Reduced-pressure system and method employing a gasket

Information

  • Patent Grant
  • 9345823
  • Patent Number
    9,345,823
  • Date Filed
    Thursday, September 12, 2013
    11 years ago
  • Date Issued
    Tuesday, May 24, 2016
    8 years ago
Abstract
A reduced-pressure treatment system for treating a tissue site on a patient includes a gasket releasably attached around a perimeter of the tissue site that may remain in place for an extended time and allows an over-drape to be attached to it. The system and method further may include a manifold sized and configured to be placed in contact with the tissue site; the over-drape positioned over the manifold and sealed to the gasket to create a sealed space between the over-drape and the tissue site; and a reduced-pressure source fluidly coupled to the sealed space to deliver reduced pressure to the tissue site. A method is also presented.
Description
BACKGROUND

1. Field of the Invention


The present invention relates generally to medical treatment systems and in particular to a reduced-pressure system and method employing a gasket.


2. Description of Related Art


Clinical studies and practice have shown that providing a reduced pressure in proximity to a tissue site augments and accelerates the growth of new tissue at the tissue site. The applications of this phenomenon are numerous, but application of reduced pressure has been particularly successful in treating wounds. This treatment (frequently referred to in the medical community as “negative pressure wound therapy,” “reduced pressure therapy,” or “vacuum therapy”) provides a number of benefits, including faster healing and increased formulation of granulation tissue. Typically, reduced pressure is applied to tissue through a porous pad or other manifolding device. The porous pad contains cells or pores that are capable of distributing reduced pressure to the tissue and channeling fluids that are drawn from the tissue.


In order to use reduced pressure on a tissue site, a pneumatic seal is achieved over the dressing using a semi-permeable drape that is sealed to the patient's epidermis. In order to achieve this seal, an adhesive has been used at times or a sealing tape. At times, to help provide a better seal, healthcare providers have navigated the difficult task of using sealing material to form strips around the wound before placing the drape over the dressing and wound. With reduced-pressure therapy, a dressing is applied and usually is periodically changed. This typically means that the dressing is changed with some frequency—often three times a week or more. When such changes take place, the sealing tape is removed. This can cause irritation to the periwound region and pain to the patient.


It would be desirable to have a system and method that would allow for wound dressing changes with less pain for the patient and without requiring removal of all components of the system. It would also be desirable to provide a system that would be relatively easy to apply to a patient. Moreover, it would be desirable to have a system with a good pneumatic seal formed over the wound site.


SUMMARY

Problems with existing reduced-pressure systems and methods are addressed by the systems and methods of the illustrative embodiments described herein. According to one illustrative embodiment, a reduced-pressure treatment system for treating a tissue site on a patient includes a gasket releasably attached around a perimeter of the tissue site; a manifold sized and configured to be placed in contact with the tissue site; an over-drape positioned over the manifold and sealed to the gasket to create a sealed space between the over-drape and the tissue site; and a reduced-pressure source fluidly coupled to the sealed space to deliver reduced pressure to the tissue site. The gasket may be operable to remain in place for an extended time.


According to another illustrative embodiment, a method for treating a tissue site on a patient with reduced pressure includes the steps of: releasably attaching a gasket around a perimeter of the tissue site; placing a manifold in contact with the tissue site; disposing an over-drape over the manifold; sealing the over-drape to the gasket to create a sealed space between the over-drape and the tissue site; and providing reduced pressure to the sealed space to treat the tissue site.


The illustrative embodiment of the systems and methods of the present invention may provide for a number of perceived advantages. A few examples follow. Technical advantages of the present invention may include that system is relatively easy to apply. Another advantage is the system may be easier on the periwound region of the epidermis. Another advantage is that the patient may experience relatively reduced or eliminated pain associated with dressing changes. Another advantage is that the likelihood of pneumatic leak is decreased. These are only some examples.


Other objects, features, and advantages of the illustrative embodiments will become apparent with reference to the drawings and detailed description that follow





BRIEF DESCRIPTION OF THE DRAWINGS


FIG. 1 is a schematic, perspective view with a portion in cross-section of an illustrative embodiment of a reduced-pressure system employing a gasket;



FIG. 2 is a schematic, plan view of an illustrative embodiment of a gasket disposed circumferentially around a tissue site;



FIG. 3 is a schematic, perspective view of an illustrative embodiment of a dispenser for applying an illustrative gasket to a periwound area of a patient's epidermis; and



FIG. 4 is a schematic, cross-sectional view of a portion of an illustrative embodiment of a reduced-pressure system employing a gasket.





DETAILED DESCRIPTION OF ILLUSTRATIVE EMBODIMENTS

In the following detailed description of the illustrative embodiments, reference is made to the accompanying drawings that form a part hereof. These embodiments are described in sufficient detail to enable those skilled in the art to practice the invention, and it is understood that other embodiments may be utilized and that logical structural, mechanical, electrical, and chemical changes may be made without departing from the spirit or scope of the invention. To avoid detail not necessary to enable those skilled in the art to practice the embodiments described herein, the description may omit certain information known to those skilled in the art. The following detailed description is, therefore, not to be taken in a limiting sense, and the scope of the illustrative embodiments are defined only by the appended claims.


Referring to FIG. 1, an illustrative embodiment of a reduced-pressure treatment system 100 for treating a wound 102 at a tissue site 104, which is centered in a wound bed. System 100 may include a manifold member 108, or simply manifold; an over-drape 110; and a reduced-pressure subsystem 112. System 100 includes gasket 128.


In one illustrative embodiment, the manifold member 108 is made from a porous and permeable foam-like material and, more particularly, a reticulated, open-cell polyurethane or polyether foam that allows good permeability of wound fluids while under a reduced pressure. One such foam material that has been used is the VAC® Granufoam® Dressing available from Kinetic Concepts, Inc. (KCI) of San Antonio, Tex. Any material or combination of materials might be used for the manifold material provided that the manifold material is operable to distribute the reduced pressure. The term “manifold” as used herein generally refers to a substance or structure that is provided to assist in applying reduced pressure to, delivering fluids to, or removing fluids from a tissue site. A manifold typically includes a plurality of flow channels or pathways that are interconnected to improve distribution of fluids provided to and removed from the area of tissue around the manifold. Examples of manifolds may include without limitation devices that have structural elements arranged to form flow channels, cellular foam, such as open-cell foam, porous tissue collections, and liquids, gels, and foams that include or cure to include flow channels. The manifold material might also be a combination or layering of materials; for example, a first manifold layer of hydrophilic foam might be disposed adjacent to a second manifold layer of hydrophobic foam to form the manifold member 108.


The reticulated pores of the Granufoam® material, that are in the range of about 400 to 600 microns, are helpful in carrying out the manifold function, but again other materials may be used. A material with a higher, or lower, density (smaller pore size) than Granufoam® material may be desirable in some situations. The manifold member 108 may also be a reticulated foam that is later felted to thickness of about ⅓ its original thickness. Among the many possible materials, the following might be used: Granufoam® material or a Foamex technical foam (www.foamex.com). In some instances it may be desirable to add ionic silver to the foam in a microbonding process or to add other substances to the manifold member such as antimicrobial agents. The manifold member 108 could be a bio-absorbable material or an anisotropic material.


The over-drape 118 covers the manifold member 108 and extends past a peripheral edge 114 of the manifold member 108 to form a drape extension 116. Drape extension 116 has a first side 118 and a second, patient-facing side 120. Drape extension 116 may be sealed against a gasket 128 by sealing apparatus 124, such as an adhesive 126. Sealing apparatus 124 may take numerous forms, such as an adhesive sealing tape, or drape tape or strip; double-side drape tape; adhesive 126; paste; hydrocolloid; hydrogel; or other sealing means. If a tape is used, it may be formed of the same material as the over-drape 110 with a pre-applied, pressure-sensitive adhesive. Pressure-sensitive adhesive 126 may be applied on a second, patient-facing side 120 of drape extension 116. Adhesive 126 provides a substantially pneumatic seal between the over-drape 110 and the gasket 128. Before the over-drape 110 is secured to the patient, removable strips covering the adhesive 126 may be removed.


Over-drape 110 may be an elastomeric material that has pore sizes less than about 20 microns, but other materials and sizes might be used. “Elastomeric” means having the properties of an elastomer and generally refers to a polymeric material that has rubber-like properties. More specifically, most elastomers have elongation rates greater than 100% and a significant amount of resilience. The resilience of a material refers to the material's ability to recover from an elastic deformation. Examples of elastomers may include, but are not limited to, natural rubbers, polyisoprene, styrene butadiene rubber, chloroprene rubber, polybutadiene, nitrile rubber, butyl rubber, ethylene propylene rubber, ethylene propylene diene monomer, chlorosulfonated polyethylene, polysulfide rubber, polyurethane, EVA film, co-polyester, and silicones. Further still, over-drape materials may include a silicone, 3M Tegaderm® drape material, acrylic drape material, such as one available from Avery, or an incise drape material.


Gasket 128 has a gasket material 130 with a first side 132 and a second, patient-facing side 134. A second attachment apparatus 136 may be coupled to the second side 134 of the gasket material 130 for releasably attaching the gasket 128 to the patient's epidermis 106, or more generally skin. The gasket material 130 may be a thin polymer film, such as polyurethane, polyester, silicone, or a hydrocolloid, or could include any suitable gasket material. The second attachment apparatus 136 holding the gasket 128 in place may be a relatively water-resistant material, such as an Avery® brand Wet-stick adhesive, a colloid, acrylic, polyisobutylene (PIB), etc. The second attachment apparatus 136 allows the gasket 128 to be held in place for an extended time, e.g. one to two weeks or more, and then to be removed. The over-drape 110 may be re-attachable to the gasket 128 should the clinician find a need to view the wound and re-attach the over-drape 110. This allows the gasket 128 to stay in place for an extended time without significant agitation of the periwound area of the epidermis 106.


Reduced-pressure subsystem 112 includes a reduced-pressure source 140, which can take many different forms. Reduced-pressure source 140 provides a reduced pressure as a part of system 100. The term “reduced pressure” as used herein generally refers to a pressure less than the ambient pressure at a tissue site 104 that is being subjected to treatment. In most cases, this reduced pressure will be less than the atmospheric pressure at which the patient is located. Alternatively, the reduced pressure may be less than a hydrostatic pressure of tissue at the tissue site 104. It is often desirable for the reduced-pressure source 140 to develop a continuous reduced pressure below atmospheric pressure and also be able to deliver a dynamic pressure, i.e., to vary the reduced pressure in a cycle or operate in a continuous or intermittent mode. The operable range of reduced pressure may vary widely as needed, but would typically include 200 mm Hg below atmospheric. When one refers to increasing the reduced pressure, it typically refers to increasing the absolute value of the negative gauge pressure, and likewise, when one speaks of decreasing the reduced pressure, it typically means that the absolute value of the negative gauge pressure is decreasing.


In the illustrative embodiment of FIG. 1, reduced-pressure source 140 is shown having a reservoir region 142, or canister region. An interposed membrane filter, such as hydrophobic or oleophobic filter, might be interspersed between a delivery conduit, or tubing, 144 and the reduced-pressure source 140. A medial portion 146 of conduit 144 may have one or more devices, such as device 148. For example, the device 148 might be another fluid reservoir, or collection member to hold exudates and other fluids removed. Other examples of devices 148 that might be included on the medial portion 146 of delivery conduit 144 include pressure-feedback devices, volume detection systems, blood detection systems, infection detection system, flow monitoring systems, temperature monitoring systems, etc. Some of these devices may be formed integral to the reduce-pressure source 140. For example, a reduced-pressure port 141 on reduced-pressure source 140 may include a filter member that includes one or more filters, e.g., an odor filter.


The reduced pressure developed by reduce-pressure source 140 is delivered through the delivery conduit 144 to a reduced-pressure interface 150, which might be an elbow port 152. In one illustrative embodiment, port 152 is a TRAC® technology port available from Kinetic Concepts, Inc. of San Antonio, Tex. Interface 150 allows the reduced pressure to be delivered through over-drape 110 and realized within sealed space 154. In this illustrative embodiment, elbow port 152 extends through over-drape 110 and into manifold member 108.


Referring now to FIG. 2, an illustrative embodiment of a gasket 200 is shown disposed circumferentially about wound 202. A small margin 204 is shown at the wound edge 206. It will be appreciated from FIG. 2 that irregular shaped wounds, such as wound 202, should be accommodated. One way to accommodate the irregular shape is to attach gasket 200 using a gasket tape, i.e., a gasket material with attachment means that can be applied to the patient like a tape. In this regard, FIG. 3, shows an illustrative embodiment of a gasket tape dispenser 300.


Gasket tape dispenser 300 dispenses gasket 302, or gasket tape, which has a gasket material 304 and an attachment apparatus 306. The dispenser 300 may take many forms, but in this embodiment, contains a first chamber portion 308, which holds a roll of gasket tape 302. The healthcare provider can thus use the dispenser 300 to dispense gasket 302 about the perimeter of the tissue site proximate wound 310 on or through epidermis 311. To do so, the dispenser 300 is moved in the direction shown by arrow 314. In some instances, it may be desirable to include a releasable backing material on the attachment means 306 until it is ready for application; in such a situation, a second chamber 312 (shown in broken lines) may be included for collecting the removed backing material. The second chamber 312 may include a spring-loaded spindle that pulls the removed backing material on to it. There are numerous other ways the gasket 302 might be dispensed.


Referring again to FIG. 2, in operation, the healthcare provider treating a wound 202 may, after appropriately cleaning and preparing the periwound region, apply a gasket 200 about the wound 202 using a dispenser, such as dispenser 300 in FIG. 3, or otherwise placing the gasket 200 proximate the wound 202. The gasket 200 provides a long-lasting perimeter about the wound 202 that facilitates attachment of an over-drape and that allows the over-drape to be removed without requiring the gasket 200 to be removed. By “long-lasting,” it is meant that the gasket 200 could remain attached and operable for as long as one to two weeks or even longer.


Referring again to FIG. 1 and continuing consideration of one illustrative embodiment in operation, once the gasket 128 has been applied in a manner analogous to that just described for gasket 200 and the manifold 108 put in place, the over-drape 110 may be placed over the wound 102 and attachment apparatus 124 used to secure the over-drape 110 to the gasket 128 and in particular to releasably attach drape extension 116 to the gasket 128. In this instance, attachment apparatus 124 is an adhesive layer 126 and requires removal of a removable backing before application. Once over-drape 110 is sealed, it provides the pneumatically sealed space 154. The reduced-pressure interface 150 is applied through over-drape 110 to allow reduced pressure from reduced-pressure subsystem 112 to reach the manifold 108. The reduced-pressure subsystem 112 may be activated and reduced pressure supplied to manifold 108 in sealed spaced 154.


Referring now to FIG. 4, another illustrative embodiment for releasably sealing over-drape 402 to first side 404 of gasket 406 is shown. Gasket 406 has a sealing apparatus 408 on a second, patient-facing side 410 that holds and seals the gasket 406 in a long-lasting way to the patient's epidermis 412. In this illustrative embodiment, the over-drape 402 is secured using a bead 414 of adhesive applied to the first side 404 of the gasket 406 and against a second, patient-facing side 416 of over-drape 402. The bead 414 may be applied using an applicator similar to a caulk gun. In still another illustrative embodiment, a material capable of drying and adhering to a patient's epidermis periwound might be painted on or sprayed on and allowed to dry.


It should be apparent from the foregoing that an invention having significant advantages has been provided. While the invention is shown in only a few of its forms, it is not just limited but is susceptible to various changes and modifications without departing from the spirit thereof.

Claims
  • 1. A method for treating a tissue site on a patient with reduced pressure, the method comprising the steps of: releasably attaching a gasket around a perimeter of the tissue site, the gasket comprising a thin polymer film having a first side and a second, patient-facing side;placing a manifold in contact with the tissue site;disposing an over-drape over the manifold and tissue site;sealing the over-drape to the gasket by a first attachment apparatus between the over-drape and the first side of the gasket to provide a sealed space between the over-drape and the tissue site, wherein a second attachment apparatus comprising an adhesive tape is disposed on the second, patient-facing side of the gasket for attaching around the perimeter of the tissue site, the first attachment apparatus being weaker than the second attachment apparatus;wherein the first attachment apparatus is a first adhesive and the second attachment apparatus is a second adhesive, and wherein the first adhesive is different from the second adhesive; andproviding reduced pressure to the sealed space to treat the tissue site.
  • 2. The method for treating a tissue site of claim 1, wherein the tissue site is a wound bed.
  • 3. The method for treating a tissue site of claim 1, wherein the first attachment apparatus is separated from the second attachment apparatus by the gasket.
  • 4. The method for treating a tissue site of claim 1, wherein the thin polymer film comprises polyurethane.
  • 5. The method for treating a tissue site of claim 1, wherein the thin polymer film comprises polyester.
  • 6. The method for treating a tissue site of claim 1, wherein the gasket comprises a hydrocolloid.
  • 7. The method for treating a tissue site of claim 1, wherein the gasket is operable to remain releasably attached around the perimeter of the tissue site for one week.
  • 8. The method for treating a tissue site of claim 1, wherein the gasket is operable to remain releasably attached around the perimeter of the tissue site for two weeks.
CROSS-REFERENCE TO RELATED APPLICATIONS

This application is a divisional of U.S. patent application Ser. No. 13/487,763, filed Jun. 4, 2012, which is a divisional of U.S. patent application Ser. No. 12/195,115, filed Aug. 20, 2008, which claims the benefit under 35 USC §119(e) of the filing of U.S. Provisional Application No. 60/965,755, entitled “Reduced Pressure System Employing a Gasket Disposed Circumferentially Around a Tissue Site”, filed Aug. 21, 2007. Each of the above applications are incorporated herein by reference for all purposes.

US Referenced Citations (113)
Number Name Date Kind
1355846 Rannells Oct 1920 A
2547758 Keeling Apr 1951 A
2632443 Lesher Mar 1953 A
2682873 Evans et al. Jul 1954 A
2910763 Lauterbach Nov 1959 A
2969057 Simmons Jan 1961 A
3066672 Crosby, Jr. et al. Dec 1962 A
3367332 Groves Feb 1968 A
3520300 Flower, Jr. Jul 1970 A
3568675 Harvey Mar 1971 A
3648692 Wheeler Mar 1972 A
3682180 McFarlane Aug 1972 A
3826254 Mellor Jul 1974 A
4080970 Miller Mar 1978 A
4096853 Weigand Jun 1978 A
4139004 Gonzalez, Jr. Feb 1979 A
4165748 Johnson Aug 1979 A
4184510 Murry et al. Jan 1980 A
4233969 Lock et al. Nov 1980 A
4245630 Lloyd et al. Jan 1981 A
4256109 Nichols Mar 1981 A
4261363 Russo Apr 1981 A
4275721 Olson Jun 1981 A
4284079 Adair Aug 1981 A
4297995 Golub Nov 1981 A
4333468 Geist Jun 1982 A
4373519 Errede et al. Feb 1983 A
4382441 Svedman May 1983 A
4392853 Muto Jul 1983 A
4392858 George et al. Jul 1983 A
4419097 Rowland Dec 1983 A
4465485 Kashmer et al. Aug 1984 A
4475909 Eisenberg Oct 1984 A
4480638 Schmid Nov 1984 A
4496357 Osburn Jan 1985 A
4525166 Leclerc Jun 1985 A
4525374 Vaillancourt Jun 1985 A
4540412 Van Overloop Sep 1985 A
4543100 Brodsky Sep 1985 A
4548202 Duncan Oct 1985 A
4551139 Plaas et al. Nov 1985 A
4569348 Hasslinger Feb 1986 A
4605399 Weston et al. Aug 1986 A
4608041 Nielson Aug 1986 A
4640688 Hauser Feb 1987 A
4655754 Richmond et al. Apr 1987 A
4664662 Webster May 1987 A
4710165 McNeil et al. Dec 1987 A
4733659 Edenbaum et al. Mar 1988 A
4743232 Kruger May 1988 A
4758220 Sundblom et al. Jul 1988 A
4787888 Fox Nov 1988 A
4826494 Richmond et al. May 1989 A
4838883 Matsuura Jun 1989 A
4840187 Brazier Jun 1989 A
4863449 Therriault et al. Sep 1989 A
4872450 Austad Oct 1989 A
4878901 Sachse Nov 1989 A
4897081 Poirier et al. Jan 1990 A
4906233 Moriuchi et al. Mar 1990 A
4906240 Reed et al. Mar 1990 A
4919654 Kalt Apr 1990 A
4941882 Ward et al. Jul 1990 A
4953565 Tachibana et al. Sep 1990 A
4969880 Zamierowski Nov 1990 A
4985019 Michelson Jan 1991 A
5037397 Kalt et al. Aug 1991 A
5086170 Luheshi et al. Feb 1992 A
5092858 Benson et al. Mar 1992 A
5100396 Zamierowski Mar 1992 A
5134994 Say Aug 1992 A
5149331 Ferdman et al. Sep 1992 A
5167613 Karami et al. Dec 1992 A
5176663 Svedman et al. Jan 1993 A
5215522 Page et al. Jun 1993 A
5232453 Plass et al. Aug 1993 A
5261893 Zamierowski Nov 1993 A
5278100 Doan et al. Jan 1994 A
5279550 Habib et al. Jan 1994 A
5298015 Komatsuzaki et al. Mar 1994 A
5342376 Ruff Aug 1994 A
5344415 DeBusk et al. Sep 1994 A
5358494 Svedman Oct 1994 A
5437622 Carion Aug 1995 A
5437651 Todd et al. Aug 1995 A
5527293 Zamierowski Jun 1996 A
5549584 Gross Aug 1996 A
5556375 Ewall Sep 1996 A
5562107 Lavender et al. Oct 1996 A
5607388 Ewall Mar 1997 A
5636643 Argenta et al. Jun 1997 A
5645081 Argenta et al. Jul 1997 A
6071267 Zamierowski Jun 2000 A
6135116 Vogel et al. Oct 2000 A
6241747 Ruff Jun 2001 B1
6287316 Agarwal et al. Sep 2001 B1
6345623 Heaton et al. Feb 2002 B1
6488643 Tumey et al. Dec 2002 B1
6493568 Bell et al. Dec 2002 B1
6553998 Heaton et al. Apr 2003 B2
6814079 Heaton et al. Nov 2004 B2
7004915 Boynton et al. Feb 2006 B2
20010043943 Coffey Nov 2001 A1
20020077661 Saadat Jun 2002 A1
20020115951 Norstrem et al. Aug 2002 A1
20020120185 Johnson Aug 2002 A1
20020143286 Tumey Oct 2002 A1
20040002687 Burns et al. Jan 2004 A1
20060079852 Bubb et al. Apr 2006 A1
20060189910 Johnson et al. Aug 2006 A1
20070005033 Ciok et al. Jan 2007 A1
20070161937 Aali Jul 2007 A1
20080082059 Fink et al. Apr 2008 A1
Foreign Referenced Citations (31)
Number Date Country
550575 Mar 1986 AU
745271 Apr 1999 AU
755496 Feb 2002 AU
2005436 Jun 1990 CA
26 40 413 Mar 1978 DE
43 06 478 Sep 1994 DE
295 04 378 Oct 1995 DE
202004018245 Jul 2005 DE
0100148 Feb 1984 EP
0117632 Sep 1984 EP
0161865 Nov 1985 EP
0358302 Mar 1990 EP
1018967 Aug 2004 EP
692578 Jun 1953 GB
2 195 255 Apr 1988 GB
2 197 789 Jun 1988 GB
2 220 357 Jan 1990 GB
2 235 877 Mar 1991 GB
2 329 127 Mar 1999 GB
2 333 965 Aug 1999 GB
4129536 Apr 1992 JP
2006025918 Feb 2006 JP
71559 Apr 2002 SG
8002182 Oct 1980 WO
8704626 Aug 1987 WO
9010424 Sep 1990 WO
9309727 May 1993 WO
9420041 Sep 1994 WO
9605873 Feb 1996 WO
9718007 May 1997 WO
9913793 Mar 1999 WO
Non-Patent Literature Citations (40)
Entry
N.A. Bagautdinov, “Variant of External Vacuum Aspiration in the Treatment of Purulent Diseases of the Soft Tissues,” Current Problems in Modern Clinical Surgery: Interdepartmental Collection, edited by V. Ye Volkov et al. (Chuvashia State University, Cheboksary, U.S.S.R. 1986);pp. 94-96 (certified translation).
Louis C. Argenta, MD and Michael J. Morykwas, PhD; “Vacuum-Assisted Closure: A New Method for Wound Control and Treatment: Animal Studies & Basic Foundation”; Annals of Plastic Surgery, vol. 38, No. 6, Jun. 1997; pp. 553-562.
Susan Mendez-Eastmen, RN; “When Wounds Won't Heal” RN Jan. 1998, vol. 61 (1); Medical Economics Company, Inc., Montvale, NJ, USA; pp. 20-24.
James H. Blackburn, II, MD, et al; “Negative-Pressure Dressings as a Bolster for Skin Grafts”; Annals of Plastic Surgery, vol. 40, No. 5, May 1998, pp. 453-457.
John Masters; “Reliable, Inexpensive and Simple Suction Dressings”; Letters to the Editor, British Journal of Plastic Surgery, 1998, vol. 51 (3), p. 267; Elsevier Science/The British Association of Plastic Surgeons, UK.
S.E. Greer, et al “The Use of Subatmospheric Pressure Dressing Therapy to Close Lymphocutaneous Fistulas of the Groin” British Journal of Plastic Surgery (2000), vol. 53, pp. 484-487.
George V. Letsou, MD., et al; “Stimulation of Adenylate Cyclase Activity in Cultured Endothelial Cells Subjected to Cyclic Stretch”; Journal of Cardiovascular Surgery, vol. 31, 1990, pp. 634-639.
Orringer, Jay, et al; “Management of Wounds in Patients with Complex Enterocutaneous Fistulas”; Surgery, Gynecology & Obstetrics, Jul. 1987, vol. 165, pp. 79-80.
International Search Report for PCT International Application PCT/GB95/01983; Nov. 23, 1995.
PCT International Search Report for PCT International Application PCT/GB98/02713; Jan. 8, 1999.
PCT Written Opinion; PCT International Application PCT/GB98/02713; Jun. 8, 1999.
PCT International Examination and Search Report, PCT International Application PCT/GB96/02802; Jan. 15, 1998 & Apr. 29, 1997.
PCT Written Opinion, PCT International Application PCT/GB96/02802; Sep. 3, 1997.
Dattilo, Philip P., Jr., et al; “Medical Textiles: Application of an Absorbable Barbed Bi-directional Surgical Suture”; Journal of Textile and Apparel, Technology and Management, vol. 2, Issue 2, Spring 2002, pp. 1-5.
Kostyuchenok, B.M., et al; “Vacuum Treatment in the Surgical Management of Purulent Wounds”; Vestnik Khirurgi, Sep. 1986, pp. 18-21 and 6 page English translation thereof.
Davydov, Yu. A., et al; “Vacuum Therapy in the Treatment of Purulent Lactation Mastitis”; Vestnik Khirurgi, May 14, 1986, pp. 66-70, and 9 page English translation thereof.
Yusupov. Yu. N., et al; “Active Wound Drainage”, Vestnik Khirurgi, vol. 138, Issue 4, 1987, and 7 page English translation thereof.
Davydov, Yu. A., et al; “Bacteriological and Cytological Assessment of Vacuum Therapy for Purulent Wounds”; Vestnik Khirurgi, Oct. 1988, pp. 48-52, and 8 page English translation thereof.
Davydov, Yu. A., et al; “Concepts for the Clinical-Biological Management of the Wound Process in the Treatment of Purulent Wounds by Means of Vacuum Therapy”; Vestnik Khirurgi, Jul. 7, 1980, pp. 132-136, and 8 page English translation thereof.
Chariker, Mark E., M.D., et al; “Effective Management of incisional and cutaneous fistulae with closed suction wound drainage”; Contemporary Surgery, vol. 34, Jun. 1989, pp. 59-63.
Egnell Minor, Instruction Book, First Edition, 300 7502, Feb. 1975, pp. 24.
Egnell Minor: Addition to the Users Manual Concerning Overflow Protection—Concerns all Egnell Pumps, Feb. 3, 1983, p. 1.
Svedman, P.: “Irrigation Treatment of Leg Ulcers”, The Lancet, Sep. 3, 1983, pp. 532-534.
Chinn, Steven D. et al.: “Closed Wound Suction Drainage”, The Journal of Foot Surgery, vol. 24, No. 1, 1985, pp. 76-81.
Arnljots, Bjorn et al.: “Irrigation Treatment in Split-Thickness Skin Grafting of Intractable Leg Ulcers”, Scand J. Plast Reconstr. Surg., vol. 19, 1985, pp. 211-213.
Svedman, P.: “A Dressing Allowing Continuous Treatment of a Biosurface”, IRCS Medical Science: Biomedical Technology, Clinical Medicine, Surgery and Transplantation, vol. 7, 1979, p. 221.
Svedman, P. et al.: “A Dressing System Providing Fluid Supply and Suction Drainage Used for Continuous or Intermittent Irrigation”, Annals of Plastic Surgery, vol. 17, No. 2, Aug. 1986, pp. 125-133.
K.F. Jeter, T.E. Tintle, and M. Chariker, “Managing Draining Wounds and Fistulae: New and Established Methods,” Chronic Wound Care, edited by D. Krasner (Health Management Publications, Inc., King of Prussia, PA 1990), pp. 240-246.
G. {hacek over (Z)}ivadinovic, V. ukić, {hacek over (Z)}. Maksimović, . Radak, and P. Pe{hacek over (s)}ka, “Vacuum Therapy in the Treatment of Peripheral Blood Vessels,” Timok Medical Journal 11 (1986), pp. 161-164 (certified translation).
F.E. Johnson, “An Improved Technique for Skin Graft Placement Using a Suction Drain,” Surgery, Gynecology, and Obstetrics 159 (1984), pp. 584-585.
A.A. Safronov, Dissertation Abstract, Vacuum Therapy of Trophic Ulcers of the Lower Leg with Simultaneous Autoplasty of the Skin (Central Scientific Research Institute of Traumatology and Orthopedics, Moscow, U.S.S.R. 1967) (certified translation).
M. Schein, R. Saadia, J.R. Jamieson, and G.A.G. Decker, “The ‘Sandwich Technique’ in the Management of the Open Abdomen,” British Journal of Surgery 73 (1986), pp. 369-370.
D.E. Tribble, “An Improved Sump Drain-Irrigation Device of Simple Construction,” Archives of Surgery 105 (1972) pp. 511-513.
C.E. Tennant, “The Use of Hypermia in the Postoperative Treatment of Lesions of the Extremities and Thorax,” Journal of the American Medical Association 64 (1915), pp. 1548-1549.
Selections from W. Meyer and V. Schmieden, Bier's Hyperemic Treatment in Surgery, Medicine, and the Specialties: A Manual of Its Practical Application, (W.B. Saunders Co., Philadelphia, PA 1909), pp. 17-25, 44-64, 90-96, 167-170, and 210-211.
V.A. Solovev et al., Guidelines, The Method of Treatment of Immature External Fistulas in the Upper Gastrointestinal Tract, editor-in-chief Prov. V.I. Parahonyak (S.M. Kirov Gorky State Medical Institute, Gorky, U.S.S.R. 1987) (“Solovev Guidelines”).
V.A. Kuznetsov & N.A. Bagautdinov, “Vacuum and Vacuum-Sorption Treatment of Open Septic Wounds,” in II All-Union Conference on Wounds and Wound Infections: Presentation Abstracts, edited by B.M. Kostyuchenok et al. (Moscow, U.S.S.R. Oct. 28-29, 1986) pp. 91-92 (“Bagautdinov II”).
V.A. Solovev, Dissertation Abstract, Treatment and Prevention of Suture Failures after Gastric Resection (S.M. Kirov Gorky State Medical Institute, Gorky, U.S.S.R. 1988) (“Solovev Abstract”).
V.A.C.® Therapy Clinical Guidelines: A Reference Source for Clinicians (Jul. 2007).
European Search Report for corresponding Application No. 08798294.8 mailed Sep. 28, 2015.
Related Publications (1)
Number Date Country
20140018754 A1 Jan 2014 US
Provisional Applications (1)
Number Date Country
60965755 Aug 2007 US
Divisions (2)
Number Date Country
Parent 13487763 Jun 2012 US
Child 14025271 US
Parent 12195115 Aug 2008 US
Child 13487763 US