This invention relates to extreme ultraviolet elements made from glasses including silica and titania. In particular, the invention relates to a low expansion glass and elements made therefrom that have reduced striae and to a method for making such glass and elements which are suitable for extreme ultraviolet lithography.
Ultra low expansion glasses and soft x-ray or extreme ultraviolet (EUV) lithographic elements made from silica and titania traditionally have been made by flame hydrolysis of organometallic precursors of silica and titania. Ultra-low expansion silica-titania articles of glass made by the flame hydrolysis method are used in the manufacture of elements used in mirrors for telescopes used in space exploration and extreme ultraviolet or soft x-ray-based lithography. These lithography elements are used with extreme ultraviolet or soft x-ray radiation to illuminate, project and reduce pattern images that are utilized to form integrated circuit patterns. The use of extreme ultraviolet or soft x-ray radiation is beneficial in that smaller integrated circuit features can be achieved, however, the manipulation and direction of radiation in this wavelength range is difficult. Accordingly, wavelengths in the extreme ultraviolet or soft x-ray range, such as in the 1 nm to 70 nm range, have not been widely used in commercial applications. One of the limitations in this area has been the inability to economically manufacture mirror elements that can withstand exposure to such radiation while maintaining a stable and high quality circuit pattern image. Thus, there is a need for stable high quality glass lithographic elements for use with extreme soft x-ray radiation.
One limitation of ultra low expansion titania-silica glass made in accordance with the method described above is that the glass contains striae. Striae are compositional inhomogeneities which adversely affect optical transmission in lens and window elements made from the glass. Striae can be measured by a microprobe that measures compositional variations that correlate to coefficient of thermal expansion (CTE) variations of a few ppb/° C. In some cases, striae have been found to impact surface finish at an angstrom root mean rms level in reflective optic elements made from the glass. Extreme ultraviolet lithographic elements require finishes having a very low rms level.
It would be advantageous to provide improved methods and apparatus for manufacturing ultra low expansion glasses containing silica and titania. In particular, it would be desirable to provide extreme ultraviolet elements having reduced striae and methods and apparatus that are capable of producing such glass elements. In addition, it would be desirable to provide improved methods and apparatus for measuring striae in ultra low expansion glass and extreme ultraviolet lithographic elements.
The invention is directed to reducing striae in low expansion glass by controlling the boule motion during laydown of the material comprising the boule which is a silica-titania glass in the present invention. According to the present invention, boule motions consisting of short oscillation periods yield closer striae spacing than motions with long oscillations periods. When subjected to post-laydown heat treating, striae in boules made with shorter oscillation periods “self-anneal”, thereby reducing the striae in the boule. Post lay-down heat treatments can further reduce the number of striae and produce a boule with minimal striae.
The invention is further directed to a method of reducing striae in low expansion glass by heat treating the glass at temperatures from approximately 100° C, above the annealing point of the glass to temperatures used for rapid flowout (approximately 1900° C.) for a time in the range of 6+ hours to 12 months depending on the temperature.
The invention is also directed to an ultra-low expansion glass and optical elements made therefrom that are suitable for extreme ultraviolet lithography, and to a method for making such glass and elements by reducing striae in ultra-low expansion glass by making a boule using short oscillation periods as described herein with heat-treating the glass at temperatures above 1600° C. for a time in the range of 48 hours to 288 hours. In a further embodiment the glass is heat treated without forcing the glass to flow or “move”.
The invention is directed to a method for reducing striae in an ultra-low expansion silica-titania glass, and to optical elements made therefrom, in which a silica-titania consolidated glass boule is prepared in a rotating vessel in a furnace using short oscillation periods as described herein; heat treating the boule at a temperature in the range of 1600-1700° C. for a time in the range of 48-160 hours, preferably 48-96 hours, and cooling the consolidated boule from the 1600-1700° C. range to 1000° C. at a rate in the range of 25-75° C. per hour, for example at approximately 50° C. per hour, followed by cooling to ambient temperature at the natural cooling rate of the furnace to thereby yield a silica-titania glass boule having reduced striae. In an embodiment of this invention the glass boule is prepared by flame hydrolysis using silica and titania precursors selected from the group consisting of siloxanes and alkoxides and tetrachlorides of silicon and titanium. The preferred precursors are titanium isopropoxide and octamethylcyclotetrasiloxane
In another embodiment the invention is directed to heat-treating a low expansion glass at a temperature in the range of 1600-1700° C. for a time in the range of 48-160 hours without forcing the glass to flow or “move”.
In a further embodiment the invention is directed to a method of reducing striae in a large boule of glass or in a segment of glass obtained from a large boule by heat treating the glass at a temperature in the range of 1600-1700° C. for a time in the range of 48-160 hours without forcing the glass to flow or “move”; and during the heat treatment the glass is rotated about an vertical axis, and the heat source is uniformly distributed across the horizontal dimensions of the glass.
In yet another embodiment the invention is directed to reducing striae in a silica-titania glass containing 5-10 wt. % titania by reducing the time for oscillation patterns to repeat themselves to a time of 10 minutes or less. In another embodiment the time for oscillation pattern repetition is reduced to 5 minutes or less. In an additional embodiment the time for oscillation pattern repetition is reduced to 2.5 minutes or less
In one embodiment, the invention is directed to a method of reducing striae in low expansion glass by reducing the time it takes for the oscillation patterns to repeat to a time of ten (10) minutes or less. In another embodiment, the invention is directed to a method of reducing striae in low expansion glass by reducing the time it takes for the oscillation patterns to repeat to a time of two and one-half (2.5) minutes or less. In a further embodiments, the invention is directed to methods for reducing striae in low expansion glass by reducing the time it takes for the oscillation patterns to repeat to a time of 10 minutes or less, and heat treating the glass at temperatures from approximately 100° C. above the annealing point of the glass (approximately 1200° C.) to temperatures used for rapid flowout (approximately 1900° C.) for a time in the range of 6+ hours to 12 months depending on the temperature.
U.S. Pat. No. 5,970,751 describes a method and apparatus for preparing fused silica-titania glass. The apparatus includes a stationary cup or vessel. U.S. Pat. No. 5,696,038 describes using oscillation/rotation patterns for improving off-axis homogeneity in fused silica boules using a prior art rotating cup as described therein. As disclosed in U.S. Pat. No. 5,696,038, the x-axis and y-axis oscillation patterns were defined by the equations:
x(t)=r1 sin 2πω1t+r2 sin 2 πω2t
y(t)=r1 cos 2πω1t+r2 cos 2 πω2t
where x(t) and y(t) represent the coordinates of the center of the boule as measured from the center of the furnace ringwall as a function of time (t) measured in minutes. The sum of r1 and r2 (r1 and r2 are the radii of the offsets; that is the rotation acts like a rotating table on top of 2 other rotating tables offset by the r's) must be less than the difference between the radius of the ringwall and radius of the containment vessel or cup to avoid contact between these structures during formation of the boule. The parameters r1, r2, ω1, ω2, and a fifth parameter, ω3, which represents the boule's rotation rate about its center in revolutions per minute (rpm) define the total motion of the boule. Typical prior art values for ω1, ω2 and ω3 used in the manufacture of titania-containing silica boules are 1.71018 rpm, 3.63418 rpm and 4.162 rpm, respectively, and these parameters were used herein.
U.S. Patent Application Publication No. 2004/0027555 describes a method for producing low expansion, titania-containing silica glass bodies by depositing titania-containing glass soot. The method in U.S. 2004/0027555 uses the apparatus described in U.S. Pat. No. 5,970,591 and the rotating/oscillating cup described in U.S. Pat. No. 5,696,038. Silica-titania soot is deposited in a vessel mounted on an oscillating table and the striae level is reduced by altering the oscillation pattern of the table, particularly by increasing the rotation rate of the table. In particular, U.S. 2004/0027555 states that it was found that increasing the values for each of ω1, ω2, and ω3 reduces striae values. Publication 2004/0027555 describes other factors that impact striae and steps that can be taken to counteract their formation. For example, it describes the determination that the flows through the exhaust ports or vents of the furnace impact striae and that striae could be lessened by increasing the number of vents or exhaust ports.
While the foregoing improvements decreased striae, further reduction of striae is highly desired. Further reducing striae in a boule of silica-titania ULE glass, or in a segment of glass obtained from a boule, will reduce some of the polishing issues which have been observed with ULE materials. Specifically, mid-spatial frequency surface roughness will be improved and this will result in a material more suitable for EUV applications and other applications where an extremely smooth surface finish is required. Striae (or composition layering) in ULE glass is very evident in the direction parallel with the top and bottom of the boules. The striae consists of variations in titania (TiO2) composition of generally more than ±0.1% compared to the local average TiO2 level; which levels are frequently in the 7.25 to 8.25 wt. % range (though they can be higher or lower, and are typically in the range of 5-10 wt % TiO2) depending on nominal CTE target. Variations in composition (striae) result in alternating thin layers of different CTE and therefore alternating planes of compression and tension (between the layers). When attempting to polish such ULE glass material, the alternating compression and tension layers caused by striae result in unequal material removal and unacceptable surface roughness. This effect has been observed in the mirror industry, where the mid-spatial frequency surface roughness defect is commonly referred to as “woodgrain”. Reducing striae, the composition variation, by methods such as described herein will reduce the level of compression and tension between the layers resulting in improved polishability.
As a first step, a silica-titania glass boule is prepared according to any method known in the art; for example, by the method described in U.S. Pat. No. 5,696,038 using the apparatus as described in Application Publication No. 2004/0027555, which apparatus is illustrated herein as
After the boule having striae reduced by heat treating as described above has been cooled to ambient temperatures, the boule can be cut, cored or otherwise processed into shapes that are suitable for making optical elements. Such processing, in addition to cutting or coring, may include etching, additional thermal treatments, grinding, polishing, applying selected metals to form a mirror, and such additional processing as may be necessary to form the desired optical element.
A general method for making silica-titania optical elements having reduced striae is to prepare a silica-titania glass boule in a furnace using any method known in the art; heat treat the boule at a temperature above 1600° C., preferably at a temperature in the range of 1600-1700° C., for a time in the range of 72-160 hours, preferably for a time in the range of 72-96 hours, to reduce the striae in said boule; cool the boule from the above 1600° C. range to 1000° C. at a rate in the range of 25-75° C. per hour, followed by cooling to ambient temperature at the natural cooling rate of the furnace to thereby yield a silica-titania glass boule having reduced striae; and process the glass as necessary into a reduced striae optical element. A particular embodiment for making silica-titania optical elements having reduced striae is to prepare a silica-titania consolidated glass boule in a rotating vessel in a furnace using any method known in the art; heat treats the boule, or a sample taken from a boule so prepared, at a temperature in the range of 1600-1700° C. for a time in the range of 72-96 hours to reduce the striae in said boule; cool the boule from the 1600-1700° C. range to 1000° C. at a rate of 50° C. per hour followed by cooling to ambient temperature at the natural cooling rate of the furnace to thereby yield a silica-titania glass boule having reduced striae; cut the boule into a shape of a selected optical element; and cut, grind and polish the shape into an optical element having reduced striae suitable for extreme ultraviolet lithography. The optical elements thus made are suitable for extreme ultraviolet lithography; for example, mirrors for use in reflective lithography methods.
Referring to the apparatus described in
The feedstocks were delivered to a conversion site 10, where they were converted into titania-containing silica soot particles 11. The soot 11 was deposited in a revolving collection cup 12 located in a refractory furnace 16 typically made from zircon and onto the upper glass surface of a hot titania-silica glass body 18 inside the furnace 16. The values for ω1, ω2 and ω3 used in the manufacture of the titania-containing silica boules were 1.71018 rpm, 3.63418 rpm and 4.162 rpm, respectively. The soot particles 11 consolidate into a titania-containing high purity silica glass body.
The cup 12 typically has a circular diameter shape of between about 0.2 meters and 2 meters so that the glass body 18 is a cylindrical body having a diameter D between about 0.2 and 2 meters and a height H between about 2 cm and 20 cm. The weight percent of titania in the fused silica glass can be adjusted by changing the amount of either the titanium feedstock or silicon-containing feedstock delivered to the conversion site 10 that is incorporated into the soot 11 and the glass 18. The amount of titania and/or silica is adjusted so that the glass body has a coefficient of thermal expansion of about zero at the operating temperature of an EUV or soft x-ray reflective lithography or mirror element.
The powders are collected in the cup and consolidated into a glass boule. Typically, temperatures above 1600° C. are sufficient to consolidate the powder into a glass boule; for example, a temperature in the range 1645-1655° C. After the silica-titania glass boule of the desired size was formed, the glass boule was removed from the furnace for further processing in accordance with the present invention. When the boule is removed from the furnace, either the entire boule can be returned to the furnace for processing according to the invention or a segment of the boule can be cored. The cores are taken through the depth of the boule and were heat treated according to the invention to reduce striae. In yet another embodiment the boule is heat treated by maintaining the temperature of the boule in the range of 1600-1700° C. for a time in the range of 72-96 hours.
In the present example multiple 25.4 cm (10 inch) diameter silica-titania cores were taken of approximately the entire thickness of the boule. For heat-treating according to the invention, a silica-titania glass core was placed in a zircon (zirconium silicate) cup or vessel, and the core was surrounded on its edge and bottom with crushed zircon to restrict movement of the glass. The core and cup were then placed in a rotating furnace and heated to a temperature a temperature in the range of 1600-1700° C. for a time in the range of 72-96 hours. The glass sample was heated using CH4-Oxy burners and glass surface temperatures were recorded during the heat treatment. After the glass was held at temperature for the indicated time range, the glass was cooled in the furnace at a rate of approximately 50° C./hour down to a temperature of approximately 1000° C., and then to ambient temperature at the natural cooling rate of the furnace. After final cooling the samples were annealed at a temperature below 1000° C. for a time in the range of 70 to 130 hours and, after cooling after annealing, CTE (coefficient of thermal expansion) measurements were recorded in 0.635 cm (one-quarter inch) increments using PEO equipment. The data indicate that the bulk CTE value is unaffected by heat treatment according to the invention, and in fact was reduced by the heat treatment according to the invention.
The division of light into two components (an “ordinary” ray no and an extraordinary ray ne) is found in materials which have two different indices of refraction in different orthogonal directions such that when light entering certain transparent material, it splits into two beams which travel at different speeds through the material (a faster path and a slower path). Birefringence is defined by the equation Δn=ne-no, where no and ne are the refractive indices for polarizations perpendicular and parallel to the axis of anisotropy, respectively. Consequently, when the beam exits the material there is a difference between when the faster and the slower beam exit. This difference is the optical retardation, commonly measure in nanometers. Optical retardation is scaled by the thickness of the material through which the light passes. If one sample of a material is twice as thick as a second sample of the same material, the sample that is twice as thick will exhibit twice the optical retardation of the other sample. Because optical retardation scales with thickness it is often normalized by dividing by the sample thickness (in centimeters). This normalized optical retardation is known as birefringence. The difference between birefringence and retardation is that birefringence is normalized. If all samples happened to be 1 cm thick, then the birefringence would be equal to the retardation, but with different units.
A glass boule is prepared according to Example 1, except that during the preparation of the boule the values for ω1, ω2 and ω3 used in the manufacture of the silica-titania boule were each greater than 5 rpm as taught by U.S. 2004/0027555, and the values for ω1, ω2 and ω3 during heat treatment are 1.71018 rpm, 3.63418 rpm and 4.162 rpm, respectively. The resulting boule is heat treated at a temperature above 1600° C. for a selected time to reduce the striae in the boule. Preferably the boule is heated at a temperature in the range of 1600-1700 for a time in the range 72-96 hours. In additional embodiments of this method the values for ω1, ω2 and ω3 used in the manufacture of the silica-titania boule were each greater than 5 rpm during the heat treatment of the boule according to the present invention to reduce striae.
When practicing striae reduction according to the invention, the cost effective way to reduce striae in a glass boule will be to hold the entire boule at the temperatures and for the times described herein. This can be done at the end of the boule forming process before the boule is removed from the furnace. Using the method of the invention will result in significant striae reduction in all regions of the boule and especially in the top half of the boule. The resulting material can then be polished using methods known in the art to yield optical elements meeting the stringent requirement for optical elements that will be use in ULE applications.
Having set forth the details of the invention, one can clearly see that by using the method of the invention it is possible to reduce striae in an ultra-low expansion glass. The glass can be prepared in any shape by any method known in the art, and after preparation of the glass it is heat treated in a furnace at a temperature greater than 1600° C. for a time in the range of 72-288 hours and cooled the glass to ambient temperature to yield a silica-titania glass having reduced striae. The most common shape for preparing the glass is a boule that is round and has a thickness, though other shapes are possible.
In another aspect, the invention is directed to a low expansion glass product having significantly reduced striae and a method for making the product. In particular, the invention results in a low expansion glass product with significantly reduced striae that can be made into optical elements that have extremely low levels of mid-spatial frequency surface roughness. This is achieved by controlling specific aspects of the boule motion in the furnace to yield a low expansion glass. In the discussion that follows Corning ULE® low expansion glass is used as the exemplary glass. However, the method described can be used to manufacture any low expansion glass.
Heat treatment, as described above, of a low expansion glass such as ULE has been shown to significantly reduce cyclic compositional variations which occur during the deposition process. In addition, it has been shown that the extent of striae reduction is directly related to the time and temperature of heat treatment and inversely related to the striae spacing. Striae spacing can be adjusted by controlling the period of boule motion, oscillation and rotation, during laydown. Boule motions consisting of short periods of oscillation yield shorter striae spacing (that is, thinner striae) than motions with long periods of oscillation. Striae with shorter spacing are shown herein to diminish more easily during heat treatment, both during the time of boule formation and during and any additional post-formation heat treatment.
Reducing striae will reduce some of the polishing issues, which have been observed with ULE material. Specifically, mid-spatial frequency surface roughness will be improved which may yield material more suitable for EUV applications and other applications where extremely smooth surface finish is required. Striae (or composition layering) in ULE is very evident in the direction parallel with the top and bottom of the boules. The striae consists of variations in TiO2 composition of generally more than ±0.1% compared to the local average TiO2 level which is generally in the 7.25 to 8.25% range depending on nominal CTE target. Variations in composition (striae) result in alternating thin layers of CTE and therefore alternating planes of compression and tension (between the layers). When attempting to polish “standard ULE” material, the alternating compression and tension layers caused by striae can yield unequal material removal and unacceptable surface roughness. This effect has been observed in the mirrors industry, where the mid-spatial frequency surface roughness defect is commonly referred to as “wood grain.”
In the manufacturing of ULE boules, the furnace substrate (and the boule) is oscillated and rotated to achieve uniform radial composition and CTE as described in U.S. Pat. No. 5,970,751 A. The equations of motion, where rotation is in rpm, used to make ULE low expansion glass, as also given above, are:
x-axis=x(t)=r1 sin 2πω1t+r2 sin 2πω2t Eq. 1
y-axis=y(t)=r1 cos 2πω1t+r2 cos 2πω2t Eq. 2
Rotation=ω3t Eq. 3
Eq. 1 and 2 describe the oscillation and Eq. 3 describes the rotation of the entire boule. r1, r2, ω1, ω2, and ω3 are variables that can be manipulated in motion models and the furnace to change the nature of the furnace motion and resulting striae. We have determined that choosing values for these variables that minimize the time it takes for the x, y, and r positions to repeat will minimize the magnitude and distance between striae layers in the ULE forming process, resulting in a ULE glass product that has reduced levels of striae in both the number and thickness. Furthermore, minimizing the distance between striae allows the “heat treatment process” as described above to easily diminish the striae further with relatively short process or treatment time. In fact, it has been found that oscillation motions as described herein below have yielded a product with striae spacing so close that the striae “self treats” as the boule is forming, yielding extremely low levels of striae for the majority of the boule. In other words, the time it takes to form the boule is sufficient to allow the compositional gradients to “diffuse” such that all glass made, except for glass made during the last 1-2 days of the production run, has extremely low levels of striae as shown in
Using the method wherein the oscillation period is less than 10 minutes, one can prepare an low expansion glass in which the point-to-point variation in titania content is 0.1 wt % or less as one proceeds through the majority of thickness of the boule from the bottom to the top, Consequently, the invention is further directed to low expansion glass and low expansion optical elements having a titania variation of 0.1 wt. % or less throughout the glass or element, such glass or element having a CTE of 0±3 ppb/° C. over the temperature range of 25-35° C. The glass is a silica-titania glass comprising 5-10 wt. titania and 90-95 wt. silica. In one embodiment the titania content is in the range 7-8.5 wt. % and the CTE is CTE of 0±3 ppb/° C. over the temperature range of 5-35° C. In a further embodiment, the invention is directed to a low expansion glass and low expansion optical elements, such glass or element having a titania variation of 0.1 wt. % or less throughout the glass or element, such glass or element having a CTE of 0±3 ppb/° C. over the temperature range of 5-35° C. In further embodiment the titania variation is 0.05 wt. % or less throughout the glass or element.
While the invention has been described with respect to a limited number of embodiments, those skilled in the art, having benefit of this disclosure, will appreciate that other embodiments can be devised which do not depart from the scope of the invention as disclosed herein. For example, herein is describes heat treating a glass boule that has a diameter and a thickness, or glass cores taken from a boule, a glass of any shape having a thickness can be treated according to the invention, For example, the glass can be rectangular, square, octagonal, hexagonal, oblate, and so forth. Accordingly, the scope of the invention should be limited only by the attached claims.
This application is a continuation-in-part claiming the priority of U.S. application Ser. No. 11/445048 filed May 31, 2006 and titled “REDUCED STRIAE LOW EXPANSION GLASS AND ELEMENTS, AND A METHOD FOR MAKING SAME,” which in turn claims the priority of U.S. Provisional Application No. 60/753,058 filed Dec. 21, 2005 and also titled “REDUCED STRIAE LOW EXPANSION GLASS AND ELEMENTS, AND A METHOD FOR MAKING SAME.”
Number | Date | Country | |
---|---|---|---|
60753058 | Dec 2005 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 11445048 | May 2006 | US |
Child | 11809092 | May 2007 | US |