The present invention relates generally to medical treatment systems and, more particularly, to reduced-pressure wound treatment systems and methods employing manifold structures.
Clinical studies and practice have shown that providing a reduced pressure in proximity to a tissue site augments and accelerates the growth of new tissue at the tissue site. The applications of this phenomenon are numerous, but application of reduced pressure has been particularly successful in treating wounds. This treatment (frequently referred to in the medical community as “negative pressure wound therapy,” “NPWT,” “reduced pressure therapy,” or “vacuum therapy”) provides a number of benefits, which may include faster healing and increased formulation of granulation tissue.
Negative pressure therapy, or reduced-pressure therapy, has been used to promote healing across a wide range of wound types. Typically, an open-cell foam is placed directly into the wound bed. A drape is then used to cover the dressing and seal the wound. The sealing member is then fluidly coupled to a reduced-pressure therapy unit to provide negative pressure, or reduced pressure, to the wound through the foam. While this approach has produced meaningful results, shortcomings and areas of desired of improvement remain.
Shortcomings with wound care systems and methods are addressed by the illustrative embodiments herein. According to an illustrative, non-limiting embodiment, a reduced-pressure wound treatment system for treating a tissue site on a patient includes a manifold structure for disposing proximate the tissue site. The manifold structure includes a plurality of spaced longitudinal members and at least one shaped projection coupled to at least one of the plurality of longitudinal members for creating a microstrain at the tissue site. The at least one shaped projection includes a columnar member having a distal end and includes an enlarged member positioned at the distal end of the columnar member. The columnar member has a first outer diameter (D1) and the enlarged member has a second outer diameter (D2). The second outer diameter of the enlarged member is greater than the first outer diameter of the columnar member (D2>D1). The system further includes a sealing member for placing over the tissue and manifold structure and a reduced-pressure subsystem for delivering reduced pressure to the sealing member.
According to another illustrative, non-limiting embodiment, a manifold structure for treating a tissue site on a patient includes a plurality of spaced longitudinal members and at least one shaped projection coupled to at least one of the plurality of longitudinal members for creating a microstrain at the tissue site. The at least one shaped projection includes a columnar member having a distal end and includes an enlarged member positioned at the distal end of the columnar member. The columnar member has a first outer diameter (D1) and the enlarged member has a second outer diameter (D2). The second outer diameter of the enlarged member is greater than the first outer diameter of the columnar member (D2>D1).
According to another illustrative, non-limiting embodiment, a method for treating a tissue site on a patient with reduced pressure includes placing a manifold structure proximate the tissue of a patient, disposing a sealing member over the manifold structure and the patient's skin; and forming a fluid seal between the sealing member and the patient's skin. The method further includes providing reduced pressure to the manifold structure whereby the at least one shaped projection creates microstrain at the tissue site. The manifold structure includes a plurality of spaced longitudinal members and at least one shaped projection coupled to at least one of the plurality of longitudinal members for creating a microstrain at the tissue site. The at least one shaped projection includes a columnar member having a distal end and includes an enlarged member positioned at the distal end of the columnar member. The columnar member has a first outer diameter (D1) and the enlarged member has a second outer diameter (D2). The second outer diameter of the enlarged member is greater than the first outer diameter of the columnar member (D2>D1).
Other features and advantages of the illustrative embodiments will become apparent with reference to the drawings and detailed description that follow.
A more complete understanding of the present invention may be obtained by reference to the following Detailed Description when taken in conjunction with the accompanying Drawings wherein:
In the following detailed description of the preferred embodiments, reference is made to the accompanying drawings that form a part hereof, and in which is shown, by way of illustration, specific embodiments in which the invention may be practiced. These embodiments are described in sufficient detail to enable those skilled in the art to practice the invention, and it is understood that other embodiments may be utilized and that logical structural, mechanical, electrical, and chemical changes may be made without departing from the spirit or scope of the invention. To avoid detail not necessary to enable those skilled in the art to practice the invention, the description may omit certain information known to those skilled in the art. The following detailed description is, therefore, not to be taken in a limiting sense, and the scope of the present invention is defined only by the appended claims.
Referring now primarily to
The reduced-pressure wound treatment system 100 generally includes a sealing member 110, a microstrain-inducing manifold 112, and a reduced-pressure subsystem 114. As will be described further below, in operation the microstrain-inducing manifold 112 induces microstrain and may be referred to as a microstrain-inducing manifold. The microstrain-inducing manifold 112 has a first side 113 and a second, patient-facing side 115.
Among the numerous benefits of the reduced-pressure wound treatment system 100 is the biological response initiated by microstrain within the wound 102. Microstrain results from pressure distributed with the microstrain-inducing manifold 112 to a tissue site 103, such as a wound surface 105 of the wound 102. It is believed that this action creates areas of cell surface strain, or microdeformation. The cells appear to respond to the strain by expressing special receptors on the surface of the cells and turning on genetic pathways in the cells, which promote healing activities. The healing activities may include increased metabolic activity, stimulation of fibroblast migration, increased cellular proliferation, extra cellular matrix production, and the formation of granulation tissue, as well as a decrease in edema and a subsequent improvement of perfusion at the tissue site 103. With respect to the wound 102, over time, granulation tissue fills the wound 102 and thereby further reduces volume and prepares the wound 102 for final closure by secondary or delayed primary intention.
The sealing member 110 is generally formed from a flexible sheet. The sealing member 110 includes a first surface 120 and a patient-facing surface 122. The sealing member 110 may be sized so that the sealing member 110 overlaps the wound 102 in such a manner that a drape extension 116 extends beyond the peripheral edge of the wound 102.
The sealing member 110 may be formed from any material that provides a fluid seal. As used herein, “fluid seal,” or “seal,” means a seal adequate to maintain reduced pressure at a desired site, e.g., a tissue site, given the particular reduced-pressure source involved. The sealing member may, for example, be an impermeable or semi-permeable, elastomeric material. “Elastomeric” means having the properties of an elastomer. Elastomeric generally refers to a polymeric material that has rubber-like properties. More specifically, most elastomers have ultimate elongations greater than 100% and a significant amount of resilience. The resilience of a material refers to the material's ability to recover from an elastic deformation. Examples of elastomers may include, but are not limited to, natural rubbers, polyisoprene, styrene butadiene rubber, chloroprene rubber, polybutadiene, nitrile rubber, butyl rubber, ethylene propylene rubber, ethylene propylene diene monomer, chlorosulfonated polyethylene, polysulfide rubber, polyurethane, EVA film, co-polyester, and silicones. Specific examples of sealing member materials include a silicone drape, 3M Tegaderm® drape, acrylic drape such as one available from Avery Dennison, or an incise drape.
An attachment member 118 or device may be coupled to the sealing member 110. The attachment member 118 is operable to removably couple the sealing member 110 to a patient's epidermis 104. As used herein, the term “coupled” includes coupling via a separate object and includes direct coupling. The term “coupled” also encompasses two or more components that are continuous with one another by virtue of each of the components being formed from the same piece of material. Also, the term “coupled” may include chemical, such as via a chemical bond, mechanical, thermal, or electrical coupling. Fluid coupling means that fluid is in communication between the designated parts or locations. The sealing member 110 and attachment member 118 work together to form a fluid seal over the patient's epidermis 104. The attachment member 118 may be any material suitable to help couple the sealing member 110 to a patient's epidermis 104. For example, the attachment member 118 may be a pressure-sensitive adhesive, heat-activated adhesive, sealing tape, double-sided sealing tape, paste, hydrocolloid, hydrogel, hooks, sutures, etc.
In the illustrative embodiment, the attachment member 118 is an adhesive layer 119 coupled to the patient-facing surface 122 of the drape extension 116. The attachment member 118 may span the entire width or a portion of the patient-facing surface 122 of the sealing member 110. Alternatively, in the case of sealing tape, the attachment member 118 may be applied over the entire first surface 120 of the sealing member 110, or over the first surface of the drape extensions 116.
The microstrain-inducing manifold 112 is typically positioned between the second, patient-facing surface 122 of the sealing member 110 and the tissue site 103, e.g., the wound 102. The microstrain-inducing manifold 112 may be sized to approximate the estimated area of the wound 102, although a larger or smaller size may be used in different applications. In the illustrative embodiment, the microstrain-inducing manifold 112 includes a plurality of interconnected nodes 124. The interconnected nodes 124 may have a substantially circular cross-section, but it will be appreciated that the interconnected nodes 124 may have any suitable cross-section including, but not limited to, triangular, square, rectangular, hexagonal, octagonal, elliptical, etc.
Each interconnected node 124 may include one or more shaped projections 126. The shaped projections 126 are operable to create microstrain at the cellular level within the tissue site 103, e.g., the wound 102. While the illustrative embodiment shows each interconnected node 124 having a plurality of shaped projections 126, it will be appreciated that some interconnected nodes 124 may be formed to avoid creating microstrains in certain areas. For example, one or more shaped projections 126 may be formed with a lower profile in a certain area or be absent all together in certain areas. Moreover, an additional manifold with no shaped projections, e.g., a smooth, laminar manifold, may be placed between at least a portion of the shaped projections 126 of the microstrain-inducing manifold 112 and a portion of the tissue site 103 to prevent the creation of strain in a certain area. It is believed that avoiding microstrains in certain areas is helpful to overall patient care. For example, it may be desirable to have a microstrain-inducing manifold 112 without projections 126 or that does not create microstrains in certain areas if a portion of the microstrain-inducing manifold 112 will lay on top of a vein, an artery, graft(s), objects used for adjunctive treatment or therapy (e.g., stents), exposed organs (e.g., heart or bowel), etc.
The shaped projections 126 may be substantially the same size. Alternatively, some projections 126 may be larger or smaller than others. In one alternative, some shaped projections 126 may have a larger pitch than others, where “pitch” is defined by the angle 128 between a reference line 127 formed to have a right angle with a longitudinal axis 129 of the shaped projection 126 as shown in cross section in
The interconnected nodes 124 may be interconnected using a network of connecting members 134. For example, the network of connecting members 134 may include a plurality of members 136 with each member 136 coupling adjacent interconnected nodes 124 to one another. In the illustrative embodiment, the members 136 have a substantially circular cross-section; however, it will be appreciated that the members 136 may have any suitable cross-section, including, but not limited to, triangular, square, rectangular, hexagonal, octagonal, elliptical, etc. In addition, as will be discussed below, the connecting members 134 may be configured such that the microstrain-inducing manifold 112 behaves anisotropically when subjected to a reduced pressure.
The interconnected nodes 124, connecting members 134, and shaped projections 126 are arranged such that the microstrain-inducing manifold 112 includes a plurality of flow channels 140 (
The microstrain-inducing manifold 112 may be formed from any suitable material. By way of example only, and without limitation, the microstrain-inducing manifold 112 may be formed from an elastomer, a bioabsorbable/biodegradable polymer, etc. In addition, the manifold material may itself be, or may be combined with, a radio opaque material or a UV florescent material such that the wound 102 may be scanned with an X-ray or UV light in order to determine whether or not any remnants of the microstrain-inducing manifold 112 remain in the wound 102 after efforts have been made to remove the microstrain-inducing manifold 112 from the wound 102. Additionally, the shaped projections 126, or microstrain-inducing manifold 112 as a whole, may be coated with a drug (e.g., an anticoagulant), an antimicrobial agent (e.g., silver or copper), a hydrophilic material, etc. Optionally, the microstrain-inducing manifold 112 may also be formed with additional components, e.g., a delivery tube (not shown), whereby drugs or antimicrobial agents may be delivered to the wound 102 through the microstrain-inducing manifold 112.
The microstrain-inducing manifold 112 may be formed by any suitable process, including, but not limited to, micromolding, injection molding, casting, etc. The shaped projections 126 may be formed to be substantially integral with corresponding interconnected nodes 124 or may be coupled to corresponding interconnected nodes 124 by any suitable technique, including, but not limited to, mechanical fasteners, welding (e.g., ultrasonic or RF welding), bonding, adhesives, cements, etc.
The microstrain-inducing manifold 112 may include numerous devices for creating point pressure or otherwise inducing microstrain. In one illustrative, non-limiting embodiment, the microstrain-inducing manifold 112 includes limited contact points with the tissue site 103. The contact points contribute to the inducement of microstrain at the tissue site 103. Thus, in one illustrative, non-limiting embodiment, the microstrain-inducing manifold 112 adjacent the tissue site 103 may have a projection surface area of X cm2 associated with the second, patient-facing side, and yet the portion of the microstrain-inducing manifold 112 directly impinging on the tissue site 103 may be less than 40 percent of the surface area X (40% X). As used herein, “projection surface area” means the area that a general projection of an item would make on a flat surface.
In another illustrative, non-limiting embodiment, the microstrain-inducing manifold 112 adjacent the tissue site 103 may have a projection surface area of X cm2 associated with the second, patient-facing side, and yet the portion of the microstrain-inducing manifold 112 directly impinging on the tissue site 103 may be less than 30 percent of the surface area X (30% X). In another illustrative, non-limiting embodiment, the microstrain-inducing manifold 112 adjacent the tissue site 103 may have a projection surface area of X cm2 associated with the second, patient-facing side, and yet the portion of the microstrain-inducing manifold 112 directly impinging on the tissue site 103 may be less than 20 percent of the surface area X (20% X). In one illustrative, non-limiting embodiment, the microstrain-inducing manifold 112 adjacent the tissue site 103 may have a projection surface area of X cm2 associated with the second, patient-facing side, and yet the portion of the microstrain-inducing manifold 112 directly impinging on the tissue site 103 may be less than 10 percent of the surface area X (10% X). In one illustrative, non-limiting embodiment, the microstrain-inducing manifold 112 adjacent the tissue site 103 may have a projection surface area of X cm2 associated with the second, patient-facing side, and yet the portion of the microstrain-inducing manifold 112 directly impinging on the tissue site 103 may be less than 5 percent of the surface area X (5% X).
In still another illustrative, non-limiting embodiment, the microstrain-inducing manifold 112 adjacent the tissue site 103 may have a projection surface area of X cm2 associated with the second, patient-facing side, and yet the portion of the microstrain-inducing manifold 112 directly impinging on the tissue site 103 may be less than 2 percent of the surface area X (2% X). In one illustrative, non-limiting embodiment, the microstrain-inducing manifold 112 adjacent the tissue site 103 may have a projection surface area of X cm2 associated with the second, patient-facing side, and yet the portion of the microstrain-inducing manifold 112 directly impinging on the tissue site 103 may be less than 1 percent of the surface area X (1% X). In one illustrative, non-limiting embodiment, the microstrain-inducing manifold 112 adjacent the tissue site 103 may have a projection surface area of X cm2 associated with the second, patient-facing side, and yet the portion of the microstrain-inducing manifold 112 directly impinging on the tissue site 103 may be less than 0.5 percent of the surface area X (0.5% X).
In one illustrative, non-limiting embodiment, the microstrain-inducing manifold 112 adjacent the tissue site 103 may have a projection surface area of X cm2 associated with the second, patient-facing side, and yet the portion of the microstrain-inducing manifold 112 directly impinging on the tissue site 103 may be less than 0.2 percent of the surface area X (0.2% X). Referring to
The microstrain-inducing manifold 112 may be disposed proximate the wound 102 such that the interconnected nodes 124 engage the wound surface 105. In one illustrative embodiment, the microstrain-inducing manifolds 112 are stacked on top of one another to substantially fill the wound 102. However, it will be appreciated that a single microstrain-inducing manifold 112 may be employed or a multi-layer microstrain-inducing manifold may also be formed and used. The microstrain-inducing manifold 112 may be formed from a single interconnected node 124 with a shaped projection 126; multiple independent interconnected nodes 124 with shaped projections 126; or a group of interconnected nodes 124, which include shaped projections 126, that are interconnected with the connecting members 134.
It will also be appreciated that a single microstrain-inducing manifold 112 may be rolled up or folded over itself in order to fill the wound 102. Furthermore, it will be appreciated that a single microstrain-inducing manifold 112 may be loaded into the wound 102 and an additional manifold placed atop the manifold 112. Examples of additional manifolds that may be placed atop the microstrain-inducing manifold 112 include, without limitation, devices that have structural elements arranged to form flow channels, cellular foam such as open-cell foam, porous tissue collections, and liquids, gels and foams that include or cure to include flow channels.
Referring again to
The reduced-pressure subsystem 114 provides reduced pressure. The reduced-pressure subsystem 114 includes a reduced-pressure source 142 that may be any source of a reduced pressure, such a vacuum pump, wall suction, etc. While the amount and nature of reduced pressure applied to a tissue site will typically vary according to the application, the reduced pressure will typically be between −5 mm Hg and −500 mm Hg. Pressure may be applied to the microstrain-inducing manifold 112 in other ways as well; for example, a pressure wrap may be used.
In the illustrative embodiment of
The reduced pressure supplied by the reduced-pressure source 142 is delivered through the conduit 150 to a reduced-pressure interface 152, which may be an elbow port 154. In one illustrative embodiment, the port 154 is a TRAC® technology port available from Kinetic Concepts, Inc. of San Antonio, Tex. The reduced-pressure interface 152 allows the reduced pressure to be delivered to the sealing member 110 and realized within an interior portion of sealing member 110 as well as the microstrain-inducing manifold 112. In this illustrative embodiment, the port 154 extends through the sealing member 110 to the microstrain-inducing manifold 112.
In use, the reduced-pressure wound treatment system 100 may be applied to a patient's epidermis 104 over the tissue site 103, e.g., wound 102. The microstrain-inducing manifold 112 may be disposed proximate the tissue site 103, e.g., disposed within the wound 102, or may overlay a portion of the wound 102. The sealing member 110 may be placed over the top of the microstrain-inducing manifold 112 such that drape extensions 116 extend beyond the periphery of the wound 102. The drape extensions 116 are secured to the patient's epidermis 104 (or a gasket member, such an additional piece of over drape surrounding the wound edges) by the attachment member 118 in order to form a fluid seal over the wound 102. As used herein, reference to forming a fluid seal with the patient's epidermis shall be deemed to also include forming a seal with a gasket proximate the wound 102.
The reduced-pressure interface 152 is applied, if not already installed, and the conduit 150 fluidly coupled at one end to the reduced-pressure interface 152. The other end of the conduit 150 is fluidly coupled to the reduced-pressure source 142. The reduced-pressure source 142 may be activated such that reduced pressure is delivered to the sealing member 110 and microstrain-inducing manifold 112. The reduced pressure provides reduced-pressure treatment to the tissue site 103, removes fluids, and may force the shaped projections 126 of the microstrain-inducing manifold 112 against the wound 102 such that they create a microstrain at the cellular level within the wound 102. As previously suggested, the microstrain may promote cellular proliferation, formation of granular tissue, and other beneficial effects. Alternatively, the microstrain-inducing manifold 112 may be placed proximate the tissue site 103 and then pressure may be applied by using a wrap over the microstrain-inducing manifold 112 or other source of pressure.
Referring now primarily to
The interconnected nodes 224 are spaced apart and interconnected by a network of connecting members 234 as clearly shown in
Referring now primarily to
Each longitudinal member 456 of the manifold structure 412 includes one or more shaped projections 426 for creating a microstrain within a wound. The longitudinal members 456 and shaped projections 426 are arranged such that the manifold structure 412 includes a plurality of flow channels 440 or pathways between adjacent longitudinal members 456 or between projections 426. The flow channels 440 facilitate distribution of fluids provided to and removed from the area of tissue around the manifold structure 412. It should be understood that any combination of longitudinal members 456 and lateral members 460 may be used. For example, the manifold structure 412 may be formed by a longitudinally connected group of longitudinal members 456 with projections 426. There are eight such longitudinal groups shown in
In the illustrative embodiment, each shaped projection 426 projects substantially normal from the corresponding longitudinal member 456. As used here, “normal” is a vector which perpendicular to that surface. For a non-flat surface, the normal vector may be taken at a point and is the same as a normal to the tangent plane at that point. It should be appreciated, however, that each shaped projection 426 may project at any angle relative to the corresponding longitudinal member 456. Each shaped projection 426 may include a columnar body 427, which has a first outer diameter (D1), and an enlarged member 429, which has a second outer diameter (D2). Each enlarged member 429 is positioned at the distal end of an associated columnar body 427. Each columnar body 429 may have any shape, e.g., the cross-section may be a circular, square, elliptical, irregular, etc., and may vary along its longitudinal dimension. The enlarged member 429 may be a spherical member as shown or may take any other shape, such as rounded cylindrical member, a cubical member, or an irregular shape. The second outer diameter (D2) of the enlarged member 429 is greater than the first outer diameter (D1) of the columnar body 427, i.e., D2>D1. In this regard, the shaped projections 426 may be considered to be tapered from a larger distal end to a smaller proximal end.
Each shaped projection 426 may have any suitable shape capable of creating a microstrain within the wound when the shaped projection 426 impinges upon the wound. Additionally, in the illustrative embodiment, the shaped projections 426 have substantially equal heights, but it will be appreciated that the shaped projections 426 may have varying heights along each longitudinal member 456 or among the plurality of longitudinal members 456. Also, it will be appreciated that certain portions of certain longitudinal members 456 may not have shaped projections 426 such that microstrain is not provided to certain areas within the wound. As with the microstrain-inducing manifolds previously discussed, the manifold structure 412 may be formed using any suitable process, including, but not limited to, micromolding, injection molding, casting, etc. The shaped projections 426 may be formed to be substantially integral with corresponding longitudinal members 456 or may be coupled to corresponding longitudinal members 456 by any suitable technique including, but not limited to, mechanical fasteners, welding (e.g., ultrasonic or RF welding), bonding, adhesives, cements, etc.
In use, the manifold structure 412 is placed proximate the tissue site, e.g., wound, and a sealing member is deployed over the manifold structure 412 and tissue site. Reduced pressure may then be applied or alternatively a direct pressure may be applied. In some embodiments, e.g., embodiment with widely spaced lateral members 460, when the manifold structure 412 is subjected to a reduced pressure, the manifold structure 412 may behave anisotropically. In other words, when the manifold structure 412 is subjected to a reduced pressure, in addition to the shaped projections 426 being forced into the wound to create microstrain, the longitudinal members 456 may move laterally towards each other. Each longitudinal member 456 move closer to an adjacent longitudinal member 456 than the adjacent longitudinal members 456 were prior to the introduction of the reduced pressure. At the same time, the manifold structure 412 does not substantially contract in a direction substantially parallel to the longitudinal members 456.
If the lateral connecting members 460 are omitted, even further contraction may be possible. The manifold structure 412 may deform more in a direction substantially perpendicular to the longitudinal members 456 (as illustrated by arrows 458 in
Referring now primarily to
The shaped projections 526 may be formed as integral portions of the mat 558 or coupled to the mat 558 by any suitable techniques, including but not limited to mechanical fasteners, welding (e.g., ultrasonic or RF welding), bonding, adhesives, cements, etc. The mat 558 may also include a plurality of apertures 560 (
In operation, the microstrain-inducing manifold 512 is typically placed proximate the tissue site with the second, patient-facing side 515 facing the patient and covered with a sealing member. Reduced pressure is then delivered to the microstrain-inducing manifold 512. When subjected to a reduced pressure, the microstrain-inducing manifold 512 impinges on the wound whereby the shaped projections 526 create microstrain within the wound. Additionally, exudate and other fluids pass through the mat 558 via the apertures 560. Also, in some instances, it may be desirable to avoid increasing microstrain within the wound via the shaped projections 526. In such an instance, the microstrain-inducing manifold 512 may be inverted such that the first side 513 of the mat 558 is placed against the wound and the shaped projections 526 extend towards the sealing member (not shown). Thus, the microstrain-inducing manifold 512 may assist in perfusion and fluid removal (via the apertures 560) without also increasing microstrain within the wound via the shaped projections 526.
Referring now primarily to
In another alternative, the microstrain-inducing manifold members 624 may have a coating of material that allows the microstrain-inducing manifold members 624 to fuse or sinter in situ to one another and form a single, integral manifold. Non-limiting examples of coatings include the following: any water soluble, swellable, or softenable material, including polymers such as poly vinyl alcohol and its copolymer, polyvinyl pyrrolidone and its copolymers, polyethylene oxide and its copolymers, polypropylene oxide and its copolymers, hydroxyl, carboxyl, and sulphonyl containing polymers (e.g., hydroxyl ethyl acrylate, carboxyl methyl cellulose, acrylamido methyl propane sulphonic acid and its salts), alginates, gums (e.g. xanthan and guar), other hydrogels and hydrocolloids.
Although the present invention and its advantages have been disclosed in the context of certain illustrative, non-limiting embodiments, it should be understood that various changes, substitutions, permutations, and alterations can be made without departing from the scope of the invention as defined by the appended claims. It will be appreciated that any feature that is described in a connection to any one embodiment may also be applicable to any other embodiment.
This application is a continuation of U.S. patent application Ser. No. 15/165,657, entitled “Reduced-Pressure Wound Treatment Systems And Methods Employing Manifold Structures,” filed May 26, 2016, which is a continuation of U.S. patent application Ser. No. 14/205,688, entitled “Reduced-Pressure Wound Treatment Systems And Methods Employing Manifold Structures,” filed Mar. 12, 2014, now U.S. Pat. No. 9,375,352, which is a divisional of U.S. patent application Ser. No. 12/639,288, entitled “Reduced-Pressure Wound Treatment Systems And Methods Employing Manifold Structures,” filed Dec. 16, 2009, now U.S. Pat. No. 8,708,984, which claims the benefit, under 35 U.S.C. § 119(e), of the filing of U.S. Provisional Patent Application No. 61/140,664, entitled “Reduced-Pressure Wound Treatment Systems And Methods Employing A Microstrain-Inducing Manifold,” filed Dec. 24, 2008. Each of the above applications are incorporated herein by reference for all purposes.
Number | Name | Date | Kind |
---|---|---|---|
1355846 | Rannells | Oct 1920 | A |
2547758 | Keeling | Apr 1951 | A |
2632443 | Lesher | Mar 1953 | A |
2682873 | Evans et al. | Jul 1954 | A |
2910763 | Lauterbach | Nov 1959 | A |
2969057 | Simmons | Jan 1961 | A |
3066672 | Crosby, Jr. et al. | Dec 1962 | A |
3367332 | Groves | Feb 1968 | A |
3520300 | Flower, Jr. | Jul 1970 | A |
3568675 | Harvey | Mar 1971 | A |
3648692 | Wheeler | Mar 1972 | A |
3682180 | McFarlane | Aug 1972 | A |
3826254 | Mellor | Jul 1974 | A |
4080970 | Miller | Mar 1978 | A |
4096853 | Weigand | Jun 1978 | A |
4139004 | Gonzalez, Jr. | Feb 1979 | A |
4165748 | Johnson | Aug 1979 | A |
4184510 | Murry et al. | Jan 1980 | A |
4233969 | Lock et al. | Nov 1980 | A |
4245630 | Lloyd et al. | Jan 1981 | A |
4256109 | Nichols | Mar 1981 | A |
4261363 | Russo | Apr 1981 | A |
4275721 | Olson | Jun 1981 | A |
4284079 | Adair | Aug 1981 | A |
4297995 | Golub | Nov 1981 | A |
4333468 | Geist | Jun 1982 | A |
4373519 | Errede et al. | Feb 1983 | A |
4382441 | Svedman | May 1983 | A |
4392853 | Muto | Jul 1983 | A |
4392858 | George et al. | Jul 1983 | A |
4398910 | Blake et al. | Aug 1983 | A |
4419097 | Rowland | Dec 1983 | A |
4465485 | Kashmer et al. | Aug 1984 | A |
4475909 | Eisenberg | Oct 1984 | A |
4480638 | Schmid | Nov 1984 | A |
4525166 | Leclerc | Jun 1985 | A |
4525374 | Vaillancourt | Jun 1985 | A |
4540412 | Van Overloop | Sep 1985 | A |
4543100 | Brodsky | Sep 1985 | A |
4548202 | Duncan | Oct 1985 | A |
4551139 | Plaas et al. | Nov 1985 | A |
4569348 | Hasslinger | Feb 1986 | A |
4605399 | Weston et al. | Aug 1986 | A |
4608041 | Nielsen | Aug 1986 | A |
4640688 | Hauser | Feb 1987 | A |
4655754 | Richmond et al. | Apr 1987 | A |
4664662 | Webster | May 1987 | A |
4710165 | McNeil et al. | Dec 1987 | A |
4733659 | Edenbaum et al. | Mar 1988 | A |
4743232 | Kruger | May 1988 | A |
4758220 | Sundblom et al. | Jul 1988 | A |
4787888 | Fox | Nov 1988 | A |
4826494 | Richmond et al. | May 1989 | A |
4838883 | Matsuura | Jun 1989 | A |
4840187 | Brazier | Jun 1989 | A |
4863449 | Therriault et al. | Sep 1989 | A |
4872450 | Austad | Oct 1989 | A |
4878901 | Sachse | Nov 1989 | A |
4897081 | Poirier et al. | Jan 1990 | A |
4906233 | Moriuchi et al. | Mar 1990 | A |
4906240 | Reed et al. | Mar 1990 | A |
4919654 | Kalt | Apr 1990 | A |
4941882 | Ward et al. | Jul 1990 | A |
4953565 | Tachibana et al. | Sep 1990 | A |
4969880 | Zamierowski | Nov 1990 | A |
4985019 | Michelson | Jan 1991 | A |
5037397 | Kalt et al. | Aug 1991 | A |
5086170 | Luheshi et al. | Feb 1992 | A |
5092858 | Benson et al. | Mar 1992 | A |
5100396 | Zamierowski | Mar 1992 | A |
5134994 | Say | Aug 1992 | A |
5149331 | Ferdman et al. | Sep 1992 | A |
5167613 | Karami et al. | Dec 1992 | A |
5176663 | Svedman et al. | Jan 1993 | A |
5215522 | Page et al. | Jun 1993 | A |
5232453 | Plass et al. | Aug 1993 | A |
5261893 | Zamierowski | Nov 1993 | A |
5278100 | Doan et al. | Jan 1994 | A |
5279550 | Habib et al. | Jan 1994 | A |
5298015 | Komatsuzaki et al. | Mar 1994 | A |
5342376 | Ruff | Aug 1994 | A |
5344415 | Debusk et al. | Sep 1994 | A |
5358494 | Svedman | Oct 1994 | A |
5437622 | Carlon | Aug 1995 | A |
5437651 | Todd et al. | Aug 1995 | A |
5527293 | Zamierowski | Jun 1996 | A |
5549584 | Gross | Aug 1996 | A |
5556375 | Ewall | Sep 1996 | A |
5607388 | Ewall | Mar 1997 | A |
5636643 | Argenta et al. | Jun 1997 | A |
5645081 | Argenta et al. | Jul 1997 | A |
6071267 | Zamierowski | Jun 2000 | A |
6135116 | Vogel et al. | Oct 2000 | A |
6241747 | Ruff | Jun 2001 | B1 |
6287316 | Agarwal et al. | Sep 2001 | B1 |
6345623 | Heaton et al. | Feb 2002 | B1 |
6488643 | Tumey et al. | Dec 2002 | B1 |
6493568 | Bell et al. | Dec 2002 | B1 |
6553998 | Heaton et al. | Apr 2003 | B2 |
6814079 | Heaton et al. | Nov 2004 | B2 |
7846141 | Weston | Dec 2010 | B2 |
8062273 | Weston | Nov 2011 | B2 |
8216198 | Heagle et al. | Jul 2012 | B2 |
8251979 | Malhi | Aug 2012 | B2 |
8257327 | Blott et al. | Sep 2012 | B2 |
8398614 | Blott et al. | Mar 2013 | B2 |
8449509 | Weston | May 2013 | B2 |
8529548 | Blott et al. | Sep 2013 | B2 |
8535296 | Blott et al. | Sep 2013 | B2 |
8551060 | Schuessler et al. | Oct 2013 | B2 |
8568386 | Malhi | Oct 2013 | B2 |
8679081 | Heagle et al. | Mar 2014 | B2 |
8834451 | Blott et al. | Sep 2014 | B2 |
8926592 | Blott et al. | Jan 2015 | B2 |
9017302 | Vitaris et al. | Apr 2015 | B2 |
9198801 | Weston | Dec 2015 | B2 |
9211365 | Weston | Dec 2015 | B2 |
9289542 | Blott et al. | Mar 2016 | B2 |
20020077661 | Saadat | Jun 2002 | A1 |
20020115951 | Norstrem et al. | Aug 2002 | A1 |
20020120185 | Johnson | Aug 2002 | A1 |
20020143286 | Tumey | Oct 2002 | A1 |
20020198504 | Risk, Jr. et al. | Dec 2002 | A1 |
20050209574 | Boehringer et al. | Sep 2005 | A1 |
20060041247 | Petrosenko et al. | Feb 2006 | A1 |
20070185426 | Ambrosio et al. | Aug 2007 | A1 |
20070185463 | Mulligan | Aug 2007 | A1 |
20070203442 | Bechert et al. | Aug 2007 | A1 |
20080177253 | Boehringer et al. | Jul 2008 | A1 |
20080275409 | Kane et al. | Nov 2008 | A1 |
20100262096 | Hall | Oct 2010 | A1 |
20100268177 | Hall et al. | Oct 2010 | A1 |
20140163491 | Schuessler et al. | Jun 2014 | A1 |
20150080788 | Blott et al. | Mar 2015 | A1 |
Number | Date | Country |
---|---|---|
550575 | Mar 1986 | AU |
745271 | Mar 2002 | AU |
755496 | Dec 2002 | AU |
2005436 | Jun 1990 | CA |
26 40 413 | Mar 1978 | DE |
43 06 478 | Sep 1994 | DE |
29 504 378 | Sep 1995 | DE |
0100148 | Feb 1984 | EP |
0117632 | Sep 1984 | EP |
0161865 | Nov 1985 | EP |
0358302 | Mar 1990 | EP |
1018967 | Jul 2000 | EP |
692578 | Jun 1953 | GB |
2 195 255 | Apr 1988 | GB |
2 197 789 | Jun 1988 | GB |
2 220 357 | Jan 1990 | GB |
2 235 877 | Mar 1991 | GB |
2 329 127 | Mar 1999 | GB |
2 333 965 | Aug 1999 | GB |
4129536 | Aug 2008 | JP |
71559 | Apr 2002 | SG |
8002182 | Oct 1980 | WO |
8704626 | Aug 1987 | WO |
90010424 | Sep 1990 | WO |
93009727 | May 1993 | WO |
94020041 | Sep 1994 | WO |
9605873 | Feb 1996 | WO |
9718007 | May 1997 | WO |
9913793 | Mar 1999 | WO |
2008039223 | Apr 2008 | WO |
2008104609 | Sep 2008 | WO |
2008141228 | Nov 2008 | WO |
Entry |
---|
Louis C. Argenta, MD and Michael J. Morykwas, PHD; Vacuum-Assisted Closure: A New Method for Wound Control and Treatment: Clinical Experience; Annals of Plastic Surgery; vol. 38, No. 6, Jun. 1997; pp. 563-576. |
Susan Mendez-Eatmen, RN; “When wounds Won't Heal” RN Jan. 1998, vol. 61 (1); Medical Economics Company, Inc., Montvale, NJ, USA; pp. 20-24. |
James H. Blackburn II, MD et al.: Negative-Pressure Dressings as a Bolster for Skin Grafts; Annals of Plastic Surgery, vol. 40, No. 5, May 1998, pp. 453-457; Lippincott Williams & Wilkins, Inc., Philidelphia, PA, USA. |
John Masters; “Reliable, Inexpensive and Simple Suction Dressings”; Letter to the Editor, British Journal of Plastic Surgery, 1998, vol. 51 (3), p. 267; Elsevier Science/the British Association of Plastic Surgeons, UK. |
S.E. Greer, et al. “The Use of Subatmospheric Pressure Dressing Therapy to Close Lymphocutaneous Fistulas of the Groin” British Journal of Plastic Surgery (2000), 53, pp. 484-487. |
George V. Letsou, MD., et al; “Stimulation of Adenylate Cyclase Activity in Cultured Endothelial Cells Subjected to Cyclic Stretch”; Journal of Cardiovascular Surgery, 31, 1990, pp. 634-639. |
Orringer, Jay, et al; “Management of Wounds in Patients with Complex Enterocutaneous Fistulas”; Surgery, Gynecology & Obstetrics, Jul. 1987, vol. 165, pp. 79-80. |
International Search Report for PCT International Application PCT/GB95/01983; dated Nov. 23, 1995. |
PCT International Search Report for PCT International Application PCT/GB98/02713; dated Jan. 8, 1999. |
PCT Written Opinion; PCT International Application PCT/GB98/02713; dated Jun. 8, 1999. |
PCT International Examination and Search Report, PCT International Application PCT/GB96/02802; dated Jan. 15, 1998 & dated Apr. 29, 1997. |
PCT Written Opinion, PCT International Application PCT/GB96/02802; dated Sep. 3, 1997. |
Dattilo, Philip P., Jr., et al; “Medical Textiles: Application of an Absorbable Barbed Bi-directional Surgical Suture”; Journal of Textile and Apparel, Technology and Management, vol. 2, Issue 2, Spring 2002, pp. 1-5. |
Kostyuchenok, B.M., et al; “Vacuum Treatment in the Surgical Management of Purulent Wounds”; Vestnik Khirurgi, Sep. 1986, pp. 18-21 and 6 page English translation thereof. |
Davydov, Yu. A., et al; “Vacuum Therapy in the Treatment of Purulent Lactation Mastitis”; Vestnik Khirurgi, May 14, 1986, pp. 66-70, and 9 page English translation thereof. |
Yusupov. Yu.N., et al; “Active Wound Drainage”, Vestnki Khirurgi, vol. 138, Issue 4, 1987, and 7 page English translation thereof. |
Davydov, Yu.A., et al; “Bacteriological and Cytological Assessment of Vacuum Therapy for Purulent Wounds”; Vestnik Khirugi, Oct 1988, pp: 48-52, and 8 page English translation thereof. |
Davydov, Yu.A., et al; “Concepts for the Clinical-Biological Management of the Wound Process in the Treatment of Purulent Wounds by Means of Vacuum Therapy”; Vestnik Khirurgi, Jul. 7, 1980, pp. 132-136, and 8 page English translation thereof. |
Chariker, Mark E., M.D., et al; “Effective Management of incisional and cutaneous fistulae with closed suction wound drainage”; Contemporary Surgery, vol. 34, Jun. 1989, pp. 59-63. |
Egnell Minor, Instruction Book, First Edition, 300 7502, Feb. 1975, pp. 24. |
Egnell Minor: Addition to the Users Manual Concerning Overflow Protection—Concerns all Egnell Pumps, Feb. 3, 1983, pp. 2. |
Svedman, P.: “Irrigation Treatment of Leg Ulcers”, The Lancet, Sep. 3, 1983, pp. 532-534. |
Chinn, Steven D. et al: “Closed Wound Suction Drainage”, The Journal of Foot Surgery, vol. 24, No. 1, 1985, pp. 76-81. |
Arnljots, Björn et al: “Irrigation Treatment in Split-Thickness Skin Grafting of Intractable Leg Ulcers”, Scand J. Plast Reconstr. Surg., No. 19, 1985, pp. 211-213. |
Svedman, P.: “A Dressing Allowing Continuous Treatment of a Biosurface”, IRCS Medical Science: Biomedical Technology, Clinical Medicine, Surgery and Transplantation, vol. 7, 1979, p. 221. |
Svedman, P. et al: “A Dressing System Providing Fluid Supply and Suction Drainage Used for Continuous of Intermittent Irrigation”, Annals of Plastic Surgery, vol. 17, No. 2, Aug. 1986, pp. 125-133. |
N.A. Bagautdinov, “Variant of External Vacuum Aspiration in the Treatment of Purulent Diseases of Soft Tissues,” Current Problems in Modern Clinical Surgery: Interdepartmental Collection, edited by V. Ye Volkov et al. (Chuvashia State University, Cheboksary, U.S.S.R. 1986); pp. 94-96 (copy and certified translation). |
K.F. Jeter, T.E. Tintle, and M. Chariker, “Managing Draining Wounds and Fistulae: New and Established Methods,” Chronic Wound Care, edited by D. Krasner (Health Management Publications, Inc., King of Prussia, PA 1990), pp. 240-246. |
G. {hacek over (Z)}ivadinovi?, V. ?uki?, {hacek over (Z)}. Maksimovi?, ?. Radak, and P. Pe{hacek over (s)}ka, “Vacuum Therapy in the Treatment of Peripheral Blood Vessels,” Timok Medical Journal 11 (1986), pp. 161-164 (copy and certified translation). |
F.E. Johnson, “An Improved Technique for Skin Graft Placement Using a Suction Drain,” Surgery, Gynecology, and Obstetrics 159 (1984), pp. 584-585. |
A.A. Safronov, Dissertation Abstract, Vacuum Therapy of Trophic Ulcers of the Lower Leg with Simultaneous Autoplasty of the Skin (Central Scientific Research Institute of Traumatology and Orthopedics, Moscow, U.S.S.R. 1967) (copy and certified translation). |
M. Schein, R. Saadia, J.R. Jamieson, and G.A.G. Decker, “The ‘Sandwich Technique’ in the Management of the Open Abdomen,” British Journal of Surgery 73 (1986), pp. 369-370. |
D.E. Tribble, An Improved Sump Drain-Irrigation Device of Simple Construction, Archives of Surgery 105 (1972) pp. 511-513. |
M.J. Morykwas, L.C. Argenta, E.I. Shelton-Brown, and W McGuirt, “Vacuum-Assisted Closure: A New Method for Wound Control and Treatment: Animal Studies and Basic Foundation,” Annals of Plastic Surgery 38 (1997), pp. 553-562 (Morykwas I). |
C.E. Tennants, “The Use of Hypermia in the Postoperative Treatment of Lesions of the Extremities and Thorax,” Journal of the American Medical Association 64 (1915), pp. 1548-1549. |
Selections from W. Meyer and V. Schmieden, Bier's Hyperemic Treatment in Surgery, Medicine, and the Specialties: A Manual of Its Practical Application, (W.B. Saunders Co., Philadelphia, PA 1909), pp. 17-25, 44-64, 90-96, 167-170, and 210-211. |
V.A. Solovev et al., Guidelines, the Method of Treatment of Immature External Fistulas in the Upper Gastrointestinal Tract, editor-in-chief Prov. V.I. Parahonyak (S.M. Kirov Gorky State Medical Institute, Gorky, U.S.S.R. 1987) (“Solovev Guidelines”). |
V.A. Kuznetsov & N.a. Bagautdinov, “Vacuum and Vacuum-Sorption Treatment of Open Septic Wounds,” In II All-Union Conference on Wounds and Wound Infections: Presentation Abstracts, edited by B.M. Kostyuchenok et al. (Moscow, U.S.S.R. Oct. 28-29, 1986) pp. 91-92 (“Bagautdinov II”). |
V.A. Solovev, Dissertation Abstract, Treatment and Prevention of Suture Failures after Gastric Resection (S.M. Kirov Gorky State Medical Institute, Gorky, U.S.S.R. 1988) (“Solovev Abstract”). |
V.A.C.® Therapy Clinical Guidelines: A Reference Source for Clinicians; Jul. 2007. |
European Search Report for corresponding Application No. 09835646.2 dated Feb. 10, 2016. |
Extended European Search Report for Corresponding Application No. 201501731, dated May 15, 2020. |
Number | Date | Country | |
---|---|---|---|
20190184074 A1 | Jun 2019 | US |
Number | Date | Country | |
---|---|---|---|
61140664 | Dec 2008 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 12639288 | Dec 2009 | US |
Child | 14205688 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 15165657 | May 2016 | US |
Child | 16284587 | US | |
Parent | 14205688 | Mar 2014 | US |
Child | 15165657 | US |