Reduced-pressure systems and methods employing a leak-detection member

Abstract
Systems, methods, and apparatus are provided for detecting leaks in systems for treating a patient with reduced pressure. In one instance, a system includes a distribution manifold for disposing proximate to the tissue site and a sealing member for disposing over the distribution manifold and at least a portion of intact epidermis of the patient. The sealing member has at least a portion that is substantially transparent. The system further includes a reduced-pressure source associated with the distribution manifold for providing reduced pressure to the distribution manifold and a leak-detection member sized and configured to substantially surround the distribution manifold. The leak-detection member includes a detection material that develops a color contrast when a portion is exposed to air and a portion is not exposed to air. The leak detection member works with even low flow systems. Other systems, methods, and apparatus are presented.
Description
BACKGROUND

The present disclosure relates generally to medical treatment systems and, more particularly, but not by way of limitation, to reduced-pressure systems and methods employing a leak-detection member.


Clinical studies and practice have shown that providing a reduced pressure in proximity to a tissue site augments and accelerates the growth of new tissue at the tissue site. The applications of this phenomenon are numerous, but application of reduced pressure has been particularly successful in treating wounds. This treatment (frequently referred to in the medical community as “negative pressure wound therapy,” “reduced pressure therapy,” or “vacuum therapy”) provides a number of benefits, which may include faster healing and increased formulation of granulation tissue. Typically, reduced pressure is applied to tissue through a porous pad or other manifold device. The porous pad contains cells, pores, or pathways that are capable of distributing reduced pressure to the tissue and channeling fluids that are drawn from the tissue. The porous pad is typically covered by a drape that forms a seal.


SUMMARY

According to an illustrative embodiment, a system for treating a tissue site on a patient with reduced pressure includes a distribution manifold for disposing proximate to the tissue site and a sealing member for disposing over the distribution manifold and at least a portion of intact epidermis of the patient. The sealing member has at least a portion that is substantially transparent. The system further includes a reduced-pressure source associated with the distribution manifold for providing reduced pressure to the distribution manifold and a leak-detection member sized and configured to substantially surround the distribution manifold. The leak-detection member includes a detection material that develops a color contrast when a portion of the detection material is exposed to air and a portion of the detection material is not exposed to air.


According to another illustrative embodiment, a method for providing reduced-pressure treatment to a tissue site on a patient, the method includes disposing a distribution manifold proximate to the tissue site and disposing a leak-detection member around the distribution manifold. The leak-detection member comprises a detection material that develops a color contrast when a portion of the detection material is exposed to air and a portion is not exposed to air. The method further includes covering the distribution manifold and leak-detection member with a sealing member. The sealing member has at least a portion that is substantially transparent. The method also includes providing reduced pressure to the distribution manifold, identifying a first color contrast on the leak-detection member indicative of a first leak, and sealing the first leak.


According to another illustrative embodiment, a system for treating a tissue site on a patient with reduced pressure includes a distribution manifold for disposing proximate to the tissue site and a sealing member for disposing over the distribution manifold and at least a portion of intact epidermis of the patient. The sealing member has at least a portion that is substantially transparent. The system further includes a reduced-pressure source associated with the distribution manifold for providing reduced pressure to the distribution manifold and a leak-detection member sized and configured to substantially surround the distribution manifold. The leak-detection member comprises a detection material that develops a color contrast when a portion of the detection material is exposed to a challenge gas and a portion is not exposed to the challenge gas. The system also includes a challenge gas distributor for spraying challenge gas onto the sealing member.


According to another illustrative embodiment, a method for providing reduced-pressure treatment to a tissue site on a patient includes disposing a distribution manifold proximate to the tissue site and disposing a leak-detection member around the distribution manifold. The leak-detection comprises a detection material that develops a color contrast when a portion is exposed to a challenge gas and a portion is not exposed to the challenge gas. The method further includes covering the distribution manifold and leak-detection member with a sealing member. The sealing member has at least a portion that is substantially transparent. The method also includes providing reduced pressure to the distribution manifold, spraying the challenge gas onto the sealing member, identifying a first color contrast on the leak-detection member indicative of a first leak, and sealing the first leak.


According to another illustrative embodiment, a system for treating a tissue site on a patient with reduced pressure includes a distribution manifold for disposing proximate to the tissue site and a sealing member for disposing over the distribution manifold and at least a portion of intact epidermis of the patient. The sealing member has at least a portion that is substantially transparent. The system further includes a reduced-pressure source associated with the distribution manifold for providing reduced pressure to the distribution manifold and a skin-preparation fluid comprising a detection material that develops a color contrast when a portion of the detection material is exposed to air and a portion is not exposed to air.


According to another illustrative embodiment, a system for treating a tissue site on a patient with reduced pressure includes a distribution manifold for disposing proximate to the tissue site and a sealing member for disposing over the distribution manifold and at least a portion of intact epidermis of the patient. The tissue-facing side of the sealing member is covered at least partially with a first agent. The sealing member has at least a portion that is substantially transparent. The system further includes a reduced-pressure source associated with the distribution manifold for providing reduced pressure to the distribution manifold and a skin-preparation fluid comprising a second agent. When the first agent of the sealing member and the second agent of the skin-preparation fluid combine, the two agents form a contact color that is indicative of contact between the first agent and second agent.


According to another illustrative embodiment, a method for treating a tissue site on a patient with reduced pressure includes the steps of disposing a distribution manifold adjacent to the tissue site and covering the distribution manifold with a sealing member. The sealing member has a first agent. The sealing member has at least a portion that is substantially transparent. The method further includes disposing a skin-preparation fluid onto epidermis proximate to and around the tissue site. The skin-preparation fluid has a second agent. The first agent of the sealing member and the second agent of the skin-preparation fluid combine to form a contact color indicative of contact between the first agent and second agent. The method also includes identifying any locations on a peripheral portion of the sealing member lacking the contact color and applying a force to the location on the peripheral portion of the sealing member that was lacking the contact color.


According to another illustrative embodiment, a method of manufacturing a system for treating a tissue site on a patient with reduced pressure includes the steps of forming a distribution manifold for disposing proximate to the tissue site and forming a sealing member for disposing over the distribution manifold and at least a portion of intact epidermis of the patient. The sealing member has at least a portion that is substantially transparent. The method further includes providing a reduced-pressure source for fluidly coupling to the distribution manifold and forming a leak-detection member sized and configured to substantially surround the distribution manifold. The leak-detection member comprises a detection material that develops a color contrast when a portion of the detection material is exposed to air and a portion is not exposed to air.


According to another illustrative embodiment, a system for treating a tissue site on a patient with reduced pressure includes a distribution manifold for disposing proximate to the tissue site and a sealing member for disposing over the distribution manifold and at least a portion of intact epidermis of the patient. The sealing member has at least a portion that is substantially transparent. The sealing member comprises a film that is at least partially covered on a tissue-facing side with a hydrophilic adhesive. The system further includes a reduced-pressure source associated with the distribution manifold for providing reduced pressure to the distribution manifold. Under reduced pressure, fluid exudate from the tissue site is brought into contact with the hydrophilic adhesive in locations where reduced pressure is acting and is not brought into contact with the hydrophilic adhesive in locations where reduced pressure is not acting. A color contrast is thereby created.


According to another illustrative embodiment, a method for treating a tissue site on a patient with reduced pressure includes the steps of disposing a distribution manifold proximate to the tissue site and covering the distribution manifold and a portion of intact epidermis of the patient with a sealing member. The sealing member has at least a portion that is substantially transparent. The sealing member comprises a film that is at least partially covered on a tissue-facing side with a hydrophilic adhesive. The method further includes fluidly coupling a reduced-pressure source to the distribution manifold to provide reduced pressure to the distribution manifold whereby the reduced pressure moves exudate into contact with the hydrophilic adhesive in locations where reduced pressure is acting and does not move exudate to locations where reduced pressure is not acting. The method also includes identifying locations where exudate is not brought into contact with the hydrophilic adhesive as potential leak locations and sealing the potential leak locations.


Other features and advantages of the illustrative embodiments will become apparent with reference to the drawings and detailed description that follow.





BRIEF DESCRIPTION OF THE DRAWINGS


FIG. 1 is a schematic diagram, with a portion shown in cross section and a portion shown in perspective view, of an illustrative embodiment of a system for treating a tissue site on a patient with reduced pressure;



FIG. 2 is a schematic, cross-section of an illustrative embodiment of a system for treating a tissue site on a patient with reduced pressure;



FIG. 3A is a schematic, top plan view of a portion of the system of FIG. 2;



FIG. 3B is the portion of a reduced-pressure system shown in FIG. 3A with a leak shown;



FIG. 4 is a schematic, top plan view of an illustrative embodiment of a sealing member and a leak-detection member; and



FIG. 5 is a schematic, top plan view of an illustrative embodiment of a portion of a system for treating a tissue site on a patient with reduced pressure.





DETAILED DESCRIPTION OF ILLUSTRATIVE EMBODIMENTS

In the following detailed description of the illustrative, non-limiting embodiments, reference is made to the accompanying drawings that form a part hereof. These embodiments are described in sufficient detail to enable those skilled in the art to practice the invention, and it is understood that other embodiments may be utilized and that logical structural, mechanical, electrical, and chemical changes may be made without departing from the spirit or scope of the invention. To avoid detail not necessary to enable those skilled in the art to practice the embodiments described herein, the description may omit certain information known to those skilled in the art. The following detailed description is, therefore, not to be taken in a limiting sense, and the scope of the illustrative embodiments are defined only by the appended claims.


Referring now to the drawings and initially and primarily to FIG. 1, a system 100 for treating a tissue site 102 on a patient 104 with reduced pressure is presented that includes a leak-detection member 106. The tissue site 102 may be, as a non-limiting example, an open wound 108 involving a patient's epidermis 110, dermis 112, and possibly subcutaneous tissue 114. In other examples, the tissue site 102 may be a surface wound on the patient's epidermis 110 or at another tissue site. The tissue site 102 may be the bodily tissue of any human, animal, or other organism, including bone tissue, adipose tissue, muscle tissue, dermal tissue, vascular tissue, connective tissue, cartilage, tendons, ligaments, or any other tissue. Treatment of the tissue site 102 may include the removal of fluids, e.g., exudate or ascites.


The system 100 includes a distribution manifold 116 for disposing proximate to the tissue site 102. The distribution manifold 116 has a first side 118 and a second, tissue-facing side 120. The distribution manifold 116 references a substance or structure that is provided to assist in applying reduced pressure to, delivering fluids to, or removing fluids from the tissue site 102. The distribution manifold 116 typically includes a plurality of flow channels or pathways that distribute fluids provided to and removed from the tissue site 102 around the distribution manifold 116. In one illustrative embodiment, the flow channels or pathways are interconnected to improve distribution of fluids provided or removed from the tissue site 102. The distribution manifold 116 may be a biocompatible material that is capable of being placed in contact with the tissue site 102 and distributing reduced pressure to the tissue site 102. Examples of the distribution manifold 116 may include, without limitation, devices that have structural elements arranged to form flow channels, such as, for example, cellular foam, open-cell foam, porous tissue collections, liquids, gels, and foams that include, or cure to include, flow channels. The distribution manifold 116 may be porous and may be made from foam, gauze, felted mat, or any other material suited to a particular biological application. In one embodiment, the distribution manifold 116 is a porous foam and includes a plurality of interconnected cells or pores that act as flow channels. The porous foam may be a polyurethane, open-cell, reticulated foam such as GranuFoam® material manufactured by Kinetic Concepts, Incorporated of San Antonio, Tex. In some situations, the distribution manifold 116 may also be used to distribute fluids such as medications, antibacterials, growth factors, and various solutions to the tissue site 102. Other layers may be included in or on the distribution manifold 116, such as absorptive materials, wicking materials, hydrophobic materials, and hydrophilic materials.


In one illustrative embodiment, the distribution manifold 116 may be constructed from bioresorbable materials that do not have to be removed from a patient's body following use of the system 100. Suitable bioresorbable materials may include, without limitation, a polymeric blend of polylactic acid (PLA) and polyglycolic acid (PGA). The polymeric blend may also include without limitation polycarbonates, polyfumarates, and capralactones. The distribution manifold 116 may further serve as a scaffold for new cell-growth, or a scaffold material may be used in conjunction with the distribution manifold 116 to promote cell-growth. A scaffold is a substance or structure used to enhance or promote the growth of cells or formation of tissue, such as a three-dimensional porous structure that provides a template for cell growth. Illustrative examples of scaffold materials include calcium phosphate, collagen, PLA/PGA, coral hydroxy apatites, carbonates, or processed allograft materials.


The system 100 also includes a first or lower sealing member 122 for disposing over the distribution manifold 116 and at least a portion of the intact epidermis 110 of the patient 104. The lower sealing member 122 creates a sealed space 123 that contains the distribution manifold 116. The lower sealing member 122 has a first side 124 and a second, tissue-facing side 126. The lower sealing member 122 has at least a portion that is substantially transparent so that colors and color contrasts on the leak-detection member 106 may be seen through the lower sealing member 122. The lower sealing member 122 is typically a drape, but the lower sealing member 122 may be any material that provides a fluid seal under normal operating conditions. The lower sealing member 122 may, for example, be an impermeable or semi-permeable, elastomeric material. As used herein, elastomeric means having the properties of an elastomer. Elastomeric generally refers to a polymeric material that has rubber-like properties. More specifically, most elastomers have ultimate elongations greater than 100% and a significant amount of resilience. The resilience of a material refers to the material's ability to recover from an elastic deformation. Examples of elastomers may include, but are not limited to, natural rubbers, polyisoprene, styrene butadiene rubber, chloroprene rubber, polybutadiene, nitrile rubber, butyl rubber, ethylene propylene rubber, ethylene propylene diene monomer, chlorosulfonated polyethylene, polysulfide rubber, polyurethane (PU), EVA film, co-polyester, and silicones. Additional, specific examples of sealing member materials include a silicone drape, a 3M Tegaderm® drape, or a polyurethane (PU) drape such as one available from Avery Dennison Corporation of Pasadena, Calif.


A first attachment device 128 may be used to hold the lower sealing member 122 against the patient's epidermis 110 or another layer, such as a gasket or additional sealing member. The first attachment device 128 may take numerous forms. For example, the first attachment device 128 may be a medically acceptable, pressure-sensitive adhesive that extends about a periphery, a portion, or the entire lower sealing member 122. As additional examples, the attachment device 128 may be a double-sided drape tape, paste, hydrocolloid, hydro gel or other sealing devices or elements. The first attachment device 128 may also be a sealing ring or other device. The first attachment device 128 is disposed on the second, tissue-facing side 126 of the lower sealing member 122. Before use, the first attachment device 128 may be covered by a release liner (not shown).


A liquid receptor 130 is fluidly coupled to the tissue site 102 for receiving and, at least partially, retaining liquids. In the illustrative embodiment of FIG. 1, the liquid receptor 130 is formed by an absorbent layer 132 and may also include a first wicking layer 134 and a second wicking layer 136. The wicking layers 134, 136 sandwich the absorbent layer 132. The wicking layers 134, 136 are fluid permeable and attract liquids. The absorbent layer 132 may, as a non-limiting example, be a layer of super absorbent fibers. The absorbent layer 132 may be fluidly coupled through apertures 138 to the lower sealing member 122, the first attachment device 128, and consequently to the tissue site 102.


An upper sealing member 139 may be coupled with a second attachment device 143 to a portion of the lower sealing member 122. Thus, the lower sealing member 122 and upper sealing member 139 may sandwich the absorbent layer 132 and the wicking layers 134, 136. The upper sealing member 139 may also be substantially transparent, at least at portions, so that contrasts on the leak-detection member 106 may be seen through the upper sealing member 139.


The system 100 also includes a reduced-pressure source 140 associated with the distribution manifold 116 for providing reduced pressure to the sealed space 123 and, in particular, to the distribution manifold 116. While the reduced-pressure source 140 may be any device for supplying a reduced pressure, such as a vacuum pump, wall suction, micro-pump, or other source, in the illustrative embodiment of FIG. 1, the reduced-pressure source 140 is a micro-pump 142 that is adjacent to the liquid receptor 130. While the amount and nature of reduced pressure applied to a tissue site will typically vary according to the application, the reduced pressure will typically be between −5 mm Hg and −500 mm Hg and more typically between −75 mm Hg and −300 mm Hg.


The micro-pump 142 may be a piezoelectric pump that may be sandwiched between two foam cushion layers 144, 146. The two foam cushion layers 144, 146 may themselves be sandwiched between a lower ply 148 and an upper ply 150. The lower ply 148 and upper ply 150 may be bonded at their peripheries. A first power unit 152 and a control unit 154 may be positioned between the lower ply 148 and the upper ply 150 and may be coupled to the micro-pump 142 for powering and controlling the micro-pump 142. The micro-pump 142 may exhaust air through a plurality of apertures 156 in the upper ply 150. A central aperture 158 may fluidly couple a lower pressure side or suction side of the micro-pump 142 to the second wicking layer 136. Reduced pressure may thereby be delivered through the second wicking layer 136, absorbent layer 132, and apertures 138 to the sealed space 123 and ultimately to the tissue site 102.


The system 100 also includes the leak-detection member 106. The leak-detection member 106 allows a user to identify leaks of air or certain gases from an exterior through a location where a substantially gas tight seal has not been formed between the lower sealing member 122 and the patient's epidermis 110. The leak-detection member 106 may be sized and configured to substantially surround the distribution manifold 116. The leak-detection member 106 surrounds at least where reduced pressure enters the sealed space 123. The leak-detection member 106 may comprise a detection material that is reactive to air, including carbon dioxide and oxygen to develop a color contrast when a portion is exposed to air and a portion is not exposed to air.


The leak-detection member 106 may be a curved member that is disposed around (substantially 360 degrees about) the tissue site 102 being treated or around the distribution manifold 116. If air leaks between the epidermis 110 and the lower sealing member 122, a color contrast will develop on a portion of a leak path where the leak path encounters the leak-detection member 106. The user may then visually identify the leak location since the leak location coincides with the color contrast. The user may then seal the leak. The leak may be sealed by rubbing on the lower sealing member 122 to improve the seal or by adding additional sealing members along an edge or periphery of the lower sealing member 122 where the air first enters.


The leak-detection member 106 is formed from the detection material. The detection material may be an agent alone or combined with an adhesive. The agent may respond visually to the amount of oxygen (O2), carbon dioxide (CO2), or other gas present. Thus, for example, if more oxygen or more carbon dioxide is present at one location on the leak-detection member 106 than at another location, as is the case with a leak in which air enters, a visual indication will be established in the form of a color contrast. The leak-detection member 106 may allow leaks with low flow, e.g., as low as or less than 0.2 ml/hour, to be identified.


The leak-detection member 106 may substantially surround the tissue site 102. Thus, when a leak occurs in any direction, the leak may be identified. The leak-detection member 106 may be a single ring as shown in FIG. 1 or a plurality of rings or members or other shapes as shown in FIGS. 2, 3, and 4. The leak-detection member 106 may also be formed from curved segments that are spaced. The curved segments preferably cover 360 degrees around the tissue site 102 so that a leak path in any direction may be identified. In another illustrative embodiment, the leak-detection member 106 may be a region on the tissue-facing side 126 of the lower sealing member 122 or may be concomitant with the tissue-facing side 126 of the lower sealing member 122 altogether.


In one illustrative embodiment, the detection material may be a material that changes color or reacts as the pH changes. Under normal atmospheric conditions, e.g., with normal levels of carbon dioxide, the pH of water will be about 5.7. (Carbon dioxide requires the presence of water to form a weak acid resulting in a pH drop; similarly, ammonia requires moisture to form a weak base). If carbon dioxide is used as a challenge gas, which will be explained further below, the pH will be lower (3-4). In any event, the pH will increase when ammonia gas is detected and will decrease when carbon dioxide is detected. The change in pH results in a change in the color. Thus, as the pH changes in a location but not in other locations, the color changes and creates a color contrast. Detection materials that respond as such to pH changes include the following: litmus, bromocresol purple, bromocresol blue, azolitmin, methyl red, bromocresol green. The detection material may also be a REDOX-based dye that is sensitive to oxygen. Illustrative examples of REDOX-based dyes that are sensitive to oxygen include the following: methylene Blue (available from Sigma), N-phenylanthranilic acid (available from Acros Organics), or Neutral Red (available from Fisher Scientific).


As another illustrative detection material, titanium dioxide and glycerol may be used. A mixture of titanium dioxide, methylene blue and glycerol becomes a colorimetric indicator for oxygen after activation by UV. The titanium dioxide oxidizes the glycerol (a sacrificial electron donor), reduces the REDOX dye methylene blue to a colorless form until, on exposure to oxygen, the reduced methylene blue is oxidized back to its blue color.


In one illustrative embodiment, the detection material may be a ultraviolet (UV) light sensitive ink. When exposed to UV, the ink becomes colorless and sensitive to oxygen such that a blue color forms under the influence of oxygen. Thus, the leak path will show a blue on a portion that is in contrast to the color on the non-leaking portions. The non-leaking portions starve the ink of oxygen and become colorless. Thus, the leak-detection member 106 may include such an ink and a detection tool, e.g., a UV light tool, may be activated to give off UV light and help identify any leak paths.


In another illustrative example, the detection material is a phosphorescence material that becomes more fluorescent or less fluorescent when exposed to air. Thus, a user may cause portions of the leak-detection member 106 to become fluorescent by exposing the leak-detection member 106 to a detection tool, e.g., UV light or Infrared light tool. If a leak exists, the gas in the air will cause the detection material to be more or less fluorescent depending on the specific material used.


In one illustrative embodiment, the detection material includes a fluorescent agent that will fluoresce in response to UV light or IR and that is disposed on the tissue-facing side 126 of the lower sealing member 122. The detection material will fluoresce until the fluorescent agent contacts moisture and salt that are common on the epidermis 110. Upon coming into contact with the moisture and salt, the detection material will discontinue to fluoresce or not fluoresce with the same strength (fluorescence quenching). In areas where no such contact is made between the detection material and the epidermis 110, the detection material will continue to fluoresce. Thus, the user may observe a color contrast in locations where a leak is probably located, i.e., where the lower sealing member 122 is not contacting the epidermis 110.


In another illustrative embodiment, the leak-detection member 106 includes a detection material that fluoresces under UV or IR even when in contact with the epidermis 110. The detection material, however, experiences fluorescent quenching when exposed to oxygen. Thus, the leak path will fluoresce less and will have a color contrast.


In another illustrative embodiment, the detection material is a material that responds to a challenge gas. A challenge gas is a gas presented on an outside of the sealing member. If a leak exists, the challenge gas is pulled into the leak path and reacts with the detection material. For example, after applying the system 100, the user may spray the challenge gas using a challenge gas distributor. The challenge gas is typically heaver than air. The challenge gas is sprayed onto the sealing member, and if a leak exists, the challenge gas will enter the leak path and cause the detection material to take on a color contrast.


Continuing to refer primarily to FIG. 1, in operation, the user disposes the distribution manifold 116 proximate to the tissue site 102 that is to be treated. The user then disposes the leak-detection member 106 around the tissue site 102 or distribution manifold 116. The user disposes the lower sealing member 122 over the distribution manifold 116 and the leak-detection member 106. The leak-detection member 106 may already be attached to the second, tissue-facing side 126 of the lower sealing member 122 and may be applied as an aspect of disposing the lower sealing member 122 or may be disposed separately on the patient's epidermis 110. In one illustrative embodiment, disposing the leak-detection member 106 may involve disposing a curved member formed from the detection material onto the epidermis 110 of the patient 104 outboard of the tissue site 102. In another illustrative embodiment, disposing the leak-detection member 106 around the distribution manifold 116 may involve applying a liquid that comprises the detection material onto the intact epidermis 110 of the patient 104 outboard of the tissue site 102.


Reduced pressure is then provided to the distribution manifold 116, e.g., by activating the micro-pump 142. After the system 100 operates for a period of time, if any leaks exist, air will be pulled into the leak path and the leak-detection member 106 will develop a color contrast as previously noted. The color contrast coincides with a portion of the leak path, and the user may use the visual cue to locate the leak. The user may then seal the leak by applying force or rubbing the leak path or by applying additional sealing members at an edge of the lower sealing member 122 proximate to the identified leak path.


Referring now primarily to FIG. 2, another illustrative embodiment of the system 100 for providing reduced pressure to the tissue site 102 on the patient 104 is presented. The system is analogous in many respects to the system 100 of FIG. 1. In this embodiment, however, the reduced-pressure source 140 is an external reduced-pressure source 141 and the liquid receptor 130 is a canister or other external fluid reservoir 131.


The external reduced-pressure source 141 is fluidly coupled by a reduced-pressure delivery conduit 162 to a reduced-pressure interface 164. In one illustrative embodiment, the reduced-pressure interface 164 is a T.R.A.C.® Pad or Sensa T.R.A.C.® Pad available from KCI of San Antonio, Tex. The reduced-pressure interface 164 allows the reduced pressure to be delivered to the distribution manifold 116.


In this illustrative embodiment, only the lower or first sealing member 122 is used and the leak-detection member 106 includes two concentric members. The concentric members forming the leak-detection member 106 are shown best in FIGS. 3A-3B. Because in this illustrative embodiment the lower sealing member 122 is transparent, the portions beneath (on the tissue-facing side) of the lower sealing member 122 are shown without hidden lines. Other structural aspects of the system 100 of FIG. 2 are analogous to FIG. 1 and are not further described.


Referring now primarily to FIG. 3A, a portion of the system of FIG. 2 is presented in plan view. In FIG. 3A, either the system 100 has not been activated or has been activated but no leak has been detected. No leak is detected as shown by the absence of any color contrast on the leak-detection member 106. On the other hand, in FIG. 3B, a leak path 166 is shown by color contrasts 168 on the leak-detection member 106. While generally not visible (other than the color contrasts 168), the leak path 166 is shown with broken lines beginning at an edge or periphery 170 and extending to the distribution manifold 116 from where the leak flows into the reduced-pressure interface 164.


Application of the system 100 of FIGS. 2-3B is analogous to that presented for the system 100 of FIG. 1. It should be noted that in the various embodiments, the leak-detection member 106 may take many forms. The leak-detection member may be a single ring, a single member of any shape, a plurality of concentric members such as concentric circles shown in FIGS. 3A-3B or concentric squares shown in FIG. 4, a plurality of spaced curved segments, or any other arrangement that will allow leak paths in any direction to be detected.


Referring now primarily to FIG. 4, an illustrative embodiment of the lower sealing member 122 and leak-detection member 106 are presented. In this embodiment, the reduced-pressure source 140 has not yet been applied. Visual indicia 172 may be included on the lower sealing member 122 to aid the user in centering the lower sealing member 122 on the tissue site.


Referring now primarily to FIG. 5, a portion of an illustrative embodiment of a system 200 for treating a tissue site, e.g., tissue site 102 in FIG. 1, on a patient with reduced pressure is presented. The system 200 is analogous in many respects to the system of FIG. 1, and analogous parts have been indicated by indexing the reference numerals by 100. The system 200 includes a distribution manifold 216 for disposing proximate to the tissue site. The system 200 also includes a sealing member 222 for disposing over the distribution manifold 216 and at least a portion of intact epidermis of the patient. The sealing member 222 has at least a portion that is substantially transparent to allow viewing of color contrasts. The sealing member 222 includes a film that is at least partially covered on a tissue-facing side with a hydrophilic adhesive 276. The hydrophilic adhesive 276 is preferably in a pattern that surrounds an entry point 278. The entry point 278 is where reduced pressure enters a sealed space formed by the sealing member 222. The entry point 278 may be, for example, where a reduced-pressure interface 264 is fluidly coupled to the sealed space. The sealed space is analogous to the sealed space 123 in FIGS. 1 and 2. In the illustrative embodiment of FIG. 5, the pattern of the hydrophilic adhesive 276 includes a first ring 280 relatively near the entry point 278 and inboard of the peripheral edge of the distribution manifold 216 and a second ring 282 outboard of the distribution manifold 216.


The system 200 includes a reduced-pressure source that is not explicitly shown but is analogous to the external reduced-pressure source 141 of FIG. 2. The reduced pressure source 141 is associated with the distribution manifold 216 for providing reduced pressure to the distribution manifold 216. Under the influence of reduced pressure, fluid exudate from the tissue site is brought into contact with the hydrophilic adhesive 276 at locations where reduced pressure is acting and is not brought into contact with the hydrophilic adhesive 276 at locations where reduced pressure is not acting. Thus, where a leak path 266 appears, the reduced pressure will be dissipated and the exudate will not be brought into contact with the hydrophilic adhesive 276. Because the exudate has a color or tint, the locations on the patterned hydrophilic adhesive 276 where the leak exists will present a color contrast 268. As with the previous embodiments, the color contrast 268 shows the location of the leak path and the leak may be sealed.


Referring again to FIGS. 1-4, according to an illustrative non-limiting embodiment, the leak-detection member 106 may be a skin-preparation fluid or included as an aspect of a skin-preparation fluid. The skin-preparation fluid includes a detection material that develops a color contrast when a portion is exposed to air and a portion is not exposed to air. The skin-preparation fluid is applied at least around the tissue site. The tissue site is surrounded by the skin-preparation fluid. As a non-limiting example of the skin-preparation fluid, in addition to skin preparation liquids, a REDOX color dye or other dye may be included. The lower sealing member 122 is then applied as previously described. If a leak exists, the air contacting the detection material in the skin-preparation fluid will create a color contrast in the skin-preparation fluid and thereby indicate the location of the leak. In another illustrative embodiment, the skin-preparation fluid includes methylene blue that is applied. After applying other aspects of the system 100, the reduced pressure is applied and the portions of the skin-preparation fluid under the lower sealing member 122 with a substantially air tight seal become starved for oxygen and change colors to become clear. Any portions with a leak will, because of the air flow, remain blue and thereby indicate the leak location.


According to another illustrative embodiment, the system 100 for treating the tissue site 102 on the patient 104 with reduced pressure includes the distribution manifold 116 for disposing proximate to the tissue site 102 and the lower sealing member 122 for disposing over the distribution manifold 116 and at least a portion of the intact epidermis 110 of the patient 104. The tissue-facing side 126 of the lower sealing member 122 is covered at least partially with a first agent. The lower sealing member 122 has at least a portion that is substantially transparent to allow viewing of color contrasts. The system 100 also includes the reduced-pressure source 140 associated with the distribution manifold 116 for providing reduced pressure to the distribution manifold 116 and a skin-preparation fluid.


The skin-preparation fluid includes a second agent. When the first agent of the sealing member and the second agent of the skin-preparation fluid combine, they form a contact color indicative of contact between the first agent and second agent. In places where they do not contact, the color does not change. Thus, in use, the user will be able to see a color contrast at places where the lower sealing member 122 and the skin-preparation fluid on the patient's epidermis 110 are not touching. Such locations are probable leak locations and may be sealed by applying force, e.g., rubbing the probable leak location, or applying additional sealing members at an edge near the probable leak location.


Although the present invention and its advantages have been disclosed in the context of certain illustrative embodiments, it should be understood that various changes, substitutions, permutations, and alterations can be made without departing from the scope of the invention as defined by the appended claims. It will be appreciated that any feature that is described in connection to any one embodiment may also be applicable to any other embodiment.


It will be understood that the benefits and advantages described above may relate to one embodiment or may relate to several embodiments. It will further be understood that reference to “an” item refers to one or more of those items.


The steps of the methods described herein may be carried out in any suitable order, or simultaneously where appropriate.


Where appropriate, aspects of any of the embodiments described above may be combined with aspects of any of the other embodiments described to form further examples having comparable or different properties and addressing the same or different problems.


It will be understood that the above description of preferred embodiments is given by way of example only and that various modifications may be made by those skilled in the art. The above specification, examples and data provide a complete description of the structure and use of exemplary embodiments of the invention. Although various embodiments of the invention have been described above with a certain degree of particularity, or with reference to one or more individual embodiments, those skilled in the art could make numerous alterations to the disclosed embodiments without departing from the scope of the claims.

Claims
  • 1. A system for treating a tissue site, the system comprising: a manifold for disposing proximate to the tissue site;a sealing member for disposing over the manifold and at least a portion of intact epidermis, the sealing member configured to have an entry point;a first ring of hydrophilic adhesive and a second ring of hydrophilic adhesive disposed between the sealing member and at least one of the manifold and the portion of intact epidermis, the first ring of hydrophilic adhesive comprising a first plurality of rectangular deposits disposed circumferentially around the entry point and the second ring of hydrophilic adhesive comprising a second plurality of rectangular deposits disposed circumferentially around the first ring of hydrophilic adhesive, the first ring of hydrophilic adhesive and the second ring of hydrophilic adhesive configured to develop a color contrast in response to a leak, the color contrast indicating a location of the leak; anda reduced-pressure source configured to be fluidly coupled to the manifold through the entry point.
  • 2. The system of claim 1, wherein the first ring of hydrophilic adhesive is coupled to the sealing member.
  • 3. The system of claim 1, wherein the second ring of hydrophilic adhesive is concentric with the first ring of hydrophilic adhesive.
  • 4. The system of claim 1, wherein the first ring of hydrophilic adhesive, the second ring of hydrophilic adhesive, and the entry point are concentric.
  • 5. The system of claim 1, wherein each rectangular deposit of the first plurality of rectangular deposits has a short edge and a long edge, the short edge proximate to the entry point.
  • 6. The system of claim 5, wherein the short edge of each rectangular deposit comprises interior corners, each interior corner adjacent to an interior corner of an adjacent rectangular deposit.
  • 7. The system of claim 1, wherein each rectangular deposit of the first plurality of rectangular deposits has a short edge proximate to the entry point, and each rectangular deposit of the second plurality of rectangular deposits has a short edge proximate to the first ring of hydrophilic adhesive.
  • 8. The system of claim 7, wherein the short edge of each rectangular deposit comprises interior corners, each interior corner adjacent to an interior corner of an adjacent rectangular deposit.
  • 9. A drape for disposing over a distribution manifold and at least a portion of intact epidermis to form a sealed space, the drape comprising: a film, the film being substantially transparent and configured to have an entry point;a first annulus of hydrophilic adhesive coupled to the film and configured to develop a color contrast in response to a leak, the first annulus of hydrophilic adhesive comprising a first plurality of rectangular deposits of hydrophilic adhesive disposed circumferentially around the entry point; anda second annulus of hydrophilic adhesive coupled to the film and configured to develop a color contrast in response to a leak, the second annulus of hydrophilic adhesive comprising a second plurality of rectangular deposits disposed circumferentially around the first annulus of hydrophilic adhesive;wherein the color contrast indicates a location of the leak.
  • 10. The drape of claim 9, wherein the second annulus of hydrophilic adhesive is concentric with the first annulus of hydrophilic adhesive.
  • 11. The drape of claim 9, wherein the first annulus of hydrophilic adhesive, the second annulus of hydrophilic adhesive, and the entry point are concentric.
  • 12. The drape of claim 9, wherein each rectangular deposit of the first plurality of rectangular deposits has a short edge, a long edge, the short edge proximate to the entry point.
  • 13. The drape of claim 12, wherein the short edge of each rectangular deposit comprises interior corners, each interior corner adjacent to an interior corner of an adjacent rectangular deposit.
  • 14. The drape of claim 9, wherein each rectangular deposit of the second plurality of rectangular deposits has a short edge proximate to the first annulus of hydrophilic adhesive.
  • 15. The drape of claim 14, wherein the short edge of each rectangular deposit comprises interior corners, each interior corner adjacent to an interior corner of an adjacent rectangular deposit.
  • 16. A method of manufacturing a sealing member for treating a tissue site, the method comprising: providing a film, the film being substantially transparent;forming a first ring of hydrophilic adhesive in a first pattern, the first pattern comprising a plurality of rectangular deposits of hydrophilic adhesive disposed circumferentially around an entry point, each rectangular deposit having a short edge proximate to the entry point;coupling the first ring of hydrophilic adhesive to the sealing member; andcoupling a second ring of hydrophilic adhesive to the sealing member formed in a second pattern, the second pattern comprising a plurality of rectangular deposits of hydrophilic adhesive disposed circumferentially around the first ring of hydrophilic adhesive;wherein the first ring of hydrophilic adhesive and the second ring of hydrophilic adhesive are configured to develop a color contrast in response to a leak.
  • 17. The method of claim 16, wherein the method further comprises disposing the second ring of hydrophilic adhesive concentric with the first ring of hydrophilic adhesive.
  • 18. The method of claim 16, wherein the short edge of each rectangular deposit comprises interior corners, each interior corner adjacent to an interior corner of an adjacent rectangular deposit.
  • 19. The method of claim 16, wherein the method further comprises disposing the second ring of hydrophilic adhesive in a second pattern, the second pattern comprising a plurality of rectangular deposits of hydrophilic adhesive disposed circumferentially around the first ring of hydrophilic adhesive, each rectangular deposit of the second pattern having has a short edge proximate to the first ring of hydrophilic adhesive.
  • 20. The method of claim 19, wherein the short edge of each rectangular deposit comprises interior corners, each interior corner adjacent to an interior corner of an adjacent rectangular deposit.
  • 21. The system of claim 1, wherein the first ring is configured to be disposed inboard of a peripheral edge of the manifold.
  • 22. The system of claim 1, further comprising: a liquid receptor configured to be disposed over the sealing member and fluidly coupled to the tissue site; andan upper sealing member configured to be disposed over the liquid receptor and coupled to a portion of the sealing member.
  • 23. The system of claim 22, wherein the liquid receptor comprises an absorbent layer, a first wicking layer, and a second wicking layer, the absorbent layer configured to be positioned between the first wicking layer and the second wicking layer.
RELATED APPLICATIONS

This application is a continuation of U.S. patent application Ser. No. 13/571,860, filed Aug. 10, 2012, which claims the benefit, under 35 USC § 119(e), of the filing of U.S. Provisional Patent Application Ser. No. 61/534,566, entitled “Reduced-Pressure Systems and Methods Employing a Leak-Detection Member,” by Locke et al., filed Sep. 14, 2011. These applications are incorporated herein by reference for all purposes.

US Referenced Citations (186)
Number Name Date Kind
1355846 Rannells Oct 1920 A
2547758 Keeling Apr 1951 A
2632443 Lesher Mar 1953 A
2682873 Evans et al. Jul 1954 A
2910763 Lauterbach Nov 1959 A
2969057 Simmons Jan 1961 A
3066672 Crosby, Jr. et al. Dec 1962 A
3367332 Groves Feb 1968 A
3520300 Flower, Jr. Jul 1970 A
3568675 Harvey Mar 1971 A
3648692 Wheeler Mar 1972 A
3682180 McFarlane Aug 1972 A
3826254 Mellor Jul 1974 A
3902484 Winters Sep 1975 A
4080970 Miller Mar 1978 A
4096853 Weigand Jun 1978 A
4139004 Gonzalez, Jr. Feb 1979 A
4165748 Johnson Aug 1979 A
4184510 Murry et al. Jan 1980 A
4233969 Lock et al. Nov 1980 A
4245630 Lloyd et al. Jan 1981 A
4256109 Nichols Mar 1981 A
4261363 Russo Apr 1981 A
4275721 Olson Jun 1981 A
4284079 Adair Aug 1981 A
4297995 Golub Nov 1981 A
4333468 Geist Jun 1982 A
4373519 Errede et al. Feb 1983 A
4382441 Svedman May 1983 A
4392853 Muto Jul 1983 A
4392858 George et al. Jul 1983 A
4419097 Rowland Dec 1983 A
4465485 Kashmer et al. Aug 1984 A
4475909 Eisenberg Oct 1984 A
4480638 Schmid Nov 1984 A
4525166 Leclerc Jun 1985 A
4525374 Vaillancourt Jun 1985 A
4540412 Van Overloop Sep 1985 A
4543100 Brodsky Sep 1985 A
4548202 Duncan Oct 1985 A
4551139 Plaas et al. Nov 1985 A
4569348 Hasslinger Feb 1986 A
4605399 Weston et al. Aug 1986 A
4608041 Nielsen Aug 1986 A
4640688 Hauser Feb 1987 A
4655754 Richmond et al. Apr 1987 A
4664662 Webster May 1987 A
4710165 McNeil et al. Dec 1987 A
4733659 Edenbaum et al. Mar 1988 A
4743232 Kruger May 1988 A
4758220 Sundblom et al. Jul 1988 A
4787888 Fox Nov 1988 A
4822743 Wegrzyn Apr 1989 A
4826494 Richmond et al. May 1989 A
4838883 Matsuura Jun 1989 A
4840187 Brazier Jun 1989 A
4863449 Therriault et al. Sep 1989 A
4869271 Idris Sep 1989 A
4872450 Austad Oct 1989 A
4878901 Sachse Nov 1989 A
4897081 Poirier et al. Jan 1990 A
4903710 Jessamine Feb 1990 A
4906233 Moriuchi et al. Mar 1990 A
4906240 Reed et al. Mar 1990 A
4919654 Kalt Apr 1990 A
4941882 Ward et al. Jul 1990 A
4953565 Tachibana et al. Sep 1990 A
4969880 Zamierowski Nov 1990 A
4985019 Michelson Jan 1991 A
5037397 Kalt et al. Aug 1991 A
5042981 Gross Aug 1991 A
5086170 Luheshi et al. Feb 1992 A
5092858 Benson et al. Mar 1992 A
5100396 Zamierowski Mar 1992 A
5134994 Say Aug 1992 A
5149331 Ferdman et al. Sep 1992 A
5154712 Herweck Oct 1992 A
5167613 Karami et al. Dec 1992 A
5176663 Svedman et al. Jan 1993 A
5183763 Mallow Feb 1993 A
5215522 Page et al. Jun 1993 A
5218212 Sato Jun 1993 A
5232453 Plass et al. Aug 1993 A
5261893 Zamierowski Nov 1993 A
5278100 Doan et al. Jan 1994 A
5279550 Habib et al. Jan 1994 A
5298015 Komatsuzaki Mar 1994 A
5322797 Mallow Jun 1994 A
5342376 Ruff Aug 1994 A
5344415 DeBusk et al. Sep 1994 A
5358494 Svedman Oct 1994 A
5383476 Peimer Jan 1995 A
5386835 Elphick Feb 1995 A
5437622 Carlon Aug 1995 A
5437651 Todd et al. Aug 1995 A
5527293 Zamierowski Jun 1996 A
5549584 Gross Aug 1996 A
5556375 Ewall Sep 1996 A
5607388 Ewall Mar 1997 A
5636643 Argenta et al. Jun 1997 A
5645081 Argenta et al. Jul 1997 A
5704905 Jensen Jan 1998 A
5753285 Horan May 1998 A
5816252 Faries, Jr. Oct 1998 A
5979226 Cavestri Nov 1999 A
6070454 Cavestri Jun 2000 A
6070455 Cavestri Jun 2000 A
6071267 Zamierowski Jun 2000 A
6101867 Cavestri Aug 2000 A
6135116 Vogel et al. Oct 2000 A
6241747 Ruff Jun 2001 B1
6287316 Agarwal et al. Sep 2001 B1
6345623 Heaton et al. Feb 2002 B1
6488643 Tumey et al. Dec 2002 B1
6493568 Bell et al. Dec 2002 B1
6553998 Heaton et al. Apr 2003 B2
6814079 Heaton et al. Nov 2004 B2
7014816 Miller Mar 2006 B2
7709694 Batich May 2010 B2
7846141 Weston Dec 2010 B2
7858679 Messersmith Dec 2010 B2
7931630 Nishtala et al. Apr 2011 B2
7943380 Westman May 2011 B2
7994383 Zocher Aug 2011 B2
8061360 Locke Nov 2011 B2
8062273 Weston Nov 2011 B2
8157775 Bobroff Apr 2012 B2
8211073 Dove Jul 2012 B2
8216198 Heagle et al. Jul 2012 B2
8251979 Malhi Aug 2012 B2
8257327 Blott et al. Sep 2012 B2
8343437 Patel Jan 2013 B2
8398614 Blott et al. Mar 2013 B2
8449509 Weston May 2013 B2
8500718 Locke Aug 2013 B2
8529548 Blott et al. Sep 2013 B2
8535296 Blott et al. Sep 2013 B2
8551060 Schuessler et al. Oct 2013 B2
8568386 Malhi Oct 2013 B2
8679081 Heagle et al. Mar 2014 B2
8707766 Harris Apr 2014 B2
8834451 Blott et al. Sep 2014 B2
8926592 Blott et al. Jan 2015 B2
9017302 Vitaris et al. Apr 2015 B2
9198801 Weston Dec 2015 B2
9211365 Weston Dec 2015 B2
9289542 Blott et al. Mar 2016 B2
20020044891 Miller Apr 2002 A1
20020077661 Saadat Jun 2002 A1
20020115951 Norstrem et al. Aug 2002 A1
20020120185 Johnson Aug 2002 A1
20020143286 Tumey Oct 2002 A1
20040030304 Hunt Feb 2004 A1
20040200480 Faries, Jr. Oct 2004 A1
20040200483 Faries, Jr. Oct 2004 A1
20040208780 Faries, Jr. Oct 2004 A1
20040258562 Mills Dec 2004 A1
20050112772 Farone May 2005 A1
20060194324 Faries, Jr. Aug 2006 A1
20070078366 Haggstrom Apr 2007 A1
20070089753 Faries, Jr. Apr 2007 A1
20070265586 Joshi Nov 2007 A1
20080071214 Locke Mar 2008 A1
20080148817 Miller Jun 2008 A1
20080234641 Locke Sep 2008 A1
20090227969 Jaeb Sep 2009 A1
20090238811 McDaniel Sep 2009 A1
20090301382 Patel Dec 2009 A1
20100030167 Thirstrup Feb 2010 A1
20100233146 McDaniel Sep 2010 A1
20100234818 Aali Sep 2010 A1
20110015619 Svedman Jan 2011 A1
20110092958 Jacobs Apr 2011 A1
20110130642 Jaeb Jun 2011 A1
20110130712 Topaz Jun 2011 A1
20110245682 Robinson Oct 2011 A1
20110250626 Williams Oct 2011 A1
20110259086 Harris Oct 2011 A1
20110275159 Landgrebe Nov 2011 A1
20130066285 Locke Mar 2013 A1
20130102979 Coulthard Apr 2013 A1
20140088534 Kanakkanatt Mar 2014 A1
20140154808 Patel Jun 2014 A1
20140163491 Schuessler et al. Jun 2014 A1
20150080788 Blott et al. Mar 2015 A1
20170224890 Locke Aug 2017 A1
Foreign Referenced Citations (33)
Number Date Country
550575 Mar 1986 AU
745271 Mar 2002 AU
755496 Dec 2002 AU
2005436 Jun 1990 CA
26 40 413 Mar 1978 DE
43 06 478 Sep 1994 DE
29 504 378 Sep 1995 DE
0100148 Feb 1984 EP
0117632 Sep 1984 EP
0161865 Nov 1985 EP
0358302 Mar 1990 EP
1018967 Jul 2000 EP
2098257 Sep 2009 EP
692578 Jun 1953 GB
2 195 255 Apr 1988 GB
2 197 789 Jun 1988 GB
2 220 357 Jan 1990 GB
2 235 877 Mar 1991 GB
2 329 127 Mar 1999 GB
2 333 965 Aug 1999 GB
4129536 Aug 2008 JP
71559 Apr 2002 SG
8002182 Oct 1980 WO
8704626 Aug 1987 WO
90010424 Sep 1990 WO
93009727 May 1993 WO
9324820 Dec 1993 WO
94020041 Sep 1994 WO
9605873 Feb 1996 WO
9718007 May 1997 WO
9913793 Mar 1999 WO
2008143628 Nov 2008 WO
2011049562 Apr 2011 WO
Non-Patent Literature Citations (46)
Entry
“Wikipedia for Universal Indicator” for litmus paper using color change as Wikipedia citing references published 1933, 1934, 1937, 2006, 2007 (https://en.wikipedia.org/wiki/Universal_indicator); (Year: 2020).
International Search Report and Written Opinion for corresponding PCT/US2012/050314, dated May 14, 2013.
Henriette Kress: “Litmus”, The British Pharmaceutical Codex, Dec. 31, 1911, pp. 1-2, XP055051026, Retrieved from the Internet: URL :http://www.henriettesherbal.com/eclectic /bpc1911 /roccella.html [retrieved on Jan. 24, 2013] p. 1-p. 2.
Andrew Mills: “Oxygen indicators and intelligent inks for packaging food”, Chemical Society Reviews, vol. 34, No. 12, Jan. 1, 2005, p. 1003, XP055050325, ISSN: 0306-0012, DOI: 10.1039/b503997p the whole document.
Mills A et al.: “Nanocrystalline Sn02-based, UVB-activated, colourimetric oxygen indicator”, Sensors and Actuators B: Chemical: International Journal Devoted to Research and Development of Physical and Chemical Transducers, Elsevier S.A. Switzerland, vol. 136, No. 2, Mar. 2, 2009. pp. 344-349, XP025946493, ISSN: 0925-4005, DOI: 10.1016/J.SNB.2008.12.048 [retrieved on Dec. 31, 2008] *introduction*.
Louis C. Argenta, MD and Michael J. Morykwas, PhD; Vacuum-Assisted Closure: A New Method for Wound Control and Treatment: Clinical Experience; Annals of Plastic Surgery.
Susan Mendez-Eatmen, RN; “When wounds Won't Heal” RN Jan. 1998, vol. 61 (1); Medical Economics Company, Inc., Montvale, NJ, USA; pp. 20-24.
James H. Blackburn II, MD et al.: Negative-Pressure Dressings as a Bolster for Skin Grafts; Annals of Plastic Surgery, vol. 40, No. 5, May 1998, pp. 453-457; Lippincott Williams & Wilkins, Inc., Philidelphia, PA, USA.
John Masters; “Reliable, Inexpensive and Simple Suction Dressings”; Letter to the Editor, British Journal of Plastic Surgery, 198, vol. 51 (3), p. 267; Elsevier Science/The British Association of Plastic Surgeons, UK.
S.E. Greer, et al. “The Use of Subatmospheric Pressure Dressing Therapy to Close Lymphocutaneous Fistulas of the Groin” British Journal of Plastic Surgery (2000), 53, pp. 484-487.
George V. Letsou, MD., et al; “Stimulation of Adenylate Cyclase Activity in Cultured Endothelial Cells Subjected to Cyclic Stretch”; Journal of Cardiovascular Surgery, 31, 1990, pp. 634-639.
Orringer, Jay, et al; “Management of Wounds in Patients with Complex Enterocutaneous Fistulas”; Surgery, Gynecology & Obstetrics, Jul. 1987, vol. 165, pp. 79-80.
International Search Report for PCT International Application PCT/GB95/01983; dated Nov. 23, 1995.
PCT International Search Report for PCT International Application PCT/GB98/02713; dated Jan. 8, 1999.
PCT Written Opinion; PCT International Application PCT/GB98/02713; dated Jun. 8, 1999.
PCT International Examination and Search Report, PCT International Application PCT/GB96/02802; dated Jan. 15, 1998 & dated Apr. 29, 1997.
PCT Written Opinion, PCT International Application PCT/GB96/02802; dated Sep. 3, 1997.
Dattilo, Philip P., Jr., et al; “Medical Textiles: Application of an Absorbable Barbed Bi-directional Surgical Suture”; Journal of Textile and Apparel, Technology and Management, vol. 2, Issue 2, Spring 2002, pp. 1-5.
Kostyuchenok, B.M., et al; “Vacuum Treatment in the Surgical Management of Purulent Wounds”; Vestnik Khirurgi, Sep. 1986, pp. 18-21 and 6 page English translation thereof.
Davydov, Yu. A., et al; “Vacuum Therapy in the Treatment of Purulent Lactation Mastitis”; Vestnik Khirurgi, May 14, 1986, pp. 66-70, and 9 page English translation thereof.
Yusupov. Yu.N., et al; “Active Wound Drainage”, Vestnki Khirurgi, vol. 138, Issue 4, 1987, and 7 page English translation thereof.
Davydov, Yu.A., et al; “Bacteriological and Cytological Assessment of Vacuum Therapy for Purulent Wounds”; Vestnik Khirugi, Oct. 1988, pp. 48-52, and 8 page English translation thereof.
Davydov, Yu.A., et al; “Concepts for the Clinical-Biological Management of the Wound Process in the Treatment of Purulent Wounds by Means of Vacuum Therapy”; Vestnik Khirurgi, Jul. 7, 1980, pp. 132-136, and 8 page English translation thereof.
Chariker, Mark E., M.D., et al; “Effective Management of incisional and cutaneous fistulae with closed suction wound drainage”; Contemporary Surgery, vol. 34, Jun. 1989, pp. 59-63.
Egnell Minor, Instruction Book, First Edition, 300 7502, Feb. 1975, pp. 24.
Egnell Minor: Addition to the Users Manual Concerning Overflow Protection—Concerns all Egnell Pumps, Feb. 3, 1983, pp. 2.
Svedman, P.: “Irrigation Treatment of Leg Ulcers”, The Lancet, Sep. 3, 1983, pp. 532-534.
Chinn, Steven D. et al: “Closed Wound Suction Drainage”, The Journal of Foot Surgery, vol. 24, No. 1, 1985, pp. 76-81.
Arnljots, Björn et al: “Irrigation Treatment in Split-Thickness Skin Grafting of Intractable Leg Ulcers”, Scand J. Plast Reconstr. Surg., No. 19, 1985, pp. 211-213.
Svedman, P.: “A Dressing Allowing Continuous Treatment of a Biosurface”, IRCS Medical Science: Biomedical Technology, Clinical Medicine, Surgery and Transplantation, vol. 7, 1979, p. 221.
Svedman, P. et al: “A Dressing System Providing Fluid Supply and Suction Drainage Used for Continuous of Intermittent Irrigation”, Annals of Plastic Surgery, vol. 17, No. 2, Aug. 1986, pp. 125-133.
N.A. Bagautdinov, “Variant of External Vacuum Aspiration in the Treatment of Purulent Diseases of Soft Tissues,” Current Problems in Modern Clinical Surgery: Interdepartmental Collection, edited by V. Ye Volkov et al. (Chuvashia State University, Cheboksary, U.S.S.R. 1986); pp. 94-96 (certified translation).
K.F. Jeter, T.E. Tintle, and M. Chariker, “Managing Draining Wounds and Fistulae: New and Established Methods,” Chronic Wound Care, edited by D. Krasner (Health Management Publications, Inc., King of Prussia, PA 1990), pp. 240-246.
G. {hacek over (Z)}ivadinovi?, V. ?uki?, {hacek over (Z)}. Maksimovi?, ?. Radak, and P. Pe{hacek over (s)}ka, “Vacuum Therapy in the Treatment of Peripheral Blood Vessels,” Timok Medical Journal 11 (1986), pp. 161-164 (certified translation).
F.E. Johnson, “An Improved Technique for Skin Graft Placement Using a Suction Drain,” Surgery, Gynecology, and Obstetrics 159 (1984), pp. 584-585.
A.A. Safronov, Dissertation Abstract, Vacuum Therapy of Trophic Ulcers of the Lower Leg with Simultaneous Autoplasty of the Skin (Central Scientific Research Institute of Traumatology and Orthopedics, Moscow, U.S.S.R. 1967) (certified translation).
M. Schein, R. Saadia, J.R. Jamieson, and G.A.G. Decker, “The ‘Sandwich Technique’ in the Management of the Open Abdomen,” British Journal of Surgery 73 (1986), pp. 369-370.
D.E. Tribble, An Improved Sump Drain-Irrigation Device of Simple Construction, Archives of Surgery 105 (1972) pp. 511-513.
M.J. Morykwas, L.C. Argenta, E.I. Shelton-Brown, and W. McGuirt, “Vacuum-Assisted Closure: A New Method for Wound Control and Treatment: Animal Studies and Basic Foundation,” Annals of Plastic Surgery 38 (1997), pp. 553-562 (Morykwas I).
C.E. Tennants, “The Use of Hypermia in the Postoperative Treatment of Lesions of the Extremities and Thorax,”Journal of the American Medical Association 64 (1915), pp. 1548-1549.
Selections from W. Meyer and V. Schmieden, Bier's Hyperemic Treatment in Surgery, Medicine, and the Specialties: A Manual of Its Practical Application, (W.B. Saunders Co., Philadelphia, PA 1909), pp. 17-25, 44-64, 90-96, 167-170, and 210-211.
V.A. Solovev et al., Guidelines, The Method of Treatment of Immature External Fistulas in the Upper Gastrointestinal Tract, editor-in-chief Prov. V.I. Parahonyak (S.M. Kirov Gorky State Medical Institute, Gorky, U.S.S.R. 1987) (“Solovev Guidelines”).
V.A. Kuznetsov & N.a. Bagautdinov, “Vacuum and Vacuum-Sorption Treatment of Open Septic Wounds,” in II All-Union Conference on Wounds and Wound Infections: Presentation Abstracts, edited by B.M. Kostyuchenok et al. (Moscow, U.S.S.R. Oct. 28-29, 1986) pp. 91-92 (“Bagautdinov II”).
V.A. Solovev, Dissertation Abstract, Treatment and Prevention of Suture Failures after Gastric Resection (S.M. Kirov Gorky State Medical Institute, Gorky, U.S.S.R. 1988) (“Solovev Abstract”).
V.A.C. ® Therapy Clinical Guidelines: A Reference Source for Clinicians; Jul. 2007.
Extended Search Report for Corresponding Application No. 182060913, dated Feb. 28, 2019.
Related Publications (1)
Number Date Country
20170224890 A1 Aug 2017 US
Provisional Applications (1)
Number Date Country
61534566 Sep 2011 US
Continuations (1)
Number Date Country
Parent 13571860 Aug 2012 US
Child 15449551 US