may be formed with fenestrations or apertures, such as apertures 126, that allow fluids to enter the body-cavity dressing 120. The body-cavity dressing 120 may be formed with a non-adherent drape that has a discrete plurality of leg members. The body-cavity dressing 120 is positioned on the abdominal contents 122 and preferably positioned, at least in part, into one or more of the paracolic gutters 128. The reduced-pressure, deep-tissue closure device 102 may then be disposed the adjacent body-cavity dressing 120 just underneath (for the orientation shown in
The reduced-pressure, deep-tissue closure device 102 includes a contractible matrix 130, which has a first side 132 and a second, inward-facing (patient-facing) side 134. The first side 132 is for placing adjacent to the tissue layer, e.g., the fascia 110, which the closure device 102 is intended to close or urge together. The contractible matrix 130 may be formed with a first plurality of apertures 136 through a contractible material or structure. The first plurality of apertures 136 may take any shape, e.g., slits (linear openings), rectangular openings, irregular-shaped openings, etc. The contractible matrix 130 may be formed with a plurality of cells, or compartments or partial compartments, e.g., open cells 138, on the second, inward-facing side 134 or on any portion of the contractible matrix 130. The first plurality of apertures 136 may be in fluid communication with the first plurality of cells 138. As shown in
When reduced pressure is delivered to the contractible matrix 130, a gripping force is developed and an inward force. The reduced pressure acts through the first plurality of apertures 136 to provide the gripping force on the fascia 110. The gripping force holds, or grips, the fascia 110. The reduced pressure may be supplied to the contractible matrix 130 from underneath (for the orientation shown) through the body-cavity dressing 120 and in particular through apertures 126 or through a manifold 144. The gripping force on the fascia 110 is represented by arrows 146.
In addition to providing a gripping force through the apertures 136, the reduced pressure also urges the contractible matrix 130 inward, i.e., in the direction shown by arrows 148. “Inward” in this context means toward a center portion of the reduced-pressure, deep-tissue closure device 102. Alternatively, “inward” may be defined as in a direction that would pull the tissue, e.g., the fascia 110, towards the edges 118 of the tissue wound 108 for a deployed reduced-pressure, deep-tissue closure device 102. As the reduced pressure acts on the contractible matrix 130, the contractible matrix 130 grips the fascia 110 and changes from a non-contracted position to a contracted position. In one embodiment, the contractible matrix 130 includes cells that collapse laterally and thereby contract. The side walls, which are flexible, of the cells move closer to one another under the influence of reduced pressure. Because the reduced pressure on the first plurality of apertures 136 grips the fascia 110, and the reduced pressure also causes the contractible matrix 130 to contract, a closing force is developed and applied to the fascia 110 that urges the fascia edges 118 into closer approximation. Thus, the fascia 110 experiences a closing force and that causes the fascia 110 to be closed or urged into a closed position.
In one embodiment, the contractible matrix 130 includes a plurality of cells, e.g., cells 138, that collectively define a first volume (V1) when no reduced pressure is applied. When reduced pressure is applied to the cells, the cells collapse or otherwise move such that a second volume is defined (V2). The second volume is less than the first volume (V1), i.e., V1>V2, and this change in volume is associated with contraction.
As used herein, “reduced pressure” generally refers to a pressure less than the ambient pressure at the tissue site 104 that is being subjected to treatment. In most cases, this reduced pressure will be less than the atmospheric pressure at which the patient is located. Alternatively, the reduced pressure may be less than a hydrostatic pressure at the tissue site 104. Unless otherwise indicated, values of pressure stated herein are gauge pressures.
The manifold 144 is placed within the body cavity 106 proximate to the reduced-pressure, deep-tissue closure device 102, which is proximate to the body-cavity dressing 120. The manifold 144 may be supported by or be disposed adjacent the first side 132 of the contractible matrix 130. The term “manifold” as used herein generally refers to a substance or structure that is provided to assist in applying reduced pressure to, delivering fluids to, or removing fluids from the tissue site 104 or other location. The manifold 144 typically includes a plurality of flow channels or pathways that distribute fluids provided to and removed from the area around the manifold 144. The manifold 144 may include a plurality of flow channels or pathways that are interconnected to improve distribution of fluids. The manifold 144 may be a biocompatible material that is capable of being placed in contact with tissue. Examples of manifold 144 may include, without limitation, devices that have structural elements arranged to form flow channels, cellular foam, such as open-cell foam, porous tissue collections, and liquids, gels, and foams that include or cure to include flow channels. The manifold 144 may be porous and may be made from foam, gauze, felted mat, or any other material suited to a particular biological application. In one embodiment, the manifold 144 is a porous foam and includes a plurality of interconnected cells or pores that act as flow channels. The porous foam may be a polyurethane, open-cell, reticulated foam, such as a GranuFoam® material manufactured by Kinetic Concepts, Incorporated of San Antonio, Tex. Other embodiments might include “closed cells.” These closed-cell portions of the manifold 144 contain a plurality of cells, the majority of which are not fluidly connected to adjacent cells. The closed cells may be selectively disposed in the manifold 144 to prevent transmission of fluids through perimeter surfaces of the manifold 144. In some situations, the manifold 144 may also be used to distribute fluids, such as medications, antibacterials, growth factors, and other solutions to the wound 108 or the body cavity 106. Other layers or material might be included as part of the manifold 144, such as absorptive material, wicking material, hydrophobic material, hydrophilic material, etc.
A sealing member 154 is placed over a body-cavity opening 156 of the body cavity 106 and provides a pneumatic seal adequate for the reduced-pressure, deep-tissue closure system 100 to hold reduced pressure within the body cavity 106. The sealing member 154 may be a cover that is also used to secure the manifold 144 on a central portion of the body-cavity dressing 120. While the sealing member 154 may be impermeable or semi-permeable, the sealing member 154 is capable of maintaining a reduced pressure at the tissue site 104 after installation of the sealing member 154 over the body-cavity opening 156. The sealing member 154 may be a flexible over-drape or film formed from a silicone based compound, acrylic, hydrogel or hydrogel-forming material, or any other biocompatible material that includes the impermeability or permeability characteristics desired for use with a tissue site or the reduced-pressure, deep-tissue closure device 102.
The sealing member 154 may further include an attachment means 158 to secure the sealing member 154 to the patient's epidermis 112. The attachment means 158 may take many forms. For example, the attachment means 158 may include an adhesive 160 positioned on the sealing member 154 or on any portion of the sealing member 154 to provide the pneumatic seal. The adhesive 160 might be pre-applied and covered with a releasable backing, or member, that is removed at the time of application to the patient.
A reduced-pressure interface 162, such as an elbow port 164, may be applied to the sealing member 154 to provide reduced pressure through the sealing member 154 and to the manifold 144 and thereby to the contractible matrix 130. The reduced-pressure interface 162 may be used for this purpose, but other approaches may also be used. For example, in one embodiment (not shown), a reduced-pressure delivery conduit 166 is placed directly into the manifold 144. In the illustrative embodiment shown, the reduced-pressure delivery conduit 166 is fluidly coupled to a reduced-pressure source 168.
The reduced-pressure source 168 may accommodate a wide range of reduced pressures. The range may include −50 to −400 mm Hg. In one illustrative embodiment, the reduced-pressure source 168 may include preset selectors for −100 mm Hg, −125 mm Hg, and −150 mm Hg. The reduced-pressure source 168 may also include a number of alarms, such as a blockage alarm, a leakage alarm, or a battery-low alarm. The reduced-pressure source 168 could be a portable source, wall source, or other unit for abdominal cavities. The reduced-pressure source 168 may selectively deliver a constant pressure, intermittent pressure, dynamic pressure, or pressure with a set pattern.
A medial portion 170 of the reduced-pressure delivery conduit 166 may include a number of devices, such as a representative device 172. The device 172 might be a fluid collection member, or canister reservoir, to hold exudates, ascites, and other fluids removed; a pressure feedback device; a volume detection system; a blood detection system; an infection detection system; a flow monitoring system; a filter; a temperature monitoring system; etc. Some representative devices 172, e.g., the fluid collection member, may be formed integral to the reduced-pressure source 168. For example, a reduced-pressure port 174 on the reduced-pressure source 168 may include a filter member that includes one or more filters, such as a hydrophobic filter that prevents liquid from entering an interior space. Multiple devices might be included.
The reduced-pressure, deep-tissue closure system 100 is operable to provide a closing force on the fascia 110. In addition, the reduced-pressure, deep-tissue closure system may provide reduced-pressure treatment within the body cavity 106 and at or proximate to the tissue site 104. The reduced-pressure treatment may be applied within the body cavity 106 and at the tissue site 104 to help promote removal of ascites, exudates, or other fluids. The reduced pressure may also stimulate the growth of additional tissue. In the case of a wound at the tissue site 104, the growth of granulation tissue and removal of exudates and bacteria may help to promote healing. In the situation of a non-wounded or non-defective tissue at the tissue site 104, reduced pressure may be used to promote the growth of tissue that may be harvested and transplanted to another tissue site.
In operation, after the body-cavity dressing 120 has been disposed within the body cavity 106 and adjacent the abdominal contents 122, the reduced-pressure, deep-tissue closure device 102 may be disposed adjacent the reduced-pressure, deep-tissue closure device 102 and underneath (for the orientation shown in
When the reduced-pressure source 168 is activated, the reduced pressure is delivered through the reduced-pressure delivery conduit 166 to the reduced-pressure interface 162 and thereby to the manifold 144 and to the reduced-pressure, deep-tissue closure device 102. The reduced pressure experienced by the reduced-pressure, deep-tissue closure device 102 causes the reduced-pressure, deep-tissue closure device 102 to grip the fascia 110 through the first plurality of apertures 136 and to contract. As the reduced-pressure, deep-tissue closure device 102 contracts, a closing force is experienced by the fascia 110 that is directed towards the fascia edges 118. The fascia edges 118 are thereby approximated. The closing force experienced by fascia 110 is developed without the need to puncture or wound the fascia 110 or other tissue. In addition to approximating the fascia edges 118, the reduced pressure supplied to the reduced-pressure interface 162, and thereby to the manifold 144, provides for reduced-pressure treatment in the body cavity 106 and may provide reduced-pressure treatment to tissue proximate to the tissue site 104.
Referring now to
Referring now to
Referring now to
In an alternative embodiment, the contractible matrix 400 may have apertures 410 on the first side 402 but no corresponding aperture on the second, inward-facing side 404. Thus, the contractible matrix 400 has cells that open only to the first side 402 and may have apertures 411, which provide reduced pressure into the cells. When reduced pressure is supplied through apertures 411, the deep tissue is gripped by the apertures 410 and the side walls of the cells are pulled into closer proximity causing the contractible matrix 400 to contract.
A number of different substances might be used to form the contractible matrix 130 (
In another illustrative embodiment, the contractible matrix may be formed from a thermal plastic elastomer (TPE) that allows for expansion and contraction in the xy plane (the plane within the page for
In an alternative embodiment, a contract matrix may be formed to contract under reduced pressure by utilizing a pneumatic element, or device, that contracts under reduced pressure. Thus, for example, with reference to
Although the present invention and its advantages have been disclosed in the context of certain illustrative, non-limiting embodiments, it should be understood that various changes, substitutions, and alterations can be made without departing from the scope of the invention as defined by the appended claims.
The present invention claims the benefit, under 35 USC §119(e), of the filing of U.S. Provisional Patent Application Ser. No. 61/109,448, entitled “Reduced-Pressure, Deep-Tissue Closure System and Method,” filed Oct. 29, 2008; U.S. Provisional Patent Application Ser. No. 61/109,486, entitled “Reduced-Pressure, Abdominal Treatment System and Method,” filed Oct. 29, 2008; U.S. Provisional Patent Application Ser. No. 61/109,390, entitled “Open-Cavity, Reduced-Pressure Wound Dressing and System,” filed Oct. 29, 2008; and U.S. Provisional Patent Application Ser. No. 61/109,410, entitled “Reduced-Pressure, Wound-Closure System and Method,” filed Oct. 29, 2008. All of these provisional applications are incorporated herein by reference for all purposes.
Number | Name | Date | Kind |
---|---|---|---|
1355846 | Rannells | Oct 1920 | A |
2547758 | Keeling | Apr 1951 | A |
2632443 | Lesher | Mar 1953 | A |
2682873 | Evans et al. | Jul 1954 | A |
2910763 | Lauterbach | Nov 1959 | A |
2969057 | Simmons | Jan 1961 | A |
3066672 | Crosby, Jr. et al. | Dec 1962 | A |
3367332 | Groves | Feb 1968 | A |
3520300 | Flower, Jr. | Jul 1970 | A |
3556101 | Economou | Jan 1971 | A |
3568675 | Harvey | Mar 1971 | A |
3648692 | Wheeler | Mar 1972 | A |
3682180 | McFarlane | Aug 1972 | A |
3826254 | Mellor | Jul 1974 | A |
3830238 | Kurtz et al. | Aug 1974 | A |
4080970 | Miller | Mar 1978 | A |
4096853 | Weigand | Jun 1978 | A |
4139004 | Gonzalez, Jr. | Feb 1979 | A |
4165748 | Johnson | Aug 1979 | A |
4184510 | Murry et al. | Jan 1980 | A |
4233969 | Lock et al. | Nov 1980 | A |
4245630 | Lloyd et al. | Jan 1981 | A |
4250882 | Adair | Feb 1981 | A |
4256109 | Nichols | Mar 1981 | A |
4261363 | Russo | Apr 1981 | A |
4275721 | Olson | Jun 1981 | A |
4284079 | Adair | Aug 1981 | A |
4294240 | Thill | Oct 1981 | A |
4297995 | Golub | Nov 1981 | A |
4333468 | Geist | Jun 1982 | A |
4341207 | Steer et al. | Jul 1982 | A |
4346711 | Agdanowski et al. | Aug 1982 | A |
4373519 | Errede et al. | Feb 1983 | A |
4382441 | Svedman | May 1983 | A |
4392853 | Muto | Jul 1983 | A |
4392858 | George et al. | Jul 1983 | A |
4419097 | Rowland | Dec 1983 | A |
4430084 | Deaton | Feb 1984 | A |
4465485 | Kashmer et al. | Aug 1984 | A |
4475909 | Eisenberg | Oct 1984 | A |
4480638 | Schmid | Nov 1984 | A |
4525166 | Leclerc | Jun 1985 | A |
4525374 | Vaillancourt | Jun 1985 | A |
4540412 | Van Overloop | Sep 1985 | A |
4543100 | Brodsky | Sep 1985 | A |
4548202 | Duncan | Oct 1985 | A |
4551139 | Plaas et al. | Nov 1985 | A |
4569348 | Hasslinger | Feb 1986 | A |
4605399 | Weston et al. | Aug 1986 | A |
4608041 | Nielson | Aug 1986 | A |
4633865 | Hengstberger et al. | Jan 1987 | A |
4640688 | Hauser | Feb 1987 | A |
4655754 | Richmond et al. | Apr 1987 | A |
4664662 | Webster | May 1987 | A |
4710165 | McNeil et al. | Dec 1987 | A |
4728642 | Pawelchak et al. | Mar 1988 | A |
4733659 | Edenbaum et al. | Mar 1988 | A |
4743232 | Kruger | May 1988 | A |
4758220 | Sundblom et al. | Jul 1988 | A |
4787888 | Fox | Nov 1988 | A |
4815468 | Annand | Mar 1989 | A |
4825866 | Pierce | May 1989 | A |
4826494 | Richmond et al. | May 1989 | A |
4838883 | Matsuura | Jun 1989 | A |
4840187 | Brazier | Jun 1989 | A |
4844072 | French et al. | Jul 1989 | A |
4863449 | Therriault et al. | Sep 1989 | A |
4872450 | Austad | Oct 1989 | A |
4878901 | Sachse | Nov 1989 | A |
4897081 | Poirier et al. | Jan 1990 | A |
4899965 | Usui | Feb 1990 | A |
4906233 | Moriuchi et al. | Mar 1990 | A |
4906240 | Reed et al. | Mar 1990 | A |
4908350 | Kramer et al. | Mar 1990 | A |
4919654 | Kalt et al. | Apr 1990 | A |
4941882 | Ward et al. | Jul 1990 | A |
4953565 | Tachibana et al. | Sep 1990 | A |
4969880 | Zamierowski | Nov 1990 | A |
4985019 | Michelson | Jan 1991 | A |
5014389 | Ogilivie et al. | May 1991 | A |
5037397 | Kalt et al. | Aug 1991 | A |
5086170 | Luheshi et al. | Feb 1992 | A |
5092858 | Benson et al. | Mar 1992 | A |
5100396 | Zamierowski | Mar 1992 | A |
5134994 | Say | Aug 1992 | A |
5149331 | Ferdman et al. | Sep 1992 | A |
5167613 | Karami et al. | Dec 1992 | A |
5176663 | Svedman et al. | Jan 1993 | A |
5192266 | Wilk | Mar 1993 | A |
5215522 | Page et al. | Jun 1993 | A |
5232453 | Plass et al. | Aug 1993 | A |
5261893 | Zamierowski | Nov 1993 | A |
5278100 | Doan et al. | Jan 1994 | A |
5279550 | Habib et al. | Jan 1994 | A |
5298015 | Komatsuzaki et al. | Mar 1994 | A |
5342376 | Ruff | Aug 1994 | A |
5344415 | DeBusk et al. | Sep 1994 | A |
5358494 | Svedman | Oct 1994 | A |
5437622 | Carion | Aug 1995 | A |
5437651 | Todd et al. | Aug 1995 | A |
5437683 | Neumann et al. | Aug 1995 | A |
5441481 | Mishra et al. | Aug 1995 | A |
5443848 | Kramer et al. | Aug 1995 | A |
5466231 | Cercone et al. | Nov 1995 | A |
5484399 | Diresta et al. | Jan 1996 | A |
5484428 | Drainvill et al. | Jan 1996 | A |
5527293 | Zamierowski | Jun 1996 | A |
5549584 | Gross | Aug 1996 | A |
5556375 | Ewall | Sep 1996 | A |
5607388 | Ewall | Mar 1997 | A |
5636643 | Argenta et al. | Jun 1997 | A |
5637103 | Kerwin et al. | Jun 1997 | A |
5645081 | Argenta et al. | Jul 1997 | A |
5662598 | Tobin | Sep 1997 | A |
5701917 | Khouri | Dec 1997 | A |
5792173 | Breen et al. | Aug 1998 | A |
5893368 | Sugerman | Apr 1999 | A |
5902260 | Gilman et al. | May 1999 | A |
5938626 | Sugerman | Aug 1999 | A |
6042539 | Harper et al. | Mar 2000 | A |
6051747 | Lindqvist et al. | Apr 2000 | A |
6071267 | Zamierowski | Jun 2000 | A |
6135116 | Vogel et al. | Oct 2000 | A |
6174306 | Fleischmann | Jan 2001 | B1 |
6241747 | Ruff | Jun 2001 | B1 |
6264979 | Svedman | Jul 2001 | B1 |
6287316 | Agarwal et al. | Sep 2001 | B1 |
6345623 | Heaton et al. | Feb 2002 | B1 |
6383162 | Sugarbaker | May 2002 | B1 |
6458109 | Henley et al. | Oct 2002 | B1 |
6488643 | Tumey et al. | Dec 2002 | B1 |
6493568 | Bell et al. | Dec 2002 | B1 |
6537241 | Odland | Mar 2003 | B1 |
6553998 | Heaton et al. | Apr 2003 | B2 |
6626891 | Ohmstede | Sep 2003 | B2 |
6685681 | Lockwood et al. | Feb 2004 | B2 |
6695823 | Line et al. | Feb 2004 | B1 |
6752794 | Lockwood et al. | Jun 2004 | B2 |
6794554 | Sessions et al. | Sep 2004 | B2 |
6814079 | Heaton et al. | Nov 2004 | B2 |
6855135 | Lockwood et al. | Feb 2005 | B2 |
6936037 | Bubb et al. | Aug 2005 | B2 |
6951553 | Bubb et al. | Oct 2005 | B2 |
6979324 | Bybordi et al. | Dec 2005 | B2 |
7105001 | Mandelbaum | Sep 2006 | B2 |
7128735 | Weston | Oct 2006 | B2 |
7195624 | Lockwood et al. | Mar 2007 | B2 |
7276051 | Henley et al. | Oct 2007 | B1 |
7284730 | Walsh et al. | Oct 2007 | B2 |
7322971 | Shehada | Jan 2008 | B2 |
7338482 | Lockwood et al. | Mar 2008 | B2 |
7381859 | Hunt et al. | Jun 2008 | B2 |
7476205 | Erdmann | Jan 2009 | B2 |
7779625 | Joshi et al. | Aug 2010 | B2 |
7790945 | Watson, Jr. | Sep 2010 | B1 |
7951100 | Hunt | May 2011 | B2 |
8114126 | Heaton et al. | Feb 2012 | B2 |
20020062097 | Simpson | May 2002 | A1 |
20020065494 | Lockwood et al. | May 2002 | A1 |
20020077661 | Saadat | Jun 2002 | A1 |
20020115951 | Norstrem et al. | Aug 2002 | A1 |
20020115956 | Ross | Aug 2002 | A1 |
20020120185 | Johnson | Aug 2002 | A1 |
20020143286 | Tumey | Oct 2002 | A1 |
20020161317 | Risk et al. | Oct 2002 | A1 |
20030208149 | Coffey | Nov 2003 | A1 |
20040030304 | Hunt et al. | Feb 2004 | A1 |
20040073151 | Weston | Apr 2004 | A1 |
20050085795 | Lockwood | Apr 2005 | A1 |
20050101922 | Anderson et al. | May 2005 | A1 |
20050131327 | Lockwood et al. | Jun 2005 | A1 |
20050222544 | Weston | Oct 2005 | A1 |
20050261642 | Weston | Nov 2005 | A1 |
20050273066 | Wittmann | Dec 2005 | A1 |
20060029650 | Coffey | Feb 2006 | A1 |
20060041247 | Petrosenko et al. | Feb 2006 | A1 |
20060079852 | Bubb | Apr 2006 | A1 |
20060189910 | Johnson et al. | Aug 2006 | A1 |
20070185426 | Ambrosio et al. | Aug 2007 | A1 |
20070282309 | Bengtson et al. | Dec 2007 | A1 |
20070293830 | Martin | Dec 2007 | A1 |
20080058684 | Ugander et al. | Mar 2008 | A1 |
20080103462 | Wenzel et al. | May 2008 | A1 |
20080125687 | Flick et al. | May 2008 | A1 |
20080167593 | Fleischmann | Jul 2008 | A1 |
20080269658 | Vinton et al. | Oct 2008 | A1 |
20090099519 | Kaplan | Apr 2009 | A1 |
20100030132 | Niezgoda et al. | Feb 2010 | A1 |
Number | Date | Country |
---|---|---|
550575 | Aug 1982 | AU |
745271 | Apr 1999 | AU |
755496 | Feb 2002 | AU |
2005436 | Jun 1990 | CA |
2 303 085 | Mar 1999 | CA |
26 40 413 | Mar 1978 | DE |
2754775 | Jun 1979 | DE |
43 06 478 | Sep 1994 | DE |
295 04 378 | Oct 1995 | DE |
20115990 | Dec 2001 | DE |
69806842 | Jan 2003 | DE |
60118546 | Aug 2006 | DE |
102006032870 | Jan 2008 | DE |
0100148 | Feb 1984 | EP |
0117632 | Sep 1984 | EP |
0161865 | Nov 1985 | EP |
271491 | Jun 1988 | EP |
0358302 | Mar 1990 | EP |
0506992 | Oct 1992 | EP |
0555293 | Aug 1993 | EP |
0777504 | Jun 1997 | EP |
0 853 950 | Oct 2002 | EP |
1284777 | Feb 2003 | EP |
1 088 569 | Aug 2003 | EP |
1018967 | Aug 2004 | EP |
0 688 189 | Jun 2005 | EP |
0 620 720 | Nov 2006 | EP |
692578 | Jun 1953 | GB |
2058227 | Apr 1981 | GB |
2 195 255 | Apr 1988 | GB |
2 197 789 | Jun 1988 | GB |
2 220 357 | Jan 1990 | GB |
2 235 877 | Mar 1991 | GB |
2 333 965 | Aug 1999 | GB |
2342584 | Apr 2000 | GB |
2342584 | Apr 2000 | GB |
2 329 127 | Aug 2000 | GB |
2365350 | Feb 2002 | GB |
3056429 | May 1991 | JP |
4129536 | Apr 1992 | JP |
71559 | Apr 2002 | SG |
WO 8002182 | Oct 1980 | WO |
WO 8701027 | Feb 1987 | WO |
WO 8704626 | Aug 1987 | WO |
WO 9010424 | Sep 1990 | WO |
WO 9207519 | May 1992 | WO |
WO 9309727 | May 1993 | WO |
WO 9420041 | Sep 1994 | WO |
WO 9605873 | Feb 1996 | WO |
WO 9634636 | Nov 1996 | WO |
WO 9718007 | May 1997 | WO |
WO 9901173 | Jan 1999 | WO |
WO 9913793 | Mar 1999 | WO |
WO 0007653 | Feb 2000 | WO |
WO 0042958 | Jul 2000 | WO |
WO 0057794 | Oct 2000 | WO |
WO 0059418 | Oct 2000 | WO |
WO 0059424 | Oct 2000 | WO |
WO 0134223 | May 2001 | WO |
WO 0171231 | Sep 2001 | WO |
WO 0185248 | Nov 2001 | WO |
WO 0189431 | Nov 2001 | WO |
WO 03057307 | Jul 2003 | WO |
WO 03086232 | Oct 2003 | WO |
WO 2006048246 | May 2006 | WO |
WO 2006114637 | Nov 2006 | WO |
WO 2007031762 | Mar 2007 | WO |
WO 2007041642 | Apr 2007 | WO |
WO2007041642 | Apr 2007 | WO |
WO 2007109209 | Sep 2007 | WO |
WO 2007133618 | Nov 2007 | WO |
WO 2008014358 | Jan 2008 | WO |
WO 2008040020 | Apr 2008 | WO |
WO 2008041926 | Apr 2008 | WO |
WO 2008103625 | Aug 2008 | WO |
WO2009049058 | Apr 2009 | WO |
Entry |
---|
Kubiak et al, “Peritoneal Negative Pressure Therapy Prevents Multiple Organ Injury in a Chronic Porcine Sepsis and Ischemia/Reperfusion Model”, SHOCK, vol. 34, No. 5, pp. 525-534, 2010. |
Response filed Nov. 9, 2010 for U.S. Appl. No. 12/127,668. |
Notice of Allowance date mailed Dec. 6, 2010 for U.S. Appl. No. 12/127,668. |
Response filed May 20, 2010 to Non-Final Action date mailed Mar. 5, 2010 in U.S. Appl. No. 12/466,973. |
N.A. Bagautdinov, “Variant of External Vacuum Aspiration in the Treatment of Purulent Diseases of the Soft Tissues,” Current Problems in Modern Clinical Surgery: Interdepartmental Collection, edited by V. Ye Volkov et al. (Chuvashia State University, Cheboksary, U.S.S.R. 1986);pp. 94-96 (certified translation). |
Louis C. Argenta, MD and Michael J. Morykwas, PhD; “Vacuum-Assisted Closure: A New Method for Wound Control and Treatment: Clinical Experience”; Annals of Plastic Surgery, vol. 38, No. 6, Jun. 1997; pp. 563-576. |
Susan Mendez-Eastmen, RN; “When Wounds Won't Heal” RN Jan. 1998, vol. 61 (1); Medical Economics Company, Inc., Montvale, NJ, USA; pp. 20-24. |
James H. Blackburn, II, MD, et al; “Negative-Pressure Dressings as a Bolster for Skin Grafts”; Annals of Plastic Surgery, vol. 40, No. 5, May 1998, pp. 453-457. |
John Masters; “Reliable, Inexpensive and Simple Suction Dressings”; Letter to the Editor, British Journal of Plastic Surgery, 1998, vol. 51 (3), p. 267; Elsevier Science/The British Association of Plastic Surgeons, UK. |
S.E. Greer, et al “The Use of Subatmospheric Pressure Dressing Therapy to Close Lymphocutaneous Fistulas of the Groin” British Journal of Plastic Surgery (2000), 53, pp. 484-487. |
George V. Letsou, MD., et al; “Stimulation of Adenylate Cyclase Activity in Cultured Endothelial Cells Subjected to Cyclic Stretch”; Journal of Cardiovascular Surgery, 31, 1990, pp. 634-639. |
Orringer, Jay, et al; “Management of Wounds in Patients with Complex Enterocutaneous Fistulas”; Surgery, Gynecology & Obstetrics, Jul. 1987, vol. 165, pp. 79-80. |
International Search Report for PCT International Application PCT/GB95/01983; Nov. 23, 1995. |
PCT International Search Report for PCT International Application PCT/GB98/02713; Jan. 8, 1999. |
PCT Written Opinion; PCT International Application PCT/GB98/02713; Jun. 8, 1999. |
PCT International Examination and Search Report, PCT International Application PCT/GB96/02802; Jan. 15, 1998 & Apr. 29, 1997. |
PCT Written Opinion, PCT International Application PCT/GB96/02802; Sep. 3, 1997. |
Dattilo, Philip P., Jr., et al; “Medical Textiles: Application of an Absorbable Barbed Bi-directional Surgical Suture”; Journal of Textile and Apparel, Technology and Management, vol. 2, Issue 2, Spring 2002, pp. 1-5. |
Kostyuchenok, B.M., et al; “Vacuum Treatment in the Surgical Management of Purulent Wounds”; Vestnik Khirurgi, Sep. 1986, pp. 18-21 and 6 page English translation thereof. |
Davydov, Yu. A., et al; “Vacuum Therapy in the Treatment of Purulent Lactation Mastitis”; Vestnik Khirurgi, May 14, 1986, pp. 66-70, and 9 page English translation thereof. |
Yusupov. Yu. N., et al; “Active Wound Drainage”, Vestnik Khirurgi, vol. 138, Issue 4, 1987, and 7 page English translation thereof. |
Davydov, Yu. A., et al; “Bacteriological and Cytological Assessment of Vacuum Therapy for Purulent Wounds”; Vestnik Khirurgi, Oct. 1988, pp. 48-52, and 8 page English translation thereof. |
Davydov, Yu. A., et al; “Concepts for the Clinical-Biological Management of the Wound Process in the Treatment of Purulent Wounds by Means of Vacuum Therapy”; Vestnik Khirurgi, Jul. 7, 1980, pp. 132-136, and 8 page English translation thereof. |
Chariker, Mark E., M.D., et al; “Effective Management of incisional and cutaneous fistulae with closed suction wound drainage”; Contemporary Surgery, vol. 34, Jun. 1989, pp. 59-63. |
Egnell Minor, Instruction Book, First Edition, 300 7502, Feb. 1975, pp. 24. |
Egnell Minor: Addition to the Users Manual Concerning Overflow Protection—Concerns all Egnell Pumps, Feb. 3, 1983, pp. 2. |
Svedman, P.: “Irrigation Treatment of Leg Ulcers”, The Lancet, Sep. 3, 1983, pp. 532-534. |
Chinn, Steven D. et al.: “Closed Wound Suction Drainage”, The Journal of Foot Surgery, vol. 24, No. 1, 1985, pp. 76-81. |
Arnljots, Björn et al.: “Irrigation Treatment in Split-Thickness Skin Grafting of Intractable Leg Ulcers”, Scand J. Plast Reconstr. Surg., No. 19, 1985, pp. 211-213. |
Svedman, P.: “A Dressing Allowing Continuous Treatment of a Biosurface”, IRCS Medical Science: Biomedical Technology, Clinical Medicine, Surgery and Transplantation, vol. 7, 1979, p. 221. |
Svedman, P. et al.: “A Dressing System Providing Fluid Supply and Suction Drainage Used for Continuous or Intermittent Irrigation”, Annals of Plastic Surgery, vol. 17, No. 2, Aug. 1986, pp. 125-133. |
K.F. Jeter, T.E. Tintle, and M. Chariker, “Managing Draining Wounds and Fistulae: New and Established Methods,” Chronic Wound Care, edited by D. Krasner (Health Management Publications, Inc., King of Prussia, PA 1990), pp. 240-246. |
G. {hacek over (Z)}ivadinović, V. ukić, {hacek over (Z)}. Maksimović, . Radak, and P. Pe{hacek over (s)}ka, “Vacuum Therapy in the Treatment of Peripheral Blood Vessels,” Timok Medical Journal 11 (1986), pp. 161-164 (certified translation). |
F.E. Johnson, “An Improved Technique for Skin Graft Placement Using a Suction Drain,” Surgery Gynecology, and Obstetrics 159 (1984), pp. 584-585. |
A.A. Safronov, Dissertation Abstract, Vacuum Therapy of Trophic Ulcers of the Lower Leg with Simultaneous Autoplasty of the Skin (Central Scientific Research Institute of Traumatology and Orthopedics, Moscow, U.S.S.R. 1967) (certified translation). |
M. Schein, R. Saadia, J.R. Jamieson, and G.A.G. Decker, “The ‘Sandwich Technique’ in the Management of the Open Abdomen,” British Journal of Surgery 73 (1986), pp. 369-370. |
D.E. Tribble, An Improved Sump Drain-Irrigation Device of Simple Construction, Archives of Surgery 105 (1972) pp. 511-513. |
M.J. Morykwas, L.C. Argenta, E.I. Shelton-Brown, and W. McGuirt, “Vacuum-Assisted Closure: A New Method for Wound Control and Treatment: Animal Studies and Basic Foundation,” Annals of Plastic Surgery 38 (1997), pp. 553-562 (Morykwas I). |
C.E. Tennants, “The Use of Hypermia in the Postoperative Treatment of Lesions of the Extremities and Thorax,” Journal of the American Medical Association 64 (1915), pp. 1548-1549. |
Selections from W. Meyer and V. Schmieden, Bier's Hyperemic Treatment in Surgery, Medicine, and the Specialties: A Manual of Its Practical Application, (W.B. Saunders Co., Philadelphia, PA 1909), pp. 17-25, 44-64, 90-96, 167-170, and 210-211. |
V.A. Solovev et al., Guidelines, The Method of Treatment of Immature External Fistulas in the Upper Gastrointestinal Tract, editor-in-chief Prov. V.I. Parahonyak (S.M. Kirov Gorky State Medical Institute, Gorky, U.S.S.R. 1987) (“Solovev Guidelines”). |
V.A. Kuznetsov & N.A. Bagautdinov, “Vacuum and Vacuum-Sorption Treatment of Open Septic Wounds,” in II All-Union Conference on Wounds and Wound Infections: Presentation Abstracts, edited by B.M. Kostyuchenok et al. (Moscow, U.S.S.R. Oct. 28-29, 1986) pp. 91-92 (“Bagautdinov II”). |
V.A. Solovev, Dissertation Abstract, Treatment and Prevention of Suture Failures after Gastric Resection (S.M. Kirov Gorky State Medical Institute, Gorky, U.S.S.R. 1988) (“Solovev Abstract”). |
The V.A.C. TM Vacuum Assisted Closure, Assisting in Wound Closure, Brochure, Jan. 1996, 5 pages, 1-A-042, KCI®, San Antonio, Texas. |
Argenta et al: “The V.A.C. TM, Case Study #4”, Case Study, Mar. 1995, 1 page, 35-D-004, KCI®, San Antonio, Texas. |
Argenta et al: “The V.A.C. TM, Case Study #3”, Case Study, Mar. 1995, 1 page, 35-D-003, KCI®, San Antonio, Texas. |
“The V.A.C.® Operations Summary, The V.A.C.® Wound Closure System Applcations”, Brochure, Mar. 1997, 4 pages, 1-A-060, KCI®, San Antonio, Texas. |
“The V.A.C.® Operations Summary, The V.A.C.® Wound Closure System Applcations”, Brochure, Mar. 1999, 2 pages, 1-A-060, KCI®, San Antonio, Texas. |
Argenta et al.: “V.AC.® Wound Closure Device Case Study #3”, Case Study, Apr. 1998, 1 page, 35-D-003, KCI®, San Antonio, Texas. |
Argenta et al.: “V.AC.® Wound Closure Device Case Study #1”, Case Study, Apr. 1998, 1 page, 35-D-001, KCI® San Antonio, Texas. |
The V.A.C.® Case Study #8, Case Study, Jun. 1996, 2 pages, 35-D-008, KCI®, San Antonio, Texas. |
The V.A.C.® Case Study #7, Case Study, Jun. 1996, 2 pages, 35-D-007, KCI®, San Antonio, Texas. |
The V.A.C.® Case Study #6, Case Study, Jun. 1996, 2 pages, 35-D-006, KCI®, San Antonio, Texas. |
The V.A.C.® Case Study #9, Case Study, Jun. 1996, 2 pages, 35-D-009, KCI®, San Antonio, Texas. |
The V.A.C.® Case Study #5, Case Study, Aug. 1994, 2 pages, 35-D-005, KCI®, San Antonio, Texas. |
The V.A.C.® Case Study #4, Case Study, Aug. 1994, 2 pages, 35-D-004, KCI®, San Antonio, Texas. |
The V.A.C.® Case Study #3, Case Study, Aug. 1994, 2 pages, 35-D-003, KCI®, San Antonio, Texas. |
The V.A.C.® Case Study #2, Case Study, Aug. 1994, 2 pages, 35-D-002, KCI®, San Antonio, Texas. |
The V.A.C.® Case Study #1, Case Study, Aug. 1994, 2 pages, 35-D-001, KCI®, San Antonio, Texas. |
Ex parte Quayle Office Action dated Feb. 7, 2005 for U.S. Appl. No. 10/275,671. |
Amendment filed Apr. 8, 2005 for U.S. Appl. No. 10/275,671. |
Non-Final Office Action dated Jun. 27, 2005 for U.S. Appl. No. 10/275,671. |
Response filed Oct. 19, 2005 for U.S. Appl. No. 10/275,671. |
Non-Final Office Action dated Jan. 10, 2006 for U.S. Appl. No. 10/275,671. |
Response filed Jul. 10, 2006 for U.S. Appl. No. 10/275,671. |
Supplemental Amendment filed Aug. 10, 2006 for U.S. Appl. No. 10/275,671. |
Final Office Action dated Apr. 17, 2007 for U.S. Appl. No. 10/275,671. |
Response filed Jun. 12, 2007 for U.S. Appl. No. 10/275,671. |
Advisory Action dated Jul. 11, 2007 for U.S. Appl. No. 10/275,671. |
Response filed Aug. 17, 2007 for U.S. Appl. No. 10/275,671. |
Non-Final Office Action dated Sep. 5, 2007 for U.S. Appl. No. 10/275,671. |
Response filed Sep. 5, 2007 for U.S. Appl. No. 10/275,671. |
Notice of Allowance and Fee(s) Due dated Feb. 4, 2008 for U.S. Appl. No. 10/275,671. |
Restriction Requirement date mailed Nov. 10, 2009 for U.S. Appl. No. 12/127,668. |
Response filed Dec. 10, 2009 for U.S. Appl. No. 12/127,668. |
Office Action date mailed Mar. 23, 2010 for U.S. Appl. No. 12/127,668. |
Response filed Jun. 23, 2010 for U.S. Appl. No. 12/127,668. |
Interview Summary date mailed May 25, 2010 for U.S. Appl. No. 12/466,973. |
Final Office Action date mailed Aug. 12, 2010 for U.S. Appl. No. 12/466,973. |
Non-Final Office Action and Interview Summary date mailed Sep. 6, 2011 for U.S. Appl. No. 12/467,064. |
Restriction Requirement date mailed Aug. 12, 2011 for U.S. Appl. No. 12/467,211. |
Restriction Requirement date mailed Aug. 4, 2011 for U.S. Appl. No. 12/467,153. |
Response filed for U.S. Appl. No. 12/467,153. |
Restriction Requirement date mailed Jul. 27, 2011 for U.S. Appl. No. 12/467,199. |
Response filed for U.S. Appl. No. 12/467,199. |
Final Office Action date mailed Sep. 16, 2010 for U.S. Appl. No. 12/127,668. |
U.S. Patent Application No. 6,216,701, filed Apr. 17, 2001, Heaton. |
Meyer et al, “A new abdominal drain for overflowing lavage in instances of severe pancreatitis with persistent peritoneal contamination”, Surg. Gynecol Obstet. Sep. 1987: 165(3): 271-3. |
Poritz, “Percutaneous drainage and ileocolectomy for spontaneous intraabdominal abscess in Chrohns Disease” J. Gastrointest Surg. Feb. 2007; 11(2): 204-8. |
Khurrum et al, “Percutaneous postoperative intra-abdominal abscess drainage after elective colorectal surgery” Tech Coloprotocl Dec. 2002: 6(3): 159-64. |
Reckard et al, “Management of Intraabdominal Hypertension by Percutaneous Catheter Drainage” Journal of Vascual Interventional Journal of Vascual Interventional Radiology, vol. 16, Issue 7, pp. 1019-1021. |
Latenser et al, “A Pilot Study Comparing Percutaneous Decompression with decompressive laparotomy for acute abdominal compartment syndrome in thermal injury”, J Burn Care & Rehav, 23(3): 190-195. |
Kubiak et al, “Reduced intra-peritoneal inflammation by negative pressure therapy moderates systemic inflammation in a porcine modiel of the abdominal compartment Syndrome (ACS)”, Critical Care I, vol. 207, No. 3S, Sep. 2008, S34-35. |
Kaplan, “Managing the open abdomen” Ostomy Wound Management, Jan. 2004; 50 1A supply; C2; 1-8. |
Kaplan et al, “Guidelines for the Management of the Open Abdomen” WOUNDS Oct. 2005; 17 (Suppl 1); S1S24. |
Garner et al, “Vacuum-assisted wound closure provides early fascial reapproximation in trauma patients with open abdomens” The American Journal of Surgery, Dec. 2001; 182 (6); 630-8. |
Barker et al, “Vacuum pack of technique of temporary abdominal closure; a 7-year experience with 112 patients” J Trauma Feb. 1, 2000; 48 (2): 201-6. |
Brock et a;, “Temporary closure of open abdominal wounds: the vacuum pack” Am Surg Jan. 1995; 61(1): 30-5. |
Sherck et al, “Covering the ‘open abdomen’: a better technique”, Am Surg Sep. 1998; 64(9): 854-7. |
Dubick et al, “Issues of concern regarding the use of hypertonic/hyperoncotic fluid resuscitation of hemorrhagic hypotension” Shock, Apr. 2006; 25(4): 321-8. |
Burdette, “Systemic Inflammatory Response Syndrome”, http://emedicine.medscape.com/article/168943-print, Apr. 2007. |
Beamis Hyrdorphobic Rigid Canisters—http://www.bemishealthcare.com/docs/CanisterHydrophobic.pdf (date unknown). |
Fink et al, “Textbook of Critical Care”, 5th ed. (Philadelphia: Elsevier, 2005), 1933-1943. |
Smith & Nephew GmbH Nullity Action date mailed Sep. 10, 2010. |
Response filed Oct. 4, 2010 for U.S. Appl. No. 12/466,973. |
Advisory Action date mailed Oct. 12, 2010 for U.S. Appl. No. 12/466,973. |
RCE/Response filed Nov. 2, 2010 for U.S. Appl. No. 12/466,973. |
International Search Report and Written Opinion date mailed Nov. 5, 2009; PCT International Application No. PCT/US2009/044264. |
International Search Report and Written Opinion date mailed Nov. 18, 2009; PCT International Application No. PCT/US2009/044230. |
International Search Report and Written Opinion date mailed Sep. 17, 2009; PCT International Application No. PCT/US2009/044240. |
International Search Report and Written Opinion date mailed Nov. 5, 2009; PCT International Application No. PCT/US2009/044268. |
International Search Report and Written Opinion date mailed Oct. 6, 2009; PCT International Application No. PCT/US2009/044226. |
International Search Report and Written Opinion date mailed Oct. 15, 2009; PCT International Application No. PCT/US2009/044244. |
International Search Report and Written Opinion date mailed Oct. 6, 2009; PCT International Application No. PCT/US2009/044266. |
International Search Report and Written Opinion date mailed Nov. 5, 2009; PCT International Application No. PCT/US2009/044245. |
International Search Report and Written Opinion date mailed Oct. 23, 2009; PCT International Application No. PCT/US2009/044235. |
Non-Final Office Action date mailed Sep. 8, 2011 for U.S. Appl. No. 12/467,203. |
Response filed Nov. 15, 2011 for U.S. Appl. No. 12/467,203. |
Inteiview Summary date mailed Nov. 17, 2011 for U.S. Appl. No. 12/467,203. |
Notice of Allowance date mailed Dec. 2, 2011 for U.S. Appl. No. 12/467,203. |
Response filed Nov. 15, 2011 for U.S. Appl. No. 12/467,064. |
Response filed Sep. 9, 2011 for U.S. Appl. No. 12/467,211. |
Non-Final office Action date mailed Nov. 21, 2011 for U.S. Appl. No. 12/467,211. |
Non-Final Office Action date mailed Sep. 20, 2011 for U.S. Appl. No. 12/467,168. |
Response filed Nov. 18, 2011 for U.S. Appl. No. 12/467,168. |
Interview Summary date mailed Nov. 25, 2011 for U.S. Appl. No. 12/467,168. |
Non-Final Office Action date mailed Sep. 8, 2011 for U.S. Appl. No. 12/466,844. |
Response filed Nov. 18, 2011 for U.S. Appl. No. 12/466,844. |
Notice of Allowance date mailed Nov. 4, 2011 for U.S. Appl. No. 12/467,199. |
Non-Final Office Action date mailed Sep. 14, 2011 for U.S. Appl. No. 13/113,914. |
Response filed Dec. 14, 2011 for U.S. Appl. No. 13/113,914. |
Restriction Requirement dated Jan. 4, 2010 in U.S. Appl. No. 12/466,973. |
Response filed Jan. 21, 2010 to Restriction Requirement dated Jan. 4, 2010 in U.S. Appl. No. 12/466,973. |
Non-Final Action date mailed Mar. 5, 2010 in U.S. Appl. No. 12/466,973. |
Notice of Allowance date mailed Feb. 9, 2012 for U.S. Appl. No. 12/467,064. |
Response filed Feb. 8, 2012 for U.S. Appl. No. 12/467,211. |
Notice of Allowance date mailed Mar. 1, 2012 for U.S. Appl. No. 12/467,168. |
Final Office Action date mailed Jan. 30, 2012 for U.S. Appl. No. 12/466,844. |
Interview Summary date mailed Feb. 29, 2012 for U.S. Appl. No. 12/466,844. |
Response filed Mar. 5, 2012 for U.S. Appl. No. 12/466,844. |
Notice of Allowance date mailed Feb. 24, 2012 for U.S. Appl. No. 13/113,914. |
Notice of Allowance date mailed Jan. 31, 2012 for U.S. Appl. No. 12/467,153. |
Interview Summary date mailed Dec. 21, 2011 for U.S. Appl. No. 13/113,914. |
Number | Date | Country | |
---|---|---|---|
20100106186 A1 | Apr 2010 | US |
Number | Date | Country | |
---|---|---|---|
61109448 | Oct 2008 | US | |
61109486 | Oct 2008 | US | |
61109390 | Oct 2008 | US | |
61109410 | Oct 2008 | US |