1. Field of the Invention
The present invention is directed generally to machines and, more particularly, to thermal regenerative machines.
2. Description of the Related Art
A conventional thermal regenerative machines including Stirling cycle engines and coolers use a working fluid, such as a gas. Portions of the working fluid travel in passageways between a hot area and a cold area. As the working fluid travels from the hot area to the cold area, it passes through a conventional random fiber mesh material called a regenerator that retains heat from the working fluid. As the working fluid returns from the cold area back to the hot area, it receives some heat back from the regenerator thereby resulting in increased efficiency. Unfortunately, the mesh material of the regenerator can shed small particles, which migrate within the machine to become undesirably located in other regions and parts of the machine, thereby introducing a potential cause of damage or malfunction. Conventional approaches to reduce shedding have included addition of screen components to end surfaces where working fluid either flows into or out of the regenerator. These approaches have had limited success. Other surfaces of the regenerators remain unprotected and the additional screen components increase piece counts for manufacturing.
Aspects according the present invention for a thermal regenerative machine having a first temperature area and a second temperature area are directed to a regenerator comprising a first layer portion having a first thickness, a first porosity, and a first material composition; and a second layer portion adjacent the first layer, the second layer having a second thickness, a second porosity, and the first material composition, the second thickness being greater than the first thickness, the second porosity being greater than the first porosity, the regenerator configured to be positioned within the thermal regenerative machine such that the first layer portion is nearer the first temperature area than the second layer portion.
Other aspects include in some implementations the first layer portion being made from a first number of sheets of random fiber material and the second layer portion being made from a second number of sheets of random fiber material, the first number being smaller than the second number. Other aspects include the first number of sheets being one. Other aspects include the random fiber material of the first layer portion being sintered a first number of times and the random fiber material of the second layer portion being sintered a second number of times, the first number being greater than the second number. Other aspects include wherein the second number is one.
Other aspects include a third layer portion adjacent the second layer portion on a side thereof away from the first layer portion, the third layer having the first material composition and a thickness less than the second layer portion, the third layer portion having a porosity less than the second layer portion, the regenerator configured to be positioned within the thermal regenerative machine such that the third layer portion is nearer the second temperature area than the first and second layer portions.
Other aspects include the first layer portions and the third layer portions being constructed from a twice sintered sheets of random fiber material and the second layer portion being constructed from a once sintered sheets of random fiber material. Other aspects include the second layer portion being configured to shed particles sized with respect to the second porosity of the second layer portion that they pass through the second layer portion toward the first layer portion, and the first porosity of the first layer portion being sufficiently small to prevent at least a majority of the shed small particles from passing through the first layer portion.
Other features and advantages of the invention will become apparent from the following detailed description, taken in conjunction with the accompanying drawings.
As will be discussed in greater detail, a reduced shedding regenerator and method are disclosed herein with regenerator surfaces to minimize shedding of particles from the regenerator thereby alleviating a source of potential damage and malfunction of a thermal regenerative machine using the regenerator.
A simplified view of an exemplary conventional thermal regenerative machine 10 using a Stirling cycle module 12 and a power module 14 is shown in
An exemplary conventional regenerator 26 is annular and has a first end surface 28, a second end surface 30, an interior surface 32, and an exterior surface 34. The regenerator 26 is positioned between the first passageway 22 and the second passageway 24 such that the first end surface 28 of the regenerator is adjacent the first passageway 22 and the second end surface 30 of the regenerator is adjacent the second passageway 24. Other conventional implementations of thermal regenerative machines utilize regenerators of other shapes that may not have hollow annular cores such as having solid cylindrical or other shapes that depend upon the configuration of the particular Stirling cycle module involved.
When the first temperature area 18 is significantly higher in temperature than the second temperature area 20, the thermal source inputs heat Hin to the working fluid in the first passageway 22 and the thermal sink takes heat Hout from the working fluid in the second passageway 24. The regenerator 26 receives heat from the working fluid as the working fluid passes from the first passageway 22 to the second passageway 24. The regenerator 26 returns some of this received heat back to the working fluid as the working fluid passes back from the second passageway to the first passageway.
The second temperature area 20 is in fluid communication with a power piston 36, which is part of the power module 14. The power piston 36 of the power module 14 is connected to a conventional linear electrodynamic system 38 through a shaft 40 coupled to a mover 42. The conventional linear electrodynamic system 38 further includes a stator 44 and an electrical line 46 to furnish electrical power when the thermal regenerative machine 10 is used as an electrical generator and to receive electric power when the electrothermal system is used as a cooler. Other thermal regenerative machines can have other electromotive configurations besides a moving iron linear alternator or motor such as those utilizing moving magnets.
As described, the regenerator 26 serves to receive heat from the working fluid, retain the heat, and then return the retained heat back to the working fluid. Conventional random fiber mesh material has been conventionally found to be effective for these functions of the regenerator 26. Other materials have been used including wire screens and/or woven screens, porous materials, and those using short fibers, metals, plastics, powdered metals, and so forth. A typical method of conventional construction of the regenerator 26 involves sintering a compressed stack of loosely woven random fiber mesh sheets to form a porous unit of material commonly referred to as a brick. Other approaches exist such as those using pre-sintered sheets to form porous brick units. The brick is then machined to form the proper shape for the regenerator 26. In other implementations stacked screens are used or short fiber is poured into a mold to form a sintered ring. Unfortunately, the regenerator 26 conventionally formed from loose pre-sintered sheets of random fiber mesh material or the many other conventional means has a proclivity to shed small particles that can then migrate into seals, voids, and other areas of the Stirling cycle module 12 with potentially detrimental consequences.
As shown in
To reduce this shedding problem, one implementation of a reduced shedding regenerator, shown in
The first layer 110 and the second layer 112 of the regenerator have a porosity less than the conventional regenerator 26 to substantially reduce the number of particles that escape from within the regenerator 100 out the first end surface 102 and the second end surface 104. On the other hand, since working fluid must flow through the first layer 110 and the second layer 112, their porosities are sufficiently large not to detrimentally limit the flow of the working fluid so that performance of the regenerator is not adversely impacted.
The regenerator 100 further has an exterior wall or layer 114 that extends radially inward a relatively small amount from the exterior surface 106 toward the interior surface 108 and an interior wall or layer 116 that extends radially outward from the interior surface toward the exterior surface. In some implementations discussed below, the exterior layer 114 and the interior layer 116 are impermeable. In other implementations, the exterior layer 114 and the interior layer 116 have at least reduced porosities similar to the first end layer 110 and the second end layer 112. Consequently, with both the impermeable cases and the reduced porosity cases of the exterior layer 114 and the interior layer 116, particles are substantially prevented from exiting the regenerator 100 through the exterior surface 106 and the interior surface 108.
Sandwiched between the first end layer 110 and the second end layer 112 in an axial or longitudinal direction, z, and between the exterior layer 114 and the interior layer 116 in a radial direction, r, is a core 118 having an exterior surface 118′ and an interior surface 118″, also shown in
In an exemplary implementation, the first layer 110 and the second layer 112 each originate from a sheet of loose random fiber mesh that is doubly sintered. The core 118 originates from a stack of sheets of loosely woven random fiber mesh singly sintered rather than doubly sintered to maintain a higher porosity for the core compared to the porosities of the first layer 110 and the second layer 112.
One method of constructing the regenerator 100 will now be described in greater detail. The regenerator 100 is constructed from a stack of sheets 120, shown in
The stack of sheets 120 having the un-sintered inner sheets 122 sandwiched between the first sintered end sheet 124 and the second sintered end sheet 126 is then sintered to form a block 128 of continuously porous material having a core layer 130 of once sintered material sandwiched between a first layer 132 and a second layer 134 of twice sintered material, as shown in
The block 128 is then machined using conventionally known techniques to a post-machined block 140 including the core 118, the first end layer 110 and the second end layer 112, as shown in
Examples of material amendment include, referring to
Again referring to
In another second implementation, after the block 128 is machined into the post-machined block 140, the exterior surface 118′ of the core 118 and the interior surface 118″ of the core are treated to seal these surfaces to decrease their porosity and thereby reduce particle shedding. In this implementation, no additional material is amended to the post-machined block 140, so the post-machined block is near dimensional requirements of the regenerator 100 with an accounting for slight dimensional change due to surface treatment.
In yet another implementation, no additional material is added or no treatment of the post-machined block 140 is performed after the block is machined. Accordingly, in this implementation, the post-machined block 140 is machined to dimensional specifications of the regenerator 100. The machining forms the exterior wall 114 and the interior wall 116 from those portions of the core 118 near the exterior surface 118′ and the interior surface 118″, respectively, thereby sealing the exterior and interior surfaces of the core.
In another implementation, the block 128 is cut by laser to form the post-machined block 140, which has the dimensional requirements of the regenerator 100. The laser cutting melts the core 118 at the exterior surface 118′ and the interior surface 118″ to form the exterior wall 114 and the interior wall 116, respectively, thereby sealing the exterior and interior surfaces of the core. Another implementation uses a laser and cover gas to locally melt a sprayed braze alloy or a braze foil wrap to form the exterior wall 114 and the interior wall 116 or other layers or walls.
In another implementation the first layer 110 and the second layer 112 are not used, but the regenerator 100 still has the exterior wall 114, the interior wall 116, and the core 118. In another implementation the first layer 110 and the second layer 112 are used and the exterior wall 114 and the interior wall 116 are not used. Other implementations are used for other configurations of regenerators where the regenerators are solid without any annulus. The various procedures described above are used to form wall and/or layers for one or more surfaces of these types of regenerators to also reduce shedding.
Implementations described herein process end surface portions (such as for the first layer 110 and the second layer 112) of the porous material other material components need to be handled for these end surfaces. For other surfaces of the porous material can be either processed or in some implementations can be covered with other material to possibly provide additional resistance to shedding. Whether processing or additional materials are used for these other surfaces, one goal is to have relatively thin barriers.
Thin barriers on the regenerator are desirable since the barriers provide a conduction path between hot and cold temperature regions, which causes a parasitic heat loss. Stirling cycle efficiency can be better maintained if this parasitic heat loss can be minimized by keeping barriers thin. Also, thin barriers help to maintain Stirling cycle efficiencies in another way by allowing for greater volume available to the Stirling cycle rather than being taken up by thicker barriers. In contrast to these implementations, conventional approaches seek to cover only end portions with screening material.
Table 1 lists some of the methods used by implementations discussed herein to provide barriers for regenerator surfaces such as those for the external wall 114 and the interior wall 116 and other than the end surfaces such as those for the first layer 110 and for the second layer 112. Also shown are various barrier thickness ranges associated with these implementations. These methods work with regenerators made from various materials including sintered random fiber mesh, sintered woven mesh, rolled mesh and coiled sheet. Additionally, the methods work with regenerators fabricated with end caps of woven screens having a mesh of lower porosity than the regenerator. Other material also include powered metals and plastics. As shown by Table 1 all the thicknesses involved are less than 0.020 inches.
The sleeve method refers to brazing or sintering a solid metal sleeve to regenerator surfaces that are other than end surfaces such as described above to form the exterior wall 114 and the interior wall 116 for the annular implementation. The metal sleeve can either be attached at finish dimensions or machined later. Machining the sleeve at a later operation could result in a thinner sleeve. The metal sleeve operation ensures a solid sleeve, however, installation may be complicated, additional one or more parts may require fabrication and a final machining operation may be required after the sleeves are brazed. It is also possible that sleeves being made of other materials could be so fastened and further processed according to technologies adapted to the material such as a ceramic.
The laser method refers to regenerator surfaces other than end surfaces are melted using a laser to form a solid surface. The coverage and depth of the melted surface region can be controlled by varying the speed and power of the laser. This method can be time intensive may not result in a completely impervious wall.
The slow EDM pass method refers to using electric discharge machining (EDM) to perform a slow pass with an EDM machine to form barriers on the surfaces of the regenerator. An advantage is that the method merely requires a change to operational parameters of the machine that also manufactures the core portions of the regenerators in addition to forming the protective barriers. As with the laser, the EDM process does not guarantee a completely impervious wall.
The braze foil and paste method refers to either paste or foil being brazed on to regenerator surfaces other than end surfaces to form an impervious surface. Foil is available in a preset thickness, which can result in a uniform barrier thickness. Application of the paste can be more problematic than the foil to obtain a uniform thickness.
From the foregoing it will be appreciated that, although specific embodiments of the invention have been described herein for purposes of illustration, various modifications may be made without deviating from the spirit and scope of the invention. Accordingly, the invention is not limited except as by the appended claims.
The U.S. Government has a paid-up license in this invention and the right in limited circumstances to require the patent owner to license others on reasonable terms as provided for by the terms of contract No. DE-AC03-02SF22491 awarded by the United States Department of Energy.