1. Field of the Invention
The present invention relates generally to medical treatment systems and in particular to a reduced-pressure system and method employing a gasket.
2. Description of Related Art
Clinical studies and practice have shown that providing a reduced pressure in proximity to a tissue site augments and accelerates the growth of new tissue at the tissue site. The applications of this phenomenon are numerous, but application of reduced pressure has been particularly successful in treating wounds. This treatment (frequently referred to in the medical community as “negative pressure wound therapy,” “reduced pressure therapy,” or “vacuum therapy”) provides a number of benefits, including faster healing and increased formulation of granulation tissue. Typically, reduced pressure is applied to tissue through a porous pad or other manifolding device. The porous pad contains cells or pores that are capable of distributing reduced pressure to the tissue and channeling fluids that are drawn from the tissue.
In order to use reduced pressure on a tissue site, a pneumatic seal is achieved over the dressing using a semi-permeable drape that is sealed to the patient's epidermis. In order to achieve this seal, an adhesive has been used at times or a sealing tape. At times, to help provide a better seal, healthcare providers have navigated the difficult task of using sealing material to form strips around the wound before placing the drape over the dressing and wound. With reduced-pressure therapy, a dressing is applied and usually is periodically changed. This typically means that the dressing is changed with some frequency—often three times a week or more. When such changes take place, the sealing tape is removed. This can cause irritation to the periwound region and pain to the patient.
It would be desirable to have a system and method that would allow for wound dressing changes with less pain for the patient and without requiring removal of all components of the system. It would also be desirable to provide a system that would be relatively easy to apply to a patient. Moreover, it would be desirable to have a system with a good pneumatic seal formed over the wound site.
Problems with existing reduced-pressure systems and methods are addressed by the systems and methods of the illustrative embodiments described herein. According to one illustrative embodiment, a reduced-pressure treatment system for treating a tissue site on a patient includes a gasket releasably attached around a perimeter of the tissue site; a manifold sized and configured to be placed in contact with the tissue site; an over-drape positioned over the manifold and sealed to the gasket to create a sealed space between the over-drape and the tissue site; and a reduced-pressure source fluidly coupled to the sealed space to deliver reduced pressure to the tissue site. The gasket may be operable to remain in place for an extended time.
According to another illustrative embodiment, a method for treating a tissue site on a patient with reduced pressure includes the steps of: releasably attaching a gasket around a perimeter of the tissue site; placing a manifold in contact with the tissue site; disposing an over-drape over the manifold; sealing the over-drape to the gasket to create a sealed space between the over-drape and the tissue site; and providing reduced pressure to the sealed space to treat the tissue site.
The illustrative embodiment of the systems and methods of the present invention may provide for a number of perceived advantages. A few examples follow. Technical advantages of the present invention may include that system is relatively easy to apply. Another advantage is the system may be easier on the periwound region of the epidermis. Another advantage is that the patient may experience relatively reduced or eliminated pain associated with dressing changes. Another advantage is that the likelihood of pneumatic leak is decreased. These are only some examples.
Other objects, features, and advantages of the illustrative embodiments will become apparent with reference to the drawings and detailed description that follow
In the following detailed description of the illustrative embodiments, reference is made to the accompanying drawings that form a part hereof. These embodiments are described in sufficient detail to enable those skilled in the art to practice the invention, and it is understood that other embodiments may be utilized and that logical structural, mechanical, electrical, and chemical changes may be made without departing from the spirit or scope of the invention. To avoid detail not necessary to enable those skilled in the art to practice the embodiments described herein, the description may omit certain information known to those skilled in the art. The following detailed description is, therefore, not to be taken in a limiting sense, and the scope of the illustrative embodiments are defined only by the appended claims.
Referring to
In one illustrative embodiment, the manifold member 108 is made from a porous and permeable foam-like material and, more particularly, a reticulated, open-cell polyurethane or polyether foam that allows good permeability of wound fluids while under a reduced pressure. One such foam material that has been used is the VAC® Granufoam® Dressing available from Kinetic Concepts, Inc. (KCI) of San Antonio, Tex. Any material or combination of materials might be used for the manifold material provided that the manifold material is operable to distribute the reduced pressure. The term “manifold” as used herein generally refers to a substance or structure that is provided to assist in applying reduced pressure to, delivering fluids to, or removing fluids from a tissue site. A manifold typically includes a plurality of flow channels or pathways that are interconnected to improve distribution of fluids provided to and removed from the area of tissue around the manifold. Examples of manifolds may include without limitation devices that have structural elements arranged to form flow channels, cellular foam, such as open-cell foam, porous tissue collections, and liquids, gels, and foams that include or cure to include flow channels. The manifold material might also be a combination or layering of materials; for example, a first manifold layer of hydrophilic foam might be disposed adjacent to a second manifold layer of hydrophobic foam to form the manifold member 108.
The reticulated pores of the Granufoam® material, that are in the range of about 400 to 600 microns, are helpful in carrying out the manifold function, but again other materials may be used. A material with a higher, or lower, density (smaller pore size) than Granufoam® material may be desirable in some situations. The manifold member 108 may also be a reticulated foam that is later felted to thickness of about ⅓ its original thickness. Among the many possible materials, the following might be used: Granufoam® material or a Foamex technical foam (www.foamex.com). In some instances it may be desirable to add ionic silver to the foam in a microbonding process or to add other substances to the manifold member such as antimicrobial agents. The manifold member 108 could be a bio-absorbable material or an anisotropic material.
The over-drape 118 covers the manifold member 108 and extends past a peripheral edge 114 of the manifold member 108 to form a drape extension 116. Drape extension 116 has a first side 118 and a second, patient-facing side 120. Drape extension 116 may be sealed against a gasket 128 by sealing apparatus 124, such as an adhesive 126. Sealing apparatus 124 may take numerous forms, such as an adhesive sealing tape, or drape tape or strip; double-side drape tape; adhesive 126; paste; hydrocolloid; hydrogel; or other sealing means. If a tape is used, it may be formed of the same material as the over-drape 110 with a pre-applied, pressure-sensitive adhesive. Pressure-sensitive adhesive 126 may be applied on a second, patient-facing side 120 of drape extension 116. Adhesive 126 provides a substantially pneumatic seal between the over-drape 110 and the gasket 128. Before the over-drape 110 is secured to the patient, removable strips covering the adhesive 126 may be removed.
Over-drape 110 may be an elastomeric material that has pore sizes less than about 20 microns, but other materials and sizes might be used. “Elastomeric” means having the properties of an elastomer and generally refers to a polymeric material that has rubber-like properties. More specifically, most elastomers have elongation rates greater than 100% and a significant amount of resilience. The resilience of a material refers to the material's ability to recover from an elastic deformation. Examples of elastomers may include, but are not limited to, natural rubbers, polyisoprene, styrene butadiene rubber, chloroprene rubber, polybutadiene, nitrile rubber, butyl rubber, ethylene propylene rubber, ethylene propylene diene monomer, chlorosulfonated polyethylene, polysulfide rubber, polyurethane, EVA film, co-polyester, and silicones. Further still, over-drape materials may include a silicone, 3M Tegaderm® drape material, acrylic drape material, such as one available from Avery, or an incise drape material.
Gasket 128 has a gasket material 130 with a first side 132 and a second, patient-facing side 134. A second attachment apparatus 136 may be coupled to the second side 134 of the gasket material 130 for releasably attaching the gasket 128 to the patient's epidermis 106, or more generally skin. The gasket material 130 may be a thin polymer film, such as polyurethane, polyester, silicone, or a hydrocolloid, or could include any suitable gasket material. The second attachment apparatus 136 holding the gasket 128 in place may be a relatively water-resistant material, such as an Avery® brand Wet-stick adhesive, a colloid, acrylic, polyisobutylene (PIB), etc. The second attachment apparatus 136 allows the gasket 128 to be held in place for an extended time, e.g. one to two weeks or more, and then to be removed. The over-drape 110 may be re-attachable to the gasket 128 should the clinician find a need to view the wound and re-attach the over-drape 110. This allows the gasket 128 to stay in place for an extended time without significant agitation of the periwound area of the epidermis 106.
Reduced-pressure subsystem 112 includes a reduced-pressure source 140, which can take many different forms. Reduced-pressure source 140 provides a reduced pressure as a part of system 100. The term “reduced pressure” as used herein generally refers to a pressure less than the ambient pressure at a tissue site 104 that is being subjected to treatment. In most cases, this reduced pressure will be less than the atmospheric pressure at which the patient is located. Alternatively, the reduced pressure may be less than a hydrostatic pressure of tissue at the tissue site 104. It is often desirable for the reduced-pressure source 140 to develop a continuous reduced pressure below atmospheric pressure and also be able to deliver a dynamic pressure, i.e., to vary the reduced pressure in a cycle or operate in a continuous or intermittent mode. The operable range of reduced pressure may vary widely as needed, but would typically include 200 mm Hg below atmospheric. When one refers to increasing the reduced pressure, it typically refers to increasing the absolute value of the negative gauge pressure, and likewise, when one speaks of decreasing the reduced pressure, it typically means that the absolute value of the negative gauge pressure is decreasing.
In the illustrative embodiment of
The reduced pressure developed by reduce-pressure source 140 is delivered through the delivery conduit 144 to a reduced-pressure interface 150, which might be an elbow port 152. In one illustrative embodiment, port 152 is a TRAC® technology port available from Kinetic Concepts, Inc. of San Antonio, Tex. Interface 150 allows the reduced pressure to be delivered through over-drape 110 and realized within sealed space 154. In this illustrative embodiment, elbow port 152 extends through over-drape 110 and into manifold member 108.
Referring now to
Gasket tape dispenser 300 dispenses gasket 302, or gasket tape, which has a gasket material 304 and an attachment apparatus 306. The dispenser 300 may take many forms, but in this embodiment, contains a first chamber portion 308, which holds a roll of gasket tape 302. The healthcare provider can thus use the dispenser 300 to dispense gasket 302 about the perimeter of the tissue site proximate wound 310 on or through epidermis 311. To do so, the dispenser 300 is moved in the direction shown by arrow 314. In some instances, it may be desirable to include a releasable backing material on the attachment means 306 until it is ready for application; in such a situation, a second chamber 312 (shown in broken lines) may be included for collecting the removed backing material. The second chamber 312 may include a spring-loaded spindle that pulls the removed backing material on to it. There are numerous other ways the gasket 302 might be dispensed.
Referring again to
Referring again to
Referring now to
It should be apparent from the foregoing that an invention having significant advantages has been provided. While the invention is shown in only a few of its forms, it is not just limited but is susceptible to various changes and modifications without departing from the spirit thereof.
This application claims the benefit of U.S. Provisional Application No. 60/965,755, filed Aug. 21, 2007, incorporated by reference.
Number | Name | Date | Kind |
---|---|---|---|
1355846 | Rannells | Oct 1920 | A |
2547758 | Keeling | Apr 1951 | A |
2632443 | Lesher | Mar 1953 | A |
2682873 | Evans et al. | Jul 1954 | A |
2910763 | Lauterbach | Nov 1959 | A |
2969057 | Simmons | Jan 1961 | A |
3066672 | Crosby, Jr. et al. | Dec 1962 | A |
3367332 | Groves | Feb 1968 | A |
3520300 | Flower, Jr. | Jul 1970 | A |
3568675 | Harvey | Mar 1971 | A |
3648692 | Wheeler | Mar 1972 | A |
3682180 | McFarlane | Aug 1972 | A |
3826254 | Mellor | Jul 1974 | A |
4080970 | Miller | Mar 1978 | A |
4096853 | Weigand | Jun 1978 | A |
4139004 | Gonzalez, Jr. | Feb 1979 | A |
4165748 | Johnson | Aug 1979 | A |
4184510 | Murry et al. | Jan 1980 | A |
4233969 | Lock et al. | Nov 1980 | A |
4245630 | Lloyd et al. | Jan 1981 | A |
4256109 | Nichols | Mar 1981 | A |
4261363 | Russo | Apr 1981 | A |
4275721 | Olson | Jun 1981 | A |
4284079 | Adair | Aug 1981 | A |
4297995 | Golub | Nov 1981 | A |
4333468 | Geist | Jun 1982 | A |
4373519 | Errede et al. | Feb 1983 | A |
4382441 | Svedman | May 1983 | A |
4392853 | Muto | Jul 1983 | A |
4392858 | George et al. | Jul 1983 | A |
4419097 | Rowland | Dec 1983 | A |
4465485 | Kashmer et al. | Aug 1984 | A |
4475909 | Eisenberg | Oct 1984 | A |
4480638 | Schmid | Nov 1984 | A |
4525166 | Leclerc | Jun 1985 | A |
4525374 | Vaillancourt | Jun 1985 | A |
4540412 | Van Overloop | Sep 1985 | A |
4543100 | Brodsky | Sep 1985 | A |
4548202 | Duncan | Oct 1985 | A |
4551139 | Plaas et al. | Nov 1985 | A |
4569348 | Hasslinger | Feb 1986 | A |
4605399 | Weston et al. | Aug 1986 | A |
4608041 | Nielson | Aug 1986 | A |
4640688 | Hauser | Feb 1987 | A |
4655754 | Richmond et al. | Apr 1987 | A |
4664662 | Webster | May 1987 | A |
4710165 | McNeil et al. | Dec 1987 | A |
4733659 | Edenbaum et al. | Mar 1988 | A |
4743232 | Kruger | May 1988 | A |
4758220 | Sundblom et al. | Jul 1988 | A |
4787888 | Fox | Nov 1988 | A |
4826494 | Richmond et al. | May 1989 | A |
4834731 | Nowak et al. | May 1989 | A |
4838883 | Matsuura | Jun 1989 | A |
4840187 | Brazier | Jun 1989 | A |
4863449 | Therriault et al. | Sep 1989 | A |
4872450 | Austad | Oct 1989 | A |
4878901 | Sachse | Nov 1989 | A |
4897081 | Poirier et al. | Jan 1990 | A |
4906233 | Moriuchi et al. | Mar 1990 | A |
4906240 | Reed et al. | Mar 1990 | A |
4919654 | Kalt et al. | Apr 1990 | A |
4941882 | Ward et al. | Jul 1990 | A |
4953565 | Tachibana et al. | Sep 1990 | A |
4969880 | Zamierowski | Nov 1990 | A |
4985019 | Michelson | Jan 1991 | A |
5037397 | Kalt et al. | Aug 1991 | A |
5086170 | Luheshi et al. | Feb 1992 | A |
5092858 | Benson et al. | Mar 1992 | A |
5100396 | Zamierowski | Mar 1992 | A |
5134994 | Say | Aug 1992 | A |
5149331 | Ferdman et al. | Sep 1992 | A |
5167613 | Karami et al. | Dec 1992 | A |
5176663 | Svedman et al. | Jan 1993 | A |
5215522 | Page et al. | Jun 1993 | A |
5232453 | Plass et al. | Aug 1993 | A |
5261893 | Zamierowski | Nov 1993 | A |
5278100 | Doan et al. | Jan 1994 | A |
5279550 | Habib et al. | Jan 1994 | A |
5298015 | Komatsuzaki et al. | Mar 1994 | A |
5342376 | Ruff | Aug 1994 | A |
5344415 | DeBusk et al. | Sep 1994 | A |
5358494 | Svedman | Oct 1994 | A |
5437622 | Carion | Aug 1995 | A |
5437651 | Todd et al. | Aug 1995 | A |
5527293 | Zamierowski | Jun 1996 | A |
5549584 | Gross | Aug 1996 | A |
5556375 | Ewall | Sep 1996 | A |
5562107 | Lavender et al. | Oct 1996 | A |
5607388 | Ewall | Mar 1997 | A |
5636643 | Argenta et al. | Jun 1997 | A |
5645081 | Argenta et al. | Jul 1997 | A |
6071267 | Zamierowski | Jun 2000 | A |
6135116 | Vogel et al. | Oct 2000 | A |
6241747 | Ruff | Jun 2001 | B1 |
6287316 | Agarwal et al. | Sep 2001 | B1 |
6345623 | Heaton et al. | Feb 2002 | B1 |
6488643 | Tumey et al. | Dec 2002 | B1 |
6493568 | Bell et al. | Dec 2002 | B1 |
6553998 | Heaton et al. | Apr 2003 | B2 |
6641592 | Sauer | Nov 2003 | B1 |
6814079 | Heaton et al. | Nov 2004 | B2 |
7004915 | Boynton | Feb 2006 | B2 |
7381859 | Hunt et al. | Jun 2008 | B2 |
7776028 | Miller et al. | Aug 2010 | B2 |
7794438 | Henley et al. | Sep 2010 | B2 |
20020077661 | Saadat | Jun 2002 | A1 |
20020115951 | Norstrem et al. | Aug 2002 | A1 |
20020120185 | Johnson | Aug 2002 | A1 |
20020143286 | Tumey | Oct 2002 | A1 |
20080082059 | Fink et al. | Apr 2008 | A1 |
Number | Date | Country |
---|---|---|
550575 | Aug 1982 | AU |
745271 | Apr 1999 | AU |
755496 | Feb 2002 | AU |
2005436 | Jun 1990 | CA |
26 40 413 | Mar 1978 | DE |
43 06 478 | Sep 1994 | DE |
295 04 378 | Oct 1995 | DE |
0100148 | Feb 1984 | EP |
0117632 | Sep 1984 | EP |
0161865 | Nov 1985 | EP |
0358302 | Mar 1990 | EP |
1018967 | Aug 2004 | EP |
692578 | Jun 1953 | GB |
2 195 255 | Apr 1988 | GB |
2 197 789 | Jun 1988 | GB |
2 220 357 | Jan 1990 | GB |
2 235 877 | Mar 1991 | GB |
2 333 965 | Aug 1999 | GB |
2 329 127 | Aug 2000 | GB |
4129536 | Apr 1992 | JP |
71559 | Apr 2002 | SG |
WO 8002182 | Oct 1980 | WO |
WO 8704626 | Aug 1987 | WO |
WO 9010424 | Sep 1990 | WO |
WO 9309727 | May 1993 | WO |
WO 9420041 | Sep 1994 | WO |
WO 9605873 | Feb 1996 | WO |
WO 9718007 | May 1997 | WO |
WO 9913793 | Mar 1999 | WO |
Number | Date | Country | |
---|---|---|---|
20090054856 A1 | Feb 2009 | US |
Number | Date | Country | |
---|---|---|---|
60965755 | Aug 2007 | US |