Wounds frequently require debridement, or removal of undesirable tissue, to promote healing. Most debridement techniques suffer from a lack of specificity to the undesirable tissue. Therefore, healthy tissue may be removed along with the undesirable tissue, which frequently leads to longer healing times as well as discomfort and pain to the patient.
Maggot debridement therapy has long been noted for its ability to debride a wound such that undesirable tissue, such as necrotic tissue, is generally removed from the wound while leaving healthy tissue in tact. While maggot therapy may be useful for debriding a wound, it is a costly and time consuming procedure. Additionally, maggot therapy is labor intensive and is frequently objectionable to both health care providers and patients alike. Other shortcomings exist as well.
Shortcomings with wound care systems and methods are addressed by the illustrative, non-limiting embodiments herein. According to one illustrative, non-limiting embodiment, a reduced-pressure treatment system for treating a tissue site on a patient includes a manifold member for distributing reduced pressure to the tissue site, a support member for disposing proximate the tissue site and the manifold, and a debridement mechanism coupled to the support member. The debridement mechanism is for debriding the tissue site. The system further includes a sealing drape for placing over the tissue site and manifold member. The sealing drape is operable to form a fluid seal over the tissue site and manifold member. The system also includes a reduced-pressure subsystem for delivering a reduced pressure to the sealing drape. The system may further include a chemical-debridement subsystem.
A manifold member for treating a tissue site on a patient includes a manifold material for distributing reduced pressure, a support member associated with the manifold material, and a debridement mechanism for debriding the tissue site. The debridement mechanism is coupled to the support member.
A method for treating a tissue site on a patient includes placing a manifold member proximate the tissue site. The manifold member includes a debridement mechanism for debriding the tissue site. The method further includes disposing a sealing drape over the manifold member and the patient's epidermis, forming a fluid seal between the sealing drape and the patient's epidermis, and providing a reduced pressure to the manifold member. When reduced pressure is applied, the debridement mechanism debrides the tissue site.
A method of manufacturing a manifold member for treating a tissue site on a patient includes forming a manifold member for placing over a tissue site. The manifold member includes a support member. The method further includes coupling a debridement mechanism to the support member. The debridement mechanism is configured to debride a tissue site under the influence of reduced pressure.
Other features and advantages of the illustrative, non-limiting embodiments will become apparent with reference to the drawings and detailed description that follow.
A more complete understanding may be obtained by reference to the following Detailed Description when taken in conjunction with the accompanying Drawings, wherein like numerals indicate like elements throughout, and wherein:
In the following detailed description of the illustrative, non-limiting embodiments, reference is made to the accompanying drawings that form a part hereof. These embodiments are described in sufficient detail to enable those skilled in the art to practice the invention, and it is understood that other embodiments may be utilized and that logical structural, mechanical, electrical, and chemical changes may be made without departing from the spirit or scope of the invention. To avoid detail not necessary to enable those skilled in the art to practice the embodiments described herein, the description may omit certain information known to those skilled in the art. The following detailed description is, therefore, not to be taken in a limiting sense, and the scope of the illustrative, non-limiting embodiments are defined only by the appended claims.
Referring now primarily to
The reduced-pressure treatment system 100 includes a manifold member 110, a sealing drape 112, and a reduced-pressure subsystem 114. The reduced-pressure treatment system 100 may also include an attachment device 116. The manifold member 110 is positionable between a tissue-facing surface 118 of the sealing drape 112 and the tissue site 101.
The term “manifold” as used herein generally refers to a substance or structure that is provided to assist in applying reduced pressure to, delivering fluids to, or removing fluids from a tissue site, e.g., the wound 102. The manifold member 110 typically includes a plurality of flow channels or pathways that are interconnected to improve distribution of fluids provided to and removed from around the manifold member 110. The manifold member 110 may be a biocompatible material that is capable of being placed in contact with tissue site, e.g., wound 102, and distributing reduced pressure to the tissue site 101. Examples of manifold members 110 may include, for example, without limitation, devices that have structural elements arranged to form flow channels, such as, for example, cellular foam, open-cell foam, porous tissue collections, liquids, gels, and foams that include, or cure to include, flow channels. The manifold member 110 may be porous and may be made from foam, gauze, felted mat, etc. The manifold member 110 may be formed from a porous material, e.g., a foam, or from a material that is made porous, e.g., a solid member in which apertures have been applied. In one illustrative, non-limiting embodiment, the manifold member 110 is a porous foam and includes a plurality of interconnected cells or pores that act as flow channels. The porous foam may be a polyurethane, open-cell, reticulated foam such as GranuFoamO material manufactured by Kinetic Concepts, Incorporated of San Antonio, Tex. Other embodiments might include “closed cells.” In some situations, the manifold member 110 may also be used to distribute fluids such as medications, antibacterials, growth factors, and various solutions to the tissue site. Other layers may be included in or on the manifold member 110, such as absorptive materials, wicking materials, hydrophobic materials, and hydrophilic materials.
A tissue-facing surface 120 of the manifold member 110 includes one or more debridement mechanisms 122 for debriding the tissue site 101, e.g., the wound 102. As used herein, the terms “debride,” “debriding,” and “debridement,” relate to the act of removing or the removal of undesirable tissue, such as, eschar, necrotic, damaged, infected, contaminated, or adherent tissue, or foreign material from a tissue site. In the illustrative, non-limiting embodiment, each debridement mechanism 122 is operable to remove necrotic tissue 124 from the wound 102. However, it will be appreciated that each debridement mechanism 124 may be operable to remove any suitable type of undesirable tissue or foreign material from any suitable tissue site. In one embodiment, the debridement mechanism 124 is configured to allow the manifold member 110 to induce microstrain at the tissue site 101, e.g., within the wound 102. In another embodiment, the debridement mechanism 124 and the manifold member 110 are both operable to induce microstrain at the tissue site 101, e.g., within the wound 102.
The debridement mechanism 122 may be coupled to the manifold member 110. As used herein, the term “coupled” includes coupling via a separate object and includes direct coupling. The term “coupled” also encompasses two or more components that are continuous with one another by virtue of each of the components being formed from the same piece of material. Also, the term “coupled” may include chemical, mechanical, thermal, or electrical coupling. Fluidly coupling means that fluid is in communication between the designated parts or locations. Alternatively, the debridement mechanism 122 may be associated proximate manifold member 110 without coupling.
In the illustrative, non-limiting embodiment, and as clearly shown in
Each pincer 126 is typically a molded component of the manifold member 110, but it will be appreciated that each pincer 126 may be a separate component that is otherwise associated or coupled to the manifold member 110. In an alternative embodiment, as shown in
Referring again primarily to
Referring again primarily to
An attachment device 116 may be used to hold the sealing drape 112 against the patient's epidermis 104 or another layer, such as a gasket or additional sealing member. The attachment device 116 may take numerous forms. For example, the attachment device 116 may be a medically-acceptable, pressure-sensitive adhesive that extends about one or more drape extensions 138 of the sealing drape 112. Alternatively, the pressure-sensitive adhesive may span the entire width of the sealing drape 112. Alternative attachment devices may include, but are not limited to, heat-activated adhesives, sealing tapes, double-sided sealing tapes, pastes, hydrocolloids, hydrogels, hooks, sutures, etc.
The reduced-pressure subsystem 114 includes a reduced-pressure source 142, which can take many different forms. The reduced-pressure source 142 provides reduced pressure as a part of the reduced-pressure treatment system 100. As used herein, “reduced pressure” generally refers to a pressure less than the ambient pressure at a tissue site that is being subjected to treatment. In most cases, this reduced pressure will be less than the atmospheric pressure at which the patient is located. Alternatively, the reduced pressure may be less than a hydrostatic pressure at the tissue site. Reduced pressure may initially generate fluid flow in the manifold member 110, a reduced-pressure conduit 144, or conduit 144, and proximate the tissue site 101, e.g., wound 102. As the hydrostatic pressure around the tissue site 101, e.g., wound 102, approaches the desired reduced pressure, the flow may subside, and the reduced pressure may be maintained. Unless otherwise indicated, values of pressure stated herein are gauge pressures. The reduced pressure delivered may be static, dynamic (patterned or random) and may be delivered continuously or intermittently. Although the terms “vacuum” and “negative pressure” may be used to describe the pressure applied to the tissue site, the actual pressure applied to the tissue site may be more than the pressure normally associated with a complete vacuum. Consistent with the use herein, an increase in reduced pressure or vacuum pressure typically refers to a relative reduction in absolute pressure.
The reduced-pressure subsystem 114 provides reduced pressure. The reduced-pressure subsystem 114 includes the reduced-pressure source 142 that may be any means of supplying a reduced pressure, such as a vacuum pump or wall suction. While the amount and nature of reduced pressure applied to a tissue site will typically vary according to the application, the reduced pressure will typically be between −5 mm Hg and −500 mm Hg.
In the illustrative, non-limiting embodiment, the reduced-pressure source 142 has a battery compartment 146 and a canister region 148 with windows 150 providing a visual indication of the level of fluid within canister 148. An interposed membrane filter, such as hydrophobic or oleophobic filter, might be interspersed between reduced-pressure conduit 144 and the reduced-pressure source 142.
The reduced pressure provided by the reduced-pressure source 142 is delivered through the reduced-pressure conduit 144 to a reduced-pressure interface 152, or interface 152, which may be an elbow port 154. In one illustrative, non-limiting embodiment, the elbow port 154 is a TRAC® technology port available from Kinetic Concepts, Inc. of San Antonio, Tex. The reduced-pressure interface 152 allows the reduced pressure to be delivered to the sealing drape 112 and realized within an interior portion of sealing drape 112 and the manifold member 110. In this illustrative, non-limiting embodiment, the elbow port 154 extends through the sealing drape 112 to the manifold member 110, but numerous arrangements are possible.
In operation, the manifold member 110 may be placed proximate the tissue site 101, e.g., wound 102. The manifold member 110 may be placed within the wound 102, or may overlay a portion of the wound 102. As clearly shown in
The sealing drape 112 may be placed over the manifold member 110 such that the drape extension 138 extends beyond the periphery of the wound 102. The drape extension 138 may be secured to the patient's epidermis 104 by the attachment device 116 in order to form a fluid seal between the patient's epidermis 104 and the sealing drape 112. The reduced-pressure interface 152 may then be applied, if not already installed, and the reduced-pressure conduit 144 fluidly coupled to the reduced-pressure interface 152. The reduced-pressure conduit 144 is fluidly coupled to the reduced-pressure source 142. The reduced-pressure source 142 may then be activated such that a reduced pressure is delivered to the interior of the sealing drape 112 and manifold member 110.
As the reduced pressure is delivered, the manifold member 110 may contract to form a semi-rigid substrate. As reduced pressure is delivered and the manifold member 110 begins to contract, a compressive force develops, in the direction represented by force vector 160, which begins to drive the points 132 of each pincer blade 130 into the necrotic tissue 124. Additionally, as shown in
As shown in
Referring again primarily to
Referring now primarily to
The reduced-pressure treatment system 300 further includes a fluid-management subsystem 362. The fluid-management subsystem 362 includes a reduced-pressure subsystem 314 and a chemical-debridement subsystem 364. The reduced-pressure subsystem 314 is similar, or the same, as the reduced-pressure subsystem 114 of
The reduced-pressure subsystem 314 includes a reduced-pressure source 342 for delivering a reduced pressure. The reduced-pressure subsystem 314 may also include a canister 348 for receiving exudate, portions of tissue, debriding chemical(s), etc. that may be drawn from the interior portion of the sealing drape 312, tissue site 301, or manifold member 310. As will be discussed further below, delivery of the reduced pressure may be controlled by a controller 368 via a valve member 366. Alternatively or in addition, any suitable operator, such as a nurse, doctor or patient, may manually operate the valve member 366 to control delivery of the reduced pressure. The valve member 366 may be any suitable device operable to control the delivery of reduced pressure from the reduced-pressure source 342 to the interior of the sealing drape 312 and manifold member 310. Suitable valve members 366 include, without limitation, a clamp, stop valve, or check valve.
The reduced pressure developed by reduced-pressure source 342 is delivered through the reduced-pressure conduit 344 to a reduced-pressure interface 352, or interface 352, which may be an elbow port 354. Exudate, portions of tissue, debriding chemical(s), etc. may be drawn from the interior portion of the sealing drape 312, tissue site 301 (e.g., wound 302), or manifold member 310 and delivered to the canister 348 via the interface 352 and reduced-pressure conduit 344.
The chemical-debridement subsystem 364 includes a debriding chemical reservoir 370 in fluid communication with the interior portion of the sealing drape 312. The debriding chemical reservoir 370 may be placed in fluid communication with the interior portion of the sealing drape 312 via a second conduit 372 and a second interface 378, such as an elbow port 380. The debriding chemical reservoir 370 contains a debriding chemical that is capable of softening, digesting, partially digesting, breaking down or partially breaking down undesirable tissue, e.g., necrotic tissue 324, at the tissue site 301, e.g., the wound 302. Illustrative debriding chemicals, include, without limitation, collagenase, ficin, pepsin, trypsin, chymotrypsin, papain and elastase. Alternatively or in addition, the debriding chemical may be one or more enzymes, or one or more analogues thereof, isolated from any suitable insect larvae. In one embodiment, the larvae are larvae from Lucilia sericata; however, it will be appreciated that any suitable insect larvae may be employed. In one aspect, the debriding chemical is operable to soften digest, partially digest, break down or partially break down undesirable tissue at the tissue site 301 while leaving the healthy tissue at the tissue site 301 intact.
A pump 374 may be operable to deliver the debriding chemical from the debriding chemical reservoir 370 to the interior portion of the sealing drape 312. Alternatively or in addition, the debriding chemical may be delivered from the debriding chemical reservoir 370 to the interior portion of the sealing drape 312 via gravity or pulled by operation of the reduced-pressure subsystem 314. In either case, delivery of the debriding chemical may be controlled by the controller 368 via a second valve member 376. Alternatively or in addition, any suitable operator, such as a nurse, doctor or patient, may manually operate the valve member 376 to control delivery of the debriding chemical. The second valve member 376 may be any suitable device operable to control the delivery of the debriding chemical reservoir 370 to the interior of the sealing drape 312 and manifold member 310. Suitable second valve members 376 include, without limitation, a clamp, stop valve, or check valve.
While the illustrative, non-limiting embodiment employs a reduced-pressure conduit 344 and a second conduit 372, a single conduit may be employed for delivering both reduced pressure and the debriding chemical to the interior of the sealing drape 312 wherein the installation subsystem is configured to cycle between a debriding chemical delivery mode and a reduced-pressure mode. Moreover, in one embodiment, the fluid-management subsystem may include the V.A.C.® Instill® System developed by Kinetic Concepts, Inc. of San Antonio, Tex.
In operation of the reduced-pressure treatment system 300, the manifold member 310 and reduced-pressure subsystem 314 are arranged and installed as previously discussed in connection with the reduced-pressure treatment system 100 of
The chemical-debridement subsystem 364 is operable to deliver a debriding chemical to the interior of the sealing drape 312 by the opening of, or partially opening of, the second valve member 376. The second valve member 376 may be operated by the controller 368 or any suitable operator. A pump 374, gravity, or operation of the reduced-pressure subsystem 314 may be utilized to move a debriding chemical from the debriding-chemical reservoir 370 to the interior of the sealing drape 312 and to the tissue site 301. The debriding chemical is operable to soften digest, partially digest, break down or partially break down undesirable tissue, e.g., necrotic tissue 324, at the tissue site 301, e.g., wound 302.
The reduced-pressure subsystem 314 is delivers reduced pressure to the interior of the sealing drape 312 by the opening of, or partial opening of, the valve member 366. The valve member 366 may be operated by the controller 368 or any suitable operator. In one embodiment, the opening, or partial opening, of the valve member 366 coincides with a closure, or partial closure, of the second valve member 376 whereby delivery of the debriding chemical ceases whilst a reduced-pressure is delivered to the interior of the sealing drape 312. The reduced-pressure subsystem 314 may be operated to remove fluids at a first pressure, followed by an increase in reduced-pressure so as to remove unwanted tissue; alternatively, the removal of fluids and unwanted tissue may be done with one operation.
Delivery of a reduced pressure may cause the pincers 326 to operate as previously discussed in connection with
The reduced-pressure treatment system 300 may be operated in a cyclical manner whereby a debriding chemical is delivered to the interior of the sealing drape 312, followed by a delivery of a reduced pressure and debridement by the pincers 326, which is, in turn, followed by a second delivery of a debriding chemical, and then, a second delivery of a reduce pressure and debridement by the pincers 326, etc.
In an alternative embodiment, the chemical-debridement subsystem 364 may include the debriding-chemical reservoir 370 that is in fluid communication with the reduced-pressure conduit 344 and a two-way valve may control when debridement chemical is delivered to the interface 352 and when reduced pressure is delivered from the reduced-pressure source 342. In this embodiment of the chemical-debridement subsystem 364, delivery is alternated between debridement chemical and reduced pressure to allow a single interface to be used.
Referring now primarily to
Each debridement implement 482 includes a debridement arm 484 with a face 486 at the distal end thereof. The proximal end of the debridement arm 484 may be integral with, or otherwise coupled to, a support member 428. The support member 428 may be integral with, or otherwise coupled to, or associated with the manifold member 410. The debridement implement 482 may extend from the manifold member 410 at any suitable angle. The debridement arm 484 has a distal end that is operable to engage undesired tissue.
The debridement arm 484 deforms under reduced pressure. The debridement implement 482 may be operable to move from a first, or neutral, position, with a first angle (Φ1) between the debridement arm 484 and a horizontal (for the orientation shown) reference line 458, to a second, or debriding, position with a second angle (Φ2) between the debridement arm 484 and the horizontal reference line 458. In one embodiment, the second angle is less than the first angle (Φ2<Φ1). In another illustrative, non-limiting embodiment, a debridement mechanism includes a debridement utensil operable to remove undesired tissue through direct action against the tissue of the collapsible debridement utensil. The debridement utensil deforms under the influence of reduced pressure to remove the undesired tissue.
In operation according to one illustrative, non-limiting embodiment, the manifold member 410 is placed proximate a tissue site, e.g., wound 402, such that the edge 488 of the debridement face 486 abuts a portion of the tissue within the wound, e.g., necrotic tissue 424 (
In an alternative embodiment, the manifold member 410 may be sized smaller than the tissue site to be treated whereby cyclical application of reduced pressure causes each face 486 to “push off” of the immediate portion 436 of necrotic tissue 424 removed such that the debridement implement “steps” to a second portion of necrotic tissue 424 whereby the manifold member 410 “moves” across the wound 402. In other words, each cycle of reduced pressure causes the manifold member 410 to advance laterally by one “step.”
The systems and methods described above may be employed in numerous ways and another general, illustrative method of treating a wound will now be described. The method may be employed by any one of the previously discussed reduced-pressure treatment systems 100, 300 of
The debriding chemical may be held at the tissue site for a prescribed amount of time thereby allowing the debriding chemical to soften, digest, partially digest, break down or partially break down undesirable tissue at the tissue site. A reduced pressure may then be applied to the tissue site whereby one or more debridement mechanisms debride the tissue site. The application of a reduced pressure to the tissue site may also serve to remove, or partially remove, exudate, the debriding chemical, free floating portions of undesirable tissue, etc. from the tissue site. Additionally, in one embodiment, the application of a reduced pressure to the tissue site is done in a cyclical manner; for example, the pressure may cycle between a first pressure at first pressure level and a second pressure at a second pressure level. The cycling may occur for a plurality of cycles.
After the application of a reduced pressure to the tissue site, a subsequent introduction of a debriding chemical to the tissue site may be performed. The subsequent introduction of a debriding chemical to the tissue site may serve to flush free floating portions of undesirable tissue from the tissue site as well as introduce a fresh batch of the debriding chemical to the tissue site for a subsequent softening, digesting, partially digesting, breaking down or partially breaking down of undesirable tissue at the tissue site. The debriding chemical may then be held at the tissue site for a prescribed amount of time and the process repeated. Alternatively or in addition, the tissue site may be flushed with a flushing agent, such as saline or any other medically acceptable fluid or solution, prior to a subsequent introduction of the debriding chemical or after a final debridement by the debridement mechanism.
Although the present invention and its advantages have been disclosed in the context of certain illustrative, non-limiting embodiments, it should be understood that various changes, substitutions, and alterations can be made without departing from the scope of the invention as defined by the appended claims.
This application is a Divisional of U.S. patent application Ser. No. 12/639,351 filed Dec. 16, 2009 which claims the benefit, under 35 U.S.C §119(e), of the filing of U.S. Provisional Patent Application Ser. No. 61/140,654, entitled “Reduced-Pressure Treatment Systems and Methods Employing Debridement Mechanisms,” filed 24 Dec. 2008, which is incorporated herein by reference for all purposes.
Number | Name | Date | Kind |
---|---|---|---|
1355846 | Rannells | Oct 1920 | A |
2547758 | Keeling | Apr 1951 | A |
2632443 | Lesher | Mar 1953 | A |
2682873 | Evans et al. | Jul 1954 | A |
2910763 | Lauterbach | Nov 1959 | A |
2969057 | Simmons | Jan 1961 | A |
3066672 | Crosby, Jr. et al. | Dec 1962 | A |
3367332 | Groves | Feb 1968 | A |
3520300 | Flower, Jr. | Jul 1970 | A |
3568675 | Harvey | Mar 1971 | A |
3648692 | Wheeler | Mar 1972 | A |
3682180 | McFarlane | Aug 1972 | A |
3826254 | Mellor | Jul 1974 | A |
4080970 | Miller | Mar 1978 | A |
4096853 | Weigand | Jun 1978 | A |
4139004 | Gonzalez, Jr. | Feb 1979 | A |
4165748 | Johnson | Aug 1979 | A |
4184510 | Murry et al. | Jan 1980 | A |
4233969 | Lock et al. | Nov 1980 | A |
4245630 | Lloyd et al. | Jan 1981 | A |
4256109 | Nichols | Mar 1981 | A |
4261363 | Russo | Apr 1981 | A |
4275721 | Olson | Jun 1981 | A |
4284079 | Adair | Aug 1981 | A |
4297995 | Golub | Nov 1981 | A |
4333468 | Geist | Jun 1982 | A |
4373519 | Errede et al. | Feb 1983 | A |
4382441 | Svedman | May 1983 | A |
4392853 | Muto | Jul 1983 | A |
4392858 | George et al. | Jul 1983 | A |
4419097 | Rowland | Dec 1983 | A |
4465485 | Kashmer et al. | Aug 1984 | A |
4475909 | Eisenberg | Oct 1984 | A |
4480638 | Schmid | Nov 1984 | A |
4525166 | Leclerc | Jun 1985 | A |
4525374 | Vaillancourt | Jun 1985 | A |
4540412 | Van Overloop | Sep 1985 | A |
4543100 | Brodsky | Sep 1985 | A |
4548202 | Duncan | Oct 1985 | A |
4551139 | Plaas et al. | Nov 1985 | A |
4569348 | Hasslinger | Feb 1986 | A |
4605399 | Weston et al. | Aug 1986 | A |
4608041 | Nielsen | Aug 1986 | A |
4640688 | Hauser | Feb 1987 | A |
4655754 | Richmond et al. | Apr 1987 | A |
4664662 | Webster | May 1987 | A |
4710165 | McNeil et al. | Dec 1987 | A |
4733659 | Edenbaum et al. | Mar 1988 | A |
4743232 | Kruger | May 1988 | A |
4758220 | Sundblom et al. | Jul 1988 | A |
4787888 | Fox | Nov 1988 | A |
4826494 | Richmond et al. | May 1989 | A |
4838883 | Matsuura | Jun 1989 | A |
4840187 | Brazier | Jun 1989 | A |
4863449 | Therriault et al. | Sep 1989 | A |
4872450 | Austad | Oct 1989 | A |
4878901 | Sachse | Nov 1989 | A |
4881550 | Kothe | Nov 1989 | A |
4897081 | Poirier et al. | Jan 1990 | A |
4906233 | Moriuchi et al. | Mar 1990 | A |
4906240 | Reed et al. | Mar 1990 | A |
4919654 | Kalt et al. | Apr 1990 | A |
4941882 | Ward et al. | Jul 1990 | A |
4953565 | Tachibana et al. | Sep 1990 | A |
4969880 | Zamierowski | Nov 1990 | A |
4985019 | Michelson | Jan 1991 | A |
5037397 | Kalt et al. | Aug 1991 | A |
5086170 | Luheshi et al. | Feb 1992 | A |
5092858 | Benson et al. | Mar 1992 | A |
5100396 | Zamierowski | Mar 1992 | A |
5134994 | Say | Aug 1992 | A |
5149331 | Ferdman et al. | Sep 1992 | A |
5167613 | Karami et al. | Dec 1992 | A |
5176663 | Svedman et al. | Jan 1993 | A |
5215522 | Page et al. | Jun 1993 | A |
5232453 | Plass et al. | Aug 1993 | A |
5261893 | Zamierowski | Nov 1993 | A |
5278100 | Doan et al. | Jan 1994 | A |
5279550 | Habib et al. | Jan 1994 | A |
5298015 | Komatsuzaki et al. | Mar 1994 | A |
5342376 | Ruff | Aug 1994 | A |
5344415 | DeBusk et al. | Sep 1994 | A |
5358494 | Svedman | Oct 1994 | A |
5437622 | Carion | Aug 1995 | A |
5437651 | Todd et al. | Aug 1995 | A |
5527293 | Zamierowski | Jun 1996 | A |
5549584 | Gross | Aug 1996 | A |
5556375 | Ewall | Sep 1996 | A |
5607388 | Ewall | Mar 1997 | A |
5636643 | Argenta et al. | Jun 1997 | A |
5645081 | Argenta et al. | Jul 1997 | A |
5697920 | Gibbons | Dec 1997 | A |
6071267 | Zamierowski | Jun 2000 | A |
6135116 | Vogel et al. | Oct 2000 | A |
6241747 | Ruff | Jun 2001 | B1 |
6287316 | Agarwal et al. | Sep 2001 | B1 |
6345623 | Heaton et al. | Feb 2002 | B1 |
6375634 | Carroll | Apr 2002 | B1 |
6488643 | Tumey et al. | Dec 2002 | B1 |
6493568 | Bell et al. | Dec 2002 | B1 |
6553998 | Heaton et al. | Apr 2003 | B2 |
6814079 | Heaton et al. | Nov 2004 | B2 |
20020077661 | Saadat | Jun 2002 | A1 |
20020115951 | Norstrem et al. | Aug 2002 | A1 |
20020120185 | Johnson | Aug 2002 | A1 |
20020143286 | Tumey | Oct 2002 | A1 |
20040030254 | Babaev | Feb 2004 | A1 |
20050260183 | Pritchard | Nov 2005 | A1 |
20060079852 | Bubb et al. | Apr 2006 | A1 |
20070239078 | Jaeb | Oct 2007 | A1 |
20090069760 | Finklestein | Mar 2009 | A1 |
20090076511 | Osman | Mar 2009 | A1 |
20100030132 | Niezgoda et al. | Feb 2010 | A1 |
20110245757 | Myntti et al. | Oct 2011 | A1 |
20140352699 | Born | Dec 2014 | A1 |
Number | Date | Country |
---|---|---|
550575 | Mar 1986 | AU |
745271 | Apr 1999 | AU |
755496 | Feb 2002 | AU |
2005436 | Jun 1990 | CA |
26 40 413 | Mar 1978 | DE |
43 06 478 | Sep 1994 | DE |
295 04 378 | Oct 1995 | DE |
0100148 | Feb 1984 | EP |
0117632 | Sep 1984 | EP |
0161865 | Nov 1985 | EP |
0358302 | Mar 1990 | EP |
1018967 | Aug 2004 | EP |
692578 | Jun 1953 | GB |
2 195 255 | Apr 1988 | GB |
2 197 789 | Jun 1988 | GB |
2 220 357 | Jan 1990 | GB |
2 235 877 | Mar 1991 | GB |
2 329 127 | Mar 1999 | GB |
2 333 965 | Aug 1999 | GB |
4129536 | Apr 1992 | JP |
71559 | Apr 2002 | SG |
8002182 | Oct 1980 | WO |
8704626 | Aug 1987 | WO |
9010424 | Sep 1990 | WO |
9309727 | May 1993 | WO |
9420041 | Sep 1994 | WO |
9605873 | Feb 1996 | WO |
9718007 | May 1997 | WO |
9913793 | Mar 1999 | WO |
Entry |
---|
Supplementary European Search Report for corresponding EP09835645.4, mailed Aug. 21, 2013. |
N.A. Bagautdinov, “Variant of External Vacuum Aspiration in the Treatment of Purulent Diseases of the Soft Tissues,” Current Problems in Modern Clinical Surgery: Interdepartmental Collection, edited by V. Ye Volkov et al. (Chuvashia State University, Cheboksary, U.S.S.R. 1986);pp. 94-96 (copy and certified translation). |
Louis C. Argenta, MD and Michael J. Morykwas, PhD; “Vacuum-Assisted Closure: A New Method for Wound Control and Treatment: Animal Studies & Basic Foundation”; Annals of Plastic Surgery, vol. 38, No. 6, Jun. 1997; pp. 553-562. |
Susan Mendez-Eastmen, RN; “When Wounds Won't Heal” RN Jan. 1998, vol. 61 (1); Medical Economics Company, Inc., Montvale, NJ, USA; pp. 20-24. |
James H. Blackburn, II, MD, et al; “Negative-Pressure Dressings as a Bolster for Skin Grafts”; Annals of Plastic Surgery, vol. 40, No. 5, May 1998, pp. 453-457. |
John Masters; “Reliable, Inexpensive and Simple Suction Dressings”; Letters to the Editor, British Journal of Plastic Surgery, 1998, vol. 51 (3), p. 267; Elsevier Science/The British Association of Plastic Surgeons, UK. |
S.E. Greer, et al “The Use of Subatmospheric Pressure Dressing Therapy to Close Lymphocutaneous Fistulas of the Groin” British Journal of Plastic Surgery (2000), vol. 53, pp. 484-487. |
George V. Letsou, MD., et al; “Stimulation of Adenylate Cyclase Activity in Cultured Endothelial Cells Subjected to Cyclic Stretch”; Journal of Cardiovascular Surgery, vol. 31, 1990, pp. 634-639. |
Orringer, Jay, et al; “Management of Wounds in Patients with Complex Enterocutaneous Fistulas”; Surgery, Gynecology & Obstetrics, Jul. 1987, vol. 165, pp. 79-80. |
International Search Report for PCT International Application PCT/GB95/01983; Nov. 23, 1995. |
PCT International Search Report for PCT International Application PCT/GB98/02713; Jan. 8, 1999. |
PCT Written Opinion; PCT International Application PCT/GB98/02713; Jun. 8, 1999. |
PCT International Examination and Search Report, PCT International Application PCT/GB96/02802; Jan. 15, 1998 & Apr. 29, 1997. |
PCT Written Opinion, PCT International Application PCT/GB96/02802; Sep. 3, 1997. |
Dattilo, Philip P., Jr., et al; “Medical Textiles: Application of an Absorbable Barbed Bi-directional Surgical Suture”; Journal of Textile and Apparel, Technology and Management, vol. 2, Issue 2, Spring 2002, pp. 1-5. |
Kostyuchenok, B.M., et al; “Vacuum Treatment in the Surgical Management of Purulent Wounds”; Vestnik Khirurgi, Sep. 1986, pp. 18-21 and 6 page English translation thereof. |
Davydov, Yu. A., et al; “Vacuum Therapy in the Treatment of Purulent Lactation Mastitis”; Vestnik Khirurgi, May 14, 1986, pp. 66-70, and 9 page English translation thereof. |
Yusupov. Yu. N., et al; “Active Wound Drainage”, Vestnik Khirurgi, vol. 138, Issue 4, 1987, and 7 page English translation thereof. |
Davydov, Yu. A., et al; “Bacteriological and Cytological Assessment of Vacuum Therapy for Purulent Wounds”; Vestnik Khirurgi, Oct 1988, pp. 48-52, and 8 page English translation thereof. |
Davydov, Yu. A., et al; “Concepts for the Clinical-Biological Management of the Wound Process in the Treatment of Purulent Wounds by Means of Vacuum Therapy”; Vestnik Khirurgi, Jul. 7, 1980, pp. 132-136, and 8 page English translation thereof. |
Chariker, Mark E., M.D., et al; “Effective Management of incisional and cutaneous fistulae with closed suction wound drainage”; Contemporary Surgery, vol. 34, Jun. 1989, pp. 59-63. |
Egnell Minor, Instruction Book, First Edition, 300 7502, Feb. 1975, pp. 24. |
Egnell Minor: Addition to the Users Manual Concerning Overflow Protection—Concerns all Egnell Pumps, Feb. 3, 1983, p. 1. |
Svedman, P.: “Irrigation Treatment of Leg Ulcers”, The Lancet, Sep. 3, 1983, pp. 532-534. |
Chinn, Steven D. et al.: “Closed Wound Suction Drainage”, The Journal of Foot Surgery, vol. 24, No. 1, 1985, pp. 76-81. |
Arnljots, Björn et al.: “Irrigation Treatment in Split-Thickness Skin Grafting of Intractable Leg Ulcers”, Scand J. Plast Reconstr. Surg., vol. 19, 1985, pp. 211-213. |
Svedman, P.: “A Dressing Allowing Continuous Treatment of a Biosurface”, IRCS Medical Science: Biomedical Technology, Clinical Medicine, Surgery and Transplantation, vol. 7, 1979, p. 221. |
Svedman, P. et al.: “A Dressing System Providing Fluid Supply and Suction Drainage Used for Continuous or Intermittent Irrigation”, Annals of Plastic Surgery, vol. 17, No. 2, Aug. 1986, pp. 125-133. |
K.F. Jeter, T.E. Tintle, and M. Chariker, “Managing Draining Wounds and Fistulae: New and Established Methods,” Chronic Wound Care, edited by D. Krasner (Health Management Publications, Inc., King of Prussia, PA 1990), pp. 240-246. |
G. {hacek over (Z)}ivadinovic, V. ukić, {hacek over (Z)}. Maksimović . Radak, and P. Pe{hacek over (s)}ka, “Vacuum Therapy in the Treatment of Peripheral Blood Vessels,” Timok Medical Journal 11 (1986), pp. 161-164 (copy and certified translation). |
F.E. Johnson, “An Improved Technique for Skin Graft Placement Using a Suction Drain,” Surgery, Gynecology, and Obstetrics 159 (1984), pp. 584-585. |
A.A. Safronov, Dissertation Abstract, Vacuum Therapy of Trophic Ulcers of the Lower Leg with Simultaneous Autoplasty of the Skin (Central Scientific Research Institute of Traumatology and Orthopedics, Moscow, U.S.S.R. 1967) (copy and certified translation). |
M. Schein, R. Saadia, J.R. Jamieson, and G.A.G. Decker, “The ‘Sandwich Technique’ in the Management of the Open Abdomen,” British Journal of Surgery 73 (1986), pp. 369-370. |
D.E. Tribble, “An Improved Sump Drain-Irrigation Device of Simple Construction,” Archives of Surgery 105 (1972) pp. 511-513. |
C.E. Tennant, “The Use of Hypermia in the Postoperative Treatment of Lesions of the Extremities and Thorax,” Journal of the American Medical Association 64 (1915), pp. 1548-1549. |
Selections from W. Meyer and V. Schmieden, Bier's Hyperemic Treatment in Surgery, Medicine, and the Specialties: A Manual of Its Practical Application, (W.B. Saunders Co., Philadelphia, PA 1909), pp. 17-25, 44-64, 90-96, 167-170, and 210-211. |
V.A. Solovev et al., Guidelines, The Method of Treatment of Immature External Fistulas in the Upper Gastrointestinal Tract, editor-in-chief Prov. V.I. Parahonyak (S.M. Kirov Gorky State Medical Institute, Gorky, U.S.S.R. 1987) (“Solovev Guidelines”). |
V.A. Kuznetsov & N.A. Bagautdinov, “Vacuum and Vacuum-Sorption Treatment of Open Septic Wounds,” in II All-Union Conference on Wounds and Wound Infections: Presentation Abstracts, edited by B.M. Kostyuchenok et al. (Moscow, U.S.S.R. Oct. 28-29, 1986) pp. 91-92 (“Bagautdinov II”). |
V.A. Solovev, Dissertation Abstract, Treatment and Prevention of Suture Failures after Gastric Resection (S.M. Kirov Gorky State Medical Institute, Gorky, U.S.S.R. 1988) (“Solovev Abstract”). |
V.A.C.® Therapy Clinical Guidelines: A Reference Source for Clinicians (Jul. 2007). |
Number | Date | Country | |
---|---|---|---|
20130289500 A1 | Oct 2013 | US |
Number | Date | Country | |
---|---|---|---|
61140654 | Dec 2008 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 12639351 | Dec 2009 | US |
Child | 13931353 | US |