1. Field of the Invention
The present invention generally relates to treatment of wounds, and more specifically to improved apparatus and methods for treating a wound on a patient's body by applying reduced pressure to the body at the site of the wound. In this context, the term “wound” is to be interpreted broadly, to include any wound that may be treated using reduced pressure.
2. Description of the Related Art
The treatment of open or chronic wounds that are too large to spontaneously close or otherwise fail to heal by means of applying reduced pressure to the site of the wound is well known in the art. One such system is disclosed in U.S. patent application Ser. No. 10/652,100, which was filed with the U.S. Patent and Trademark Office on Aug. 28, 2003. The disclosure of this U.S. patent application is incorporated herein by reference. Another system is disclosed in U.S. patent application Ser. No. 11/026,733, entitled “Improved Reduced Pressure Wound Treatment Appliance,” which was filed with the U.S. Patent and Trademark Office on Dec. 30, 2004. The disclosure of this U.S. patent application is also incorporated herein by reference. Yet another system is disclosed in U.S. patent application Ser. No. 11/064,813, entitled “Improved Flexible Reduced Pressure Wound Treatment Appliance,” which was filed with the U.S. Patent and Trademark Office on Feb. 24, 2005. The disclosure of this U.S. patent application is also incorporated herein by reference.
Reduced pressure wound treatment systems currently known in the art commonly involve placing a treatment device that is impermeable to liquids over the wound, using various means to seal the treatment device to the tissue of the patient surrounding the wound, and connecting a source of reduced pressure (such as a vacuum pump) to the treatment device in a manner so that an area of reduced pressure is created under the treatment device in the area of the wound. The systems also typically act to remove exudate that may be aspirated from the wound. Thus, such systems also typically have a separate collection device located between the reduced pressure source and the treatment device to collect. This collection device represents a separate source of expense in reduced pressure wound treatment. In addition, it is advantageous in some circumstances to remove exudate from the wound so that the exudate does not remain in the presence of the wound. For example, healing of the wound may be enhanced by the removal of exudate from the wound in some circumstances. In yet other cases, it may be advantageous to be able to gain physical access to the wound without having to remove the treatment device from the body surrounding the wound. For example, it may be desirable to monitor or treat the condition of the wound during the treatment process. If the treatment device is sealed to the body using an adhesive tape, removing the adhesive tape to monitor or treat the wound may cause discomfort and pain for the patient.
Therefore, there is a need for a wound treatment device that can eliminate the requirement for a separate collection device to collect exudate from the wound. This type of device could reduce the expense involved in wound treatment by eliminating the need for the collection device. There is also a need for such a treatment device to remove exudate from the presence of the wound to aid in wound healing. It may also be desirable for this type of treatment device to be disposable in certain circumstances. Further, there is a need for a treatment device that would allow for physical access to the wound without the need for removing the treatment device from the body. This type of device could enhance patient comfort. In addition, where the access is simple and quickly obtained, it could also decrease the cost of wound treatment by reducing the time required of healthcare practitioners to be involved in wound treatment. Finally, there is also a need for a reduced pressure treatment system that is relatively inexpensive, while meeting the needs described above.
The present invention is directed to reduced pressure treatment appliances and methods that satisfy the needs described above. As described in greater detail below, they have many advantages over existing reduced pressure treatment apparatus and methods when used for their intended purpose, as well as novel features that result in new reduced pressure treatment appliances and methods that are not anticipated, rendered obvious, suggested, or even implied by any of the prior art apparatus or methods, either alone or in any combination thereof.
In accordance with the present invention, a treatment appliance is provided for treating a wound on a body by applying reduced pressure (i.e., pressure that is below ambient atmospheric pressure) to the wound in a controlled manner for a selected time period in a manner that overcomes the disadvantages of currently existing apparatus. For example, the application of reduced pressure to a wound provides such benefits as faster healing, increased formation of granulation tissue, closure of chronic open wounds, reduction of bacterial density within wounds, inhibition of burn penetration, and enhancement of flap and graft attachment. Wounds that have exhibited positive response to treatment by the application of negative pressure include infected open wounds, decubitus ulcers, dehisced incisions, partial thickness bums, and various lesions to which flaps or grafts have been attached.
In one embodiment of a first version of the present invention, an appliance for treating a wound on a body is comprised of a cover, sealing means to seal the cover to the body, which are described in more detail below, and reduced pressure supply means, which are also described in more detail below. The cover, which is sized to be placed over and enclose the wound, is further comprised of a top cup member, an interface member, and interface attachment means for removably attaching the top cup member to the interface member. The interface member is further comprised of flow control means that permit exudate from the wound to flow from the wound into the top cup member, but not in the opposite direction. Thus, in this embodiment, the interface member is sealed to the body by the sealing means and exudate from the wound flows from the wound through the flow control means in the interface member into the volume of the cover above the interface member. The flow control means do not allow the exudate to flow back into the area of the wound under the interface member. The cover and the sealing means allow reduced pressure to be maintained in the volume under the cover at the site of the wound. The reduced pressure supply means operably connect the cover to a reduced pressure supply source that provides a supply of reduced pressure to the cover, so that the volume under the cover at the site of the wound is supplied with reduced pressure by the reduced pressure supply source.
In some embodiments of this first version of the present invention, the cover may be approximately cylindrical in shape. In other embodiments, the cover may be approximately cup-shaped. In some embodiments, the sealing means may be comprised of the suction of the interface member against the body, such suction being produced by the presence of reduced pressure in the volume under the cover at the site of the wound. In still other embodiments, the top cup member and the interface member are each comprised of materials from the group consisting of semi-rigid materials, rigid materials, and combinations of such materials. Further, in some embodiments, the interface member is further comprised of a membrane portion that is disposed approximately adjacent to the body and the flow control means is comprised of at least one one-way valve operably disposed in the membrane portion. In other embodiments, the interface member may be further comprised of a membrane portion that is disposed approximately adjacent to the body and that permits fluid to flow in only one direction, and the flow control means is comprised of all or a portion of the membrane. In some embodiments of this first version of the present invention, the interface attachment means may be comprised of an o-ring seal or a magnetic seal. In other embodiments, a portion of the interface member may be of a size and shape adapted to fit tightly against a portion of the top cup member, wherein an operable seal (described in more detail below) is created between the interface member and the top cup member. In yet other embodiments, the sealing means may be comprised of an adhesive that is disposed between a portion of the cover and the portion of the body adjacent to said portion of the cover. In still other embodiments, the sealing means may be comprised of an adhesive tape that is disposed over a portion of the cover and the portion of the body adjacent to said portion of the cover. In other embodiments, the top cup member is further comprised of a port and flow shutoff means operably connected to the port, wherein the flow shutoff means halt or inhibit the supply of reduced pressure to the cover when the level of exudate under the cover at the site of the wound reaches a predetermined level. In yet other embodiments, the interface attachment means does not provide for removal of the top cup member from the interface member.
In some embodiments of this first version of the present invention, the top cup member of the cover may be further comprised of a lid member, a cup body member, and lid attachment means to removably attach the lid member to the cup body member. In some of these embodiments, the cover is approximately cylindrical in shape. In other embodiments, the interface attachment means provides for removable attachment of the top cup member to the interface member, but does not provide for permanent attachment of the top cup member to the interface member. In some of these embodiments, the interface attachment means may be comprised of an o-ring seal or a magnetic seal. In other embodiments, a portion of the interface member may be of a size and shape adapted to fit tightly against a portion of the top cup member, wherein an operable seal is created between the interface member and the top cup member. In still other embodiments, the interface attachment means provides for permanent attachment of the top cup member to the interface member, but does not provide for removable attachment of the top cup member to the interface member. In yet other embodiments, the lid attachment means may be comprised of an o-ring seal or a magnetic seal. In other embodiments, a portion of the lid member is of a size and shape adapted to fit tightly against a portion of the cup body member, wherein an operable seal is created between the lid member and the cup body member.
In other embodiments of this first version of the present invention, the cover is comprised of a lid member, a cup body member, and lid attachment means to removably attach the lid member to the cup body member. In these embodiments, the cover is sized to be placed over and enclose the wound and adapted to maintain reduced pressure in the volume under the cover at the site of the wound. Also in these embodiments, the sealing means, which are described in more detail below, are used to seal the cup body member of the cover to the body so that reduced pressure may be maintained in the volume under the cover at the site of the wound. Reduced pressure supply means operably connect the cover to a reduced pressure supply source, which provides a supply of reduced pressure to the cover so that the volume under the cover at the site of the wound is supplied with reduced pressure by the reduced pressure supply source. In some of these embodiments, the lid attachment means may be comprised of an o-ring seal or a magnetic seal. In other embodiments, a portion of the lid member is of a size and shape adapted to fit tightly against a portion of the cup body member, wherein an operable seal is created between the lid member and the cup body member. In some of these embodiments, a portion of the lid member is approximately cylindrical in shape and a portion of the cup body member is approximately cylindrical in shape and said portions have threads and means to receive threads, so that when such portions are screwed together an operable seal is created between the lid member and the cup body member.
In a second version of the present invention, an appliance for administering reduced pressure treatment to a wound on a body is comprised of a treatment device and a vacuum system. In various embodiments of this second version of the invention, the treatment device is also comprised of a cover and sealing means, which may have substantially the same structure, features, characteristics and operation as the cover and sealing means, respectively, described above in connection with the first version of the present invention. In this second version of the invention, the vacuum system is further comprised of a reduced pressure supply source that provides a supply of reduced pressure and reduced pressure supply means (which are described in more detail below) to operably connect the treatment device to the reduced pressure supply source, so that the volume under the treatment device at the site of the wound is supplied with reduced pressure by the reduced pressure supply source. In various embodiments of this second version of the invention, the reduced pressure supply means may generally have substantially the same structure, features, characteristics and operation as the reduced pressure supply means described above in connection with the first version of the invention.
In some embodiments of this second version of the invention, the reduced pressure supply source is comprised of a vacuum pump. In some of these embodiments, the reduced pressure supply source further comprises a control system for the vacuum pump, wherein the control system may control at least the level of suction produced by the vacuum pump or the rate of fluid flow produced by the vacuum pump, or any combination of rate of suction and rate of fluid flow of the vacuum pump. In other embodiments, the reduced pressure supply source further comprises a filter operably positioned between the vacuum pump and the reduced pressure supply means. In these embodiments, the filter prevents the venting of and contamination of the vacuum pump by micro-organisms or fluids (or both) aspirated from the wound. In yet other embodiments, the vacuum pump is comprised of a portable vacuum pump. In still other embodiments of this second version of the invention, the reduced pressure supply means is comprised of flexible tubing. In other embodiments, the cover is further comprised of a port and flow shutoff means, wherein the flow shutoff means halts or inhibits the application of reduced pressure to the cover when exudate from the wound reaches a predetermined level within the cover. In yet other embodiments of this second version of the invention, the reduced pressure under the cover at the site of the wound is in the range from approximately 20 mm of Hg below atmospheric pressure to approximately 125 mm of Hg below atmospheric pressure. In other embodiments, the reduced pressure is applied in a cyclic nature, the cyclic nature providing alternating time periods of application of reduced pressure and without application of reduced pressure.
In a third version of the present invention, an appliance for administering reduced pressure treatment to a wound on a body is comprised of a treatment device and a vacuum system. In various embodiments of this third version of the invention, the treatment device is also comprised of a cover and sealing means, which may have substantially the same structure, features, characteristics and operation as the cover and sealing means, respectively, described above in connection with the first and second versions of the present invention. In the various embodiments of this third version of the invention, the vacuum system is comprised of a suction bulb, which may (but not necessarily) provide a source of reduced pressure, and reduced pressure supply means, which are described in more detail below, to operably connect the cover to the suction bulb, so that the site of the wound in the volume under the cover may be supplied with reduced pressure by the suction bulb. In some embodiments of this third version of the invention, the suction bulb is further comprised of an inlet port and an outlet port, wherein the inlet port is operably connected to the reduced pressure supply means, and the vacuum system further comprises an exhaust tubing member operably connected to the outlet port. In some of these embodiments, the vacuum system further comprises an exhaust control valve operably connected to the exhaust tubing member. In other embodiments, the vacuum system is further comprised of a filter operably connected to the exhaust tubing member, which prevents the venting of micro-organisms or fluids (or both) aspirated from the wound. In yet other embodiments, the vacuum system is further comprised of a supplemental vacuum system that is operably connected to the exhaust tubing member. In these embodiments, the supplemental vacuum system may generally have substantially the same structure, features, characteristics and operation as the vacuum system described above in connection with the second version of the invention.
A fourth version of the present invention discloses a method of treating a wound. In one embodiment of this fourth version of the invention, the method comprises the following steps. First, a cover is positioned on the body over the wound, wherein the cover may have substantially the same structure, features, characteristics and operation as the embodiments of the cover described above in connection with the first, second and third versions of the invention. Second, the cover is operably sealed to the body so that reduced pressure may be maintained in the volume under the cover at the site of the wound. Third, the cover is operably connected with a vacuum system for producing reduced pressure in the volume under the cover at the site of the wound. Fourth, the reduced pressure is maintained until the wound has progressed toward a selected stage of healing. In other embodiments of this fourth version of the invention, the vacuum system is comprised of a suction bulb and the method further comprises the step of squeezing the suction bulb to reduce its volume and then releasing the suction bulb, so that reduced pressure is produced in the volume under the cover at the site of the wound. In other embodiments of this fourth version of the invention, the reduced pressure under the cover at the site of the wound is in the range from approximately 20 mm of Hg below atmospheric pressure to approximately 125 mm of Hg below atmospheric pressure. In still other embodiments of this fifth version of the invention, the reduced pressure is applied in a cyclic nature, the cyclic nature providing alternating time periods of application of reduced pressure and without application of reduced pressure. In other embodiments, the cover is further comprised of a lid member, a cup body member, and lid attachment means to removably attach the lid member to the cup body member, and the method further comprises the steps of halting the application of reduced pressure to the cover, removing the lid member from the cup body member, and attending to the wound. In some of these embodiments, the method further comprises the steps of re-attaching the lid member to the cup body member after attending to the wound and then reapplying reduced pressure to the volume under the cover in the area of the wound. In still other embodiments of this fourth version of the invention, the top cup member further comprises a port and flow shutoff means operably connected to the port, wherein the flow shutoff means halts or hinders the supply of reduced pressure to the volume under the cover in the area of the wound when the level of exudate within the cover reaches a predetermined level. In these embodiments, the method may further comprise the steps of monitoring the level of exudate aspirated from the wound that accumulates within the volume of the cover and removing the cover from the body when the level of exudate aspirated from the wound causes the flow shutoff means to halt or hinder the supply of reduced pressure to the volume under the cover in the area of the wound. It is to be noted that in various other embodiments the steps described above may be performed in a different order than that presented.
The present invention therefore meets the needs discussed above in the Background section. For example, some embodiments of the present invention can eliminate the requirement for a separate collection device to collect exudate from the wound because the exudate is collected and retained within the volume under the cover. In these embodiments, the interface member is sealed to the body by the sealing means and exudate from the wound flows from the wound through the flow control means in the interface member into the volume of the cover above the interface member. The flow control means do not allow the exudate to flow back into the area of the wound under the interface member. Thus, this type of device could reduce the expense involved in wound treatment by eliminating the need for the collection device. This treatment device also removes exudate from the presence of the wound to aid in wound healing. It is also possible for this type of treatment device to be disposable. Further, some embodiments of the treatment device allow for physical access to the wound without the need for removing the treatment device from the body. In these embodiments, the lid member may be removed from the cup body member of the cover, exposing the area of the wound if an interface member is not utilized. This embodiment of the device could enhance patient comfort because it would not be necessary to remove the sealing means to access the wound. In addition, because access is simple and quickly obtained, the present invention may also decrease the cost of wound treatment by reducing the time required of healthcare practitioners to be involved in wound treatment. The present invention should also be relatively inexpensive to produce, while meeting the needs described above. Finally, as can be observed from the foregoing discussion, the present invention has great flexibility. In various embodiments, it may be used with or without the interface member, as well as with or without the removable lid feature.
There has thus been outlined, rather broadly, the more primary features of the present invention. There are additional features that are also included in the various embodiments of the invention that are described hereinafter and that form the subject matter of the claims appended hereto. In this respect, it is to be understood that the invention is not limited in its application to the details of construction and to the arrangements of the components set forth in the following description or illustrated in the following drawings. This invention may be embodied in the form illustrated in the accompanying drawings, but the drawings are illustrative only and changes may be made in the specific construction illustrated and described within the scope of the appended claims. The invention is capable of other embodiments and of being practiced and carried out in various ways. Also, it is to be understood that the phraseology and terminology employed herein are for the purpose of the description and should not be regarded as limiting.
The foregoing summary, as well as the following detailed description of the preferred embodiments of the present invention, will be better understood when read in conjunction with the appended drawings, in which:
In accordance with the present invention, a wound treatment appliance is provided for treating a wound by applying reduced pressure (i.e., pressure that is below ambient atmospheric pressure) to the wound in a controlled manner for a selected time period in a manner that overcomes the disadvantages of currently existing apparatus. One embodiment of a first version of the invention is the treatment appliance 10 illustrated in
The embodiment of the top cup member 21 of the cover 20 illustrated in
In the embodiment of the cover 20 illustrated in
In some embodiments of this first version of the present invention, as illustrated in
In the embodiment of the cover 20 illustrated in
In the embodiment of the present invention illustrated in
Referring to the embodiment of the cover 20 illustrated in
In various embodiments of this first version of the present invention, the interface attachment means, which may be used to removably or permanently attach the interface member 22 to the top cup member 21, may be any suitable means currently known in the relevant art or developed in the relevant art in the future that may be used to create an airtight and liquid-tight seal (sometimes referred to herein as an “operable seal”) between the interface member 22 and the top cup member 21. For example, in the embodiment illustrated in
An embodiment of a second version of the present invention is the treatment appliance 110 illustrated in
In the various embodiments of this second version of the present invention, as illustrated in
In the embodiment illustrated in
In other embodiments of the second version of the invention, the reduced pressure supply source 130 of the vacuum system 150, may be comprised of a small, portable vacuum pump 131. In some of these embodiments, a filter 133 or a power source (not illustrated), or both, may also be contained within the housing for the portable vacuum pump 131. In these embodiments, the portable vacuum pump 131 is preferably controlled by a control device 132 that is also located within the housing for the portable vacuum pump 131, which may provide substantially the same functions as the control device 132 described above. Except for its smaller size, the portable vacuum pump 131 may operate in substantially the same manner as the vacuum pump 131 described above. Also, in these embodiments, the filter 133 may have the same structure, features, characteristics and operation, and provide substantially the same functions, as the filter 133 described above. In some of these embodiments, the filter 133 may be rigidly connected to the portable vacuum pump 131. The power source may be any source of energy currently known in the art or that may be developed in the art in the future that may be used to power the portable vacuum pump 131. For example, in some embodiments, the power source may be a fuel cell, battery or connection to a standard wall electrical outlet.
In the embodiment of the second version of the invention illustrated in
In the embodiment of the second version of the present invention illustrated in
In some embodiments of this second version of the invention, the treatment device 111 further comprises tissue protection means (not illustrated) to protect and strengthen the surface tissue of the portions 116 of the body that are adjacent to the cover 120. The tissue protection means protects such tissue by preventing abrasion and maceration of the tissue. Preferably, the tissue protection means is a hydrocolloid material, such as COLOPAST Hydrocolloid 2655, anhydrous lanoline, or any combination of such hydrocolloid materials. More preferably, the tissue protection means is COLOPAST Hydrocolloid 2655. The tissue protection means may be applied to the body tissue to be protected, or it may be applied to the surface of the cover 120 that is to be in contact with the body tissue 116, or both, prior to placing the cover 120 over the wound 115. It is to be noted that application of the tissue protection means to the body tissue 116 that is adjacent to the cover 120 at the site of the wound 115 may only entail application of the tissue protection means to the parts of the body tissue 116 adjacent to the cover 120 that require such protection.
Referring to
An embodiment of a third version of the invention is the treatment appliance 210 illustrated in
In the embodiment of the third version of the invention illustrated in
In some embodiments of the third version of the invention illustrated in
The suction bulb 261 may be constructed of almost any fluid impermeable flexible or semi-rigid material that is suitable for medical use and that can be readily deformed by application of pressure to the outside surface of the suction bulb 261 by users of the appliance 210 and still return to its original shape upon release of the pressure. For example, the suction bulb 261 may be constructed of rubber, neoprene, silicone, or other flexible or semi-rigid polymers, or any combination of all such materials. In addition, the suction bulb 261 may be of almost any shape, such as cubical, ellipsoidal, or polyhedral. The suction bulb 261 may also be of varying size depending upon the anticipated use of the suction bulb 261, the size of the wound treatment device 211, use of a supplemental vacuum system 250a, the level of reduced pressure desired, and the preference of the user of the appliance 210. In the embodiment of the invention illustrated in
Except as illustrated and described above in connection with
This application is a divisional of U.S. application Ser. No. 11/098,203, filed on Apr. 4, 2005, which claims the benefit of U.S. Provisional Application No. 60/559,727, filed on Apr. 5, 2004. The full disclosures of U.S. application Ser. No. 11/098,203 and U.S. Provisional Application No. 60/559,727 are hereby incorporated by reference as if fully set forth herein.
Number | Name | Date | Kind |
---|---|---|---|
1480562 | Mock | Jan 1924 | A |
2280915 | Johnson | Apr 1941 | A |
2568933 | Robbins | Sep 1951 | A |
2632443 | Lesher | Mar 1953 | A |
2682873 | Evans et al. | Jul 1954 | A |
3367332 | Groves | Feb 1968 | A |
3486504 | Austin et al. | Dec 1969 | A |
3572340 | Lloyd et al. | Mar 1971 | A |
3610238 | Rich et al. | Oct 1971 | A |
3874387 | Barbieri | Apr 1975 | A |
3993080 | Loseff | Nov 1976 | A |
RE29319 | Nordby et al. | Jul 1977 | E |
4112947 | Nehring | Sep 1978 | A |
4136696 | Nehring | Jan 1979 | A |
4184510 | Murry et al. | Jan 1980 | A |
4217894 | Franetzki | Aug 1980 | A |
4219019 | Coates | Aug 1980 | A |
4224945 | Cohen | Sep 1980 | A |
4250882 | Adair | Feb 1981 | A |
4316466 | Babb | Feb 1982 | A |
4382441 | Svedman | May 1983 | A |
4465485 | Kashmer et al. | Aug 1984 | A |
4468227 | Jensen | Aug 1984 | A |
4525166 | Leclerc | Jun 1985 | A |
4534356 | Papadakis | Aug 1985 | A |
4551141 | McNeil | Nov 1985 | A |
4573965 | Russo | Mar 1986 | A |
4655766 | Theeuwes et al. | Apr 1987 | A |
4710165 | McNeil et al. | Dec 1987 | A |
4778446 | Jensen | Oct 1988 | A |
4778456 | Lokken | Oct 1988 | A |
4792328 | Beck et al. | Dec 1988 | A |
4795435 | Steer | Jan 1989 | A |
4820284 | Hauri | Apr 1989 | A |
4921488 | Maitz et al. | May 1990 | A |
4936834 | Beck et al. | Jun 1990 | A |
4950483 | Ksander et al. | Aug 1990 | A |
4969880 | Zamierowski | Nov 1990 | A |
4972829 | Knerr | Nov 1990 | A |
4979944 | Luzsicza | Dec 1990 | A |
5055198 | Shettigar | Oct 1991 | A |
5056510 | Gilman | Oct 1991 | A |
5073172 | Fell | Dec 1991 | A |
5100396 | Zamierowski | Mar 1992 | A |
5149331 | Ferdman et al. | Sep 1992 | A |
5152757 | Eriksson | Oct 1992 | A |
5167613 | Karami et al. | Dec 1992 | A |
5176663 | Svedman et al. | Jan 1993 | A |
5261893 | Zamierowski | Nov 1993 | A |
5266928 | Johnson | Nov 1993 | A |
5279608 | Cherif Cheikh | Jan 1994 | A |
5328614 | Matsumura | Jul 1994 | A |
5358494 | Svedman | Oct 1994 | A |
5380280 | Peterson | Jan 1995 | A |
5437651 | Todd et al. | Aug 1995 | A |
5445604 | Lang | Aug 1995 | A |
5489280 | Russell | Feb 1996 | A |
5498338 | Kruger et al. | Mar 1996 | A |
5527293 | Zamierowski | Jun 1996 | A |
5549584 | Gross | Aug 1996 | A |
5562107 | Lavender et al. | Oct 1996 | A |
5636643 | Argenta et al. | Jun 1997 | A |
5643189 | Masini | Jul 1997 | A |
5645081 | Argenta | Jul 1997 | A |
5759570 | Arnold | Jun 1998 | A |
5785688 | Joshi et al. | Jul 1998 | A |
5830496 | Freeman | Nov 1998 | A |
5833646 | Masini | Nov 1998 | A |
5857502 | Buchalter | Jan 1999 | A |
5868933 | Patrick et al. | Feb 1999 | A |
5964723 | Augustine | Oct 1999 | A |
6071267 | Zamierowski | Jun 2000 | A |
6110197 | Augustine et al. | Aug 2000 | A |
6135116 | Vogel et al. | Oct 2000 | A |
D434150 | Tumey | Nov 2000 | S |
6142982 | Hunt et al. | Nov 2000 | A |
6168800 | Dobos et al. | Jan 2001 | B1 |
6176307 | Danos et al. | Jan 2001 | B1 |
6225523 | Masini | May 2001 | B1 |
6254567 | Treu et al. | Jul 2001 | B1 |
6255552 | Cummings et al. | Jul 2001 | B1 |
6287521 | Quay et al. | Sep 2001 | B1 |
6345623 | Heaton et al. | Feb 2002 | B1 |
6398767 | Fleischmann | Jun 2002 | B1 |
6402724 | Smith et al. | Jun 2002 | B1 |
6450773 | Upton | Sep 2002 | B1 |
6458109 | Henley et al. | Oct 2002 | B1 |
6465708 | Augustine | Oct 2002 | B1 |
6471685 | Johnson | Oct 2002 | B1 |
6471982 | Lydon et al. | Oct 2002 | B1 |
6482491 | Samuelsen et al. | Nov 2002 | B1 |
6491684 | Joshi et al. | Dec 2002 | B1 |
6553998 | Heaton et al. | Apr 2003 | B2 |
6599262 | Masini | Jul 2003 | B1 |
6648862 | Watson | Nov 2003 | B2 |
6673028 | Argenta et al. | Jan 2004 | B1 |
6676610 | Morton et al. | Jan 2004 | B2 |
6685681 | Lockwood et al. | Feb 2004 | B2 |
6695823 | Lina et al. | Feb 2004 | B1 |
6695824 | Howard et al. | Feb 2004 | B2 |
6752794 | Lockwood et al. | Jun 2004 | B2 |
6755807 | Risk, Jr. et al. | Jun 2004 | B2 |
6764462 | Risk, Jr. et al. | Jul 2004 | B2 |
6767334 | Randolph | Jul 2004 | B1 |
6814079 | Heaton et al. | Nov 2004 | B2 |
6824533 | Risk, Jr. et al. | Nov 2004 | B2 |
6855135 | Lockwood et al. | Feb 2005 | B2 |
6856821 | Johnson | Feb 2005 | B2 |
6936037 | Bubb et al. | Aug 2005 | B2 |
6951553 | Bubb et al. | Oct 2005 | B2 |
6977323 | Swenson | Dec 2005 | B1 |
6979324 | Bybordi et al. | Dec 2005 | B2 |
6994702 | Johnson | Feb 2006 | B1 |
7004915 | Boynton et al. | Feb 2006 | B2 |
7022113 | Lockwood et al. | Apr 2006 | B2 |
7070584 | Johnson et al. | Jul 2006 | B2 |
7077832 | Fleischmann | Jul 2006 | B2 |
7108683 | Zamierowski | Sep 2006 | B2 |
7118545 | Boyde | Oct 2006 | B2 |
7128735 | Weston | Oct 2006 | B2 |
7195624 | Lockwood | Mar 2007 | B2 |
7216651 | Argenta et al. | May 2007 | B2 |
7361184 | Joshi | Apr 2008 | B2 |
7381859 | Hunt et al. | Jun 2008 | B2 |
7438705 | Karpowicz et al. | Oct 2008 | B2 |
7494482 | Orgill et al. | Feb 2009 | B2 |
7524315 | Blott et al. | Apr 2009 | B2 |
7534240 | Johnson | May 2009 | B1 |
7534927 | Lockwood | May 2009 | B2 |
7569742 | Haggstrom et al. | Aug 2009 | B2 |
7611500 | Lina et al. | Nov 2009 | B1 |
7615036 | Joshi et al. | Nov 2009 | B2 |
7645269 | Zamierowski | Jan 2010 | B2 |
7699830 | Martin | Apr 2010 | B2 |
7708724 | Weston | May 2010 | B2 |
7753894 | Blott et al. | Jul 2010 | B2 |
7759537 | Bishop et al. | Jul 2010 | B2 |
7759538 | Fleischmann | Jul 2010 | B2 |
7759539 | Shaw et al. | Jul 2010 | B2 |
7775998 | Riesinger | Aug 2010 | B2 |
7776028 | Miller et al. | Aug 2010 | B2 |
7779625 | Joshi et al. | Aug 2010 | B2 |
7790945 | Watson, Jr. | Sep 2010 | B1 |
7794438 | Henley et al. | Sep 2010 | B2 |
7815616 | Boehringer et al. | Oct 2010 | B2 |
7828782 | Suzuki | Nov 2010 | B2 |
7846141 | Weston | Dec 2010 | B2 |
7883494 | Martin | Feb 2011 | B2 |
7909805 | Weston | Mar 2011 | B2 |
7959624 | Riesinger | Jun 2011 | B2 |
7964766 | Blott et al. | Jun 2011 | B2 |
7976519 | Bubb et al. | Jul 2011 | B2 |
7998125 | Weston | Aug 2011 | B2 |
8062272 | Weston | Nov 2011 | B2 |
8062273 | Weston | Nov 2011 | B2 |
8080702 | Blott et al. | Dec 2011 | B2 |
8100887 | Weston | Jan 2012 | B2 |
8118794 | Weston | Feb 2012 | B2 |
8128615 | Blott | Mar 2012 | B2 |
20010029956 | Argenta et al. | Oct 2001 | A1 |
20010034499 | Sessions et al. | Oct 2001 | A1 |
20020065494 | Lockwood et al. | May 2002 | A1 |
20020068913 | Fleischmann | Jun 2002 | A1 |
20020115952 | Johnson et al. | Aug 2002 | A1 |
20020120185 | Johnson | Aug 2002 | A1 |
20020143286 | Turney | Oct 2002 | A1 |
20020150720 | Howard et al. | Oct 2002 | A1 |
20020161346 | Lockwood et al. | Oct 2002 | A1 |
20020183702 | Henley et al. | Dec 2002 | A1 |
20020198503 | Risk et al. | Dec 2002 | A1 |
20020198504 | Risk et al. | Dec 2002 | A1 |
20030014022 | Lockwood et al. | Jan 2003 | A1 |
20030014025 | Allen et al. | Jan 2003 | A1 |
20030021775 | Freeman | Jan 2003 | A1 |
20030040687 | Boynton et al. | Feb 2003 | A1 |
20030050594 | Zamierowski | Mar 2003 | A1 |
20030088202 | Gilman | May 2003 | A1 |
20030108587 | Orgill et al. | Jun 2003 | A1 |
20030144619 | Augustine | Jul 2003 | A1 |
20030171675 | Rosenberg | Sep 2003 | A1 |
20030175798 | Raees et al. | Sep 2003 | A1 |
20030208149 | Coffey | Nov 2003 | A1 |
20030212357 | Pace | Nov 2003 | A1 |
20030212431 | Brady et al. | Nov 2003 | A1 |
20030225347 | Argenta et al. | Dec 2003 | A1 |
20040019342 | Nagasuna et al. | Jan 2004 | A1 |
20040030304 | Hunt et al. | Feb 2004 | A1 |
20040039391 | Argenta et al. | Feb 2004 | A1 |
20040054338 | Bybordi et al. | Mar 2004 | A1 |
20040064132 | Boehringer et al. | Apr 2004 | A1 |
20040073151 | Weston | Apr 2004 | A1 |
20040122434 | Argenta et al. | Jun 2004 | A1 |
20040127834 | Sigurjonsson et al. | Jul 2004 | A1 |
20040127863 | Bubb et al. | Jul 2004 | A1 |
20040225208 | Johnson | Nov 2004 | A1 |
20040241214 | Kirkwood et al. | Dec 2004 | A1 |
20050004534 | Lockwood et al. | Jan 2005 | A1 |
20050010153 | Lockwood et al. | Jan 2005 | A1 |
20050028828 | Heaton et al. | Feb 2005 | A1 |
20050070835 | Joshi | Mar 2005 | A1 |
20050080372 | Nielsen et al. | Apr 2005 | A1 |
20050148913 | Weston | Jul 2005 | A1 |
20050203452 | Weston et al. | Sep 2005 | A1 |
20050222527 | Miller et al. | Oct 2005 | A1 |
20050222528 | Weston | Oct 2005 | A1 |
20050261615 | Weston | Nov 2005 | A1 |
20050261642 | Weston | Nov 2005 | A1 |
20050261643 | Bybordi et al. | Nov 2005 | A1 |
20060015087 | Risk, Jr. et al. | Jan 2006 | A1 |
20060025727 | Boehringer | Feb 2006 | A1 |
20060029650 | Coffey | Feb 2006 | A1 |
20060041247 | Petrosenko et al. | Feb 2006 | A1 |
20060100594 | Adams et al. | May 2006 | A1 |
20060116620 | Oyaski | Jun 2006 | A1 |
20060155260 | Blott et al. | Jul 2006 | A1 |
20070038172 | Zamierowski | Feb 2007 | A1 |
20070066945 | Martin | Mar 2007 | A1 |
20070129707 | Blott et al. | Jun 2007 | A1 |
20070141128 | Blott et al. | Jun 2007 | A1 |
20070265585 | Joshi et al. | Nov 2007 | A1 |
20070265586 | Joshi et al. | Nov 2007 | A1 |
20070293830 | Martin | Dec 2007 | A1 |
20080082059 | Fink et al. | Apr 2008 | A1 |
20080167593 | Fleischmann | Jul 2008 | A1 |
20080183119 | Joshi | Jul 2008 | A1 |
20080188820 | Joshi | Aug 2008 | A1 |
20080223378 | Henderson et al. | Sep 2008 | A1 |
20090012483 | Blott et al. | Jan 2009 | A1 |
20090054855 | Blott et al. | Feb 2009 | A1 |
20090069759 | Blott et al. | Mar 2009 | A1 |
20090131888 | Joshi | May 2009 | A1 |
20090192499 | Weston et al. | Jul 2009 | A1 |
20090204084 | Blott et al. | Aug 2009 | A1 |
20090216170 | Robinson et al. | Aug 2009 | A1 |
20090221977 | Blott et al. | Sep 2009 | A1 |
20090227969 | Jaeb et al. | Sep 2009 | A1 |
20090234309 | Vitaris et al. | Sep 2009 | A1 |
20090240185 | Jaeb et al. | Sep 2009 | A1 |
20090254054 | Blott et al. | Oct 2009 | A1 |
20090299251 | Buan | Dec 2009 | A1 |
20090299255 | Kazala, Jr. et al. | Dec 2009 | A1 |
20090299256 | Barta et al. | Dec 2009 | A1 |
20090299257 | Long et al. | Dec 2009 | A1 |
20090299306 | Buan | Dec 2009 | A1 |
20090299307 | Barta et al. | Dec 2009 | A1 |
20090299341 | Kazala, Jr. et al. | Dec 2009 | A1 |
20090299342 | Cavanaugh, II et al. | Dec 2009 | A1 |
20090306580 | Blott et al. | Dec 2009 | A1 |
20090306609 | Blott et al. | Dec 2009 | A1 |
20090312723 | Blott et al. | Dec 2009 | A1 |
20090312728 | Randolph et al. | Dec 2009 | A1 |
20100036367 | Krohn | Feb 2010 | A1 |
20100069858 | Olson | Mar 2010 | A1 |
20100069863 | Olson | Mar 2010 | A1 |
20100100063 | Joshi et al. | Apr 2010 | A1 |
20100106114 | Weston et al. | Apr 2010 | A1 |
20100121286 | Locke et al. | May 2010 | A1 |
20100122417 | Vrzalik et al. | May 2010 | A1 |
20100125258 | Coulthard et al. | May 2010 | A1 |
20100160879 | Weston | Jun 2010 | A1 |
20100160880 | Weston | Jun 2010 | A1 |
20100249733 | Blott et al. | Sep 2010 | A9 |
20100268198 | Buan et al. | Oct 2010 | A1 |
20100274207 | Weston | Oct 2010 | A1 |
20100286635 | Watson, Jr. | Nov 2010 | A1 |
20100298793 | Blott et al. | Nov 2010 | A1 |
20100305490 | Coulthard et al. | Dec 2010 | A1 |
20100324510 | Andresen et al. | Dec 2010 | A1 |
20100331797 | Patet et al. | Dec 2010 | A1 |
20110004172 | Eckstein et al. | Jan 2011 | A1 |
20110009835 | Blott | Jan 2011 | A1 |
20110009838 | Greener | Jan 2011 | A1 |
20110028918 | Hartwell | Feb 2011 | A1 |
20110034892 | Buan | Feb 2011 | A1 |
20110046584 | Haggstrom et al. | Feb 2011 | A1 |
20110046585 | Weston | Feb 2011 | A1 |
20110054421 | Hartwell | Mar 2011 | A1 |
20110054422 | Locke et al. | Mar 2011 | A1 |
20110054423 | Blott et al. | Mar 2011 | A1 |
20110087176 | Blott | Apr 2011 | A2 |
20110087178 | Weston | Apr 2011 | A2 |
20110092927 | Wilkes et al. | Apr 2011 | A1 |
20110105963 | Hu et al. | May 2011 | A1 |
20110106030 | Scholz | May 2011 | A1 |
20110112492 | Bharti et al. | May 2011 | A1 |
20110172615 | Greener | Jul 2011 | A2 |
20110230849 | Coulthard et al. | Sep 2011 | A1 |
20110251567 | Blott et al. | Oct 2011 | A1 |
20110282309 | Adie et al. | Nov 2011 | A1 |
20120041399 | Blott et al. | Feb 2012 | A1 |
20120053538 | Blott et al. | Mar 2012 | A1 |
Number | Date | Country |
---|---|---|
2198243 | Feb 1996 | CA |
2367460 | Oct 2000 | CA |
2390513 | May 2001 | CA |
2121688 | Jul 2001 | CA |
2408305 | Nov 2001 | CA |
2458285 | Mar 2003 | CA |
2157772 | Sep 2003 | CA |
2809828 | Sep 1978 | DE |
3935818 | May 1991 | DE |
40 12 232 | Oct 1991 | DE |
198 44 355 | Apr 2000 | DE |
20 2005 019 670 | Jun 2006 | DE |
0020662 | Jul 1984 | EP |
0355186 | Feb 1990 | EP |
0777504 | Oct 1998 | EP |
0782421 | Jul 1999 | EP |
0708620 | May 2003 | EP |
1088569 | Aug 2003 | EP |
1440667 | Mar 2006 | EP |
1284777 | Apr 2006 | EP |
1171065 | Mar 2007 | EP |
1476217 | Mar 2008 | EP |
1121163 | Nov 2008 | EP |
2 098 257 | Sep 2009 | EP |
1 163 907 | Oct 1958 | FR |
114754 | Apr 1918 | GB |
641061 | Aug 1950 | GB |
1 224 009 | Mar 1971 | GB |
1549756 | Aug 1979 | GB |
2195255 | Apr 1988 | GB |
2378392 | Feb 2003 | GB |
2003-165843 | Jun 2003 | JP |
1251912 | Aug 1986 | SU |
WO 8401904 | May 1984 | WO |
WO 9011795 | Oct 1990 | WO |
WO 9100718 | Jan 1991 | WO |
WO 9220299 | Nov 1992 | WO |
WO 9605873 | Feb 1996 | WO |
WO 9901173 | Jan 1999 | WO |
WO 0007653 | Feb 2000 | WO |
WO 0050143 | Aug 2000 | WO |
WO 0059424 | Oct 2000 | WO |
WO 0119430 | Mar 2001 | WO |
WO 0134223 | May 2001 | WO |
WO 0185248 | Nov 2001 | WO |
WO 0193793 | Dec 2001 | WO |
WO 02083046 | Oct 2002 | WO |
WO 02092783 | Nov 2002 | WO |
WO 03092620 | Nov 2003 | WO |
WO 2004024300 | Mar 2004 | WO |
WO 2004037334 | May 2004 | WO |
WO 2005025666 | Mar 2005 | WO |
WO 2005051461 | Jun 2005 | WO |
WO 2005070480 | Aug 2005 | WO |
WO 2005082435 | Sep 2005 | WO |
Number | Date | Country | |
---|---|---|---|
20100174251 A1 | Jul 2010 | US | |
20110087180 A2 | Apr 2011 | US |
Number | Date | Country | |
---|---|---|---|
60559727 | Apr 2004 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 11098203 | Apr 2005 | US |
Child | 12726161 | US |